diff options
-rw-r--r-- | Equal.thy | 81 | ||||
-rw-r--r-- | HoTT.thy | 248 | ||||
-rw-r--r-- | HoTT_Base.thy | 52 | ||||
-rw-r--r-- | HoTT_Theorems.thy | 53 | ||||
-rw-r--r-- | Prod.thy | 48 | ||||
-rw-r--r-- | Sum.thy | 78 |
6 files changed, 303 insertions, 257 deletions
diff --git a/Equal.thy b/Equal.thy new file mode 100644 index 0000000..b9f676f --- /dev/null +++ b/Equal.thy @@ -0,0 +1,81 @@ +theory Equal + imports HoTT_Base Prod + +begin + +subsection \<open>Equality type\<close> + + axiomatization + Equal :: "[Term, Term, Term] \<Rightarrow> Term" + + syntax + "_EQUAL" :: "[Term, Term, Term] \<Rightarrow> Term" ("(3_ =\<^sub>_/ _)" [101, 101] 100) + "_EQUAL_ASCII" :: "[Term, Term, Term] \<Rightarrow> Term" ("(3_ =[_]/ _)" [101, 0, 101] 100) + translations + "a =[A] b" \<rightleftharpoons> "CONST Equal A a b" + "a =\<^sub>A b" \<rightharpoonup> "CONST Equal A a b" + + axiomatization + refl :: "Term \<Rightarrow> Term" ("(refl'(_'))") and + indEqual :: "[Term, [Term, Term, Term] \<Rightarrow> Term] \<Rightarrow> Term" ("(indEqual[_])") + where + Equal_form: "\<And>A a b::Term. \<lbrakk>A : U; a : A; b : A\<rbrakk> \<Longrightarrow> a =\<^sub>A b : U" + (* Should I write a permuted version \<open>\<lbrakk>A : U; b : A; a : A\<rbrakk> \<Longrightarrow> \<dots>\<close>? *) + and + Equal_intro [intro]: "\<And>A x::Term. x : A \<Longrightarrow> refl(x) : x =\<^sub>A x" + and + Equal_elim [elim]: + "\<And>(A::Term) (C::[Term, Term, Term] \<Rightarrow> Term) (f::Term) (a::Term) (b::Term) (p::Term). + \<lbrakk> \<And>x y::Term. \<lbrakk>x : A; y : A\<rbrakk> \<Longrightarrow> C(x)(y): x =\<^sub>A y \<rightarrow> U; + f : \<Prod>x:A. C(x)(x)(refl(x)); + a : A; + b : A; + p : a =\<^sub>A b \<rbrakk> + \<Longrightarrow> indEqual[A](C)`f`a`b`p : C(a)(b)(p)" + and + Equal_comp [simp]: + "\<And>(A::Term) (C::[Term, Term, Term] \<Rightarrow> Term) (f::Term) (a::Term). indEqual[A](C)`f`a`a`refl(a) \<equiv> f`a" + + lemmas Equal_formation [intro] = Equal_form Equal_form[rotated 1] Equal_form[rotated 2] + + subsubsection \<open>Properties of equality\<close> + + text "Symmetry/Path inverse" + + definition inv :: "[Term, Term, Term] \<Rightarrow> Term" ("(1inv[_,/ _,/ _])") + where "inv[A,x,y] \<equiv> indEqual[A](\<lambda>x y _. y =\<^sub>A x)`(\<^bold>\<lambda>x:A. refl(x))`x`y" + + lemma inv_comp: "\<And>A a::Term. a : A \<Longrightarrow> inv[A,a,a]`refl(a) \<equiv> refl(a)" unfolding inv_def by simp + + text "Transitivity/Path composition" + + \<comment> \<open>"Raw" composition function\<close> + definition compose' :: "Term \<Rightarrow> Term" ("(1compose''[_])") + where "compose'[A] \<equiv> indEqual[A](\<lambda>x y _. \<Prod>z:A. \<Prod>q: y =\<^sub>A z. x =\<^sub>A z)`(indEqual[A](\<lambda>x z _. x =\<^sub>A z)`(\<^bold>\<lambda>x:A. refl(x)))" + + \<comment> \<open>"Natural" composition function\<close> + abbreviation compose :: "[Term, Term, Term, Term] \<Rightarrow> Term" ("(1compose[_,/ _,/ _,/ _])") + where "compose[A,x,y,z] \<equiv> \<^bold>\<lambda>p:x =\<^sub>A y. \<^bold>\<lambda>q:y =\<^sub>A z. compose'[A]`x`y`p`z`q" + + (**** GOOD CANDIDATE FOR AUTOMATION ****) + lemma compose_comp: + assumes "a : A" + shows "compose[A,a,a,a]`refl(a)`refl(a) \<equiv> refl(a)" using assms Equal_intro[OF assms] unfolding compose'_def by simp + + text "The above proof is a good candidate for proof automation; in particular we would like the system to be able to automatically find the conditions of the \<open>using\<close> clause in the proof. + This would likely involve something like: + 1. Recognizing that there is a function application that can be simplified. + 2. Noting that the obstruction to applying \<open>Prod_comp\<close> is the requirement that \<open>refl(a) : a =\<^sub>A a\<close>. + 3. Obtaining such a condition, using the known fact \<open>a : A\<close> and the introduction rule \<open>Equal_intro\<close>." + + lemmas Equal_simps [simp] = inv_comp compose_comp + + subsubsection \<open>Pretty printing\<close> + + abbreviation inv_pretty :: "[Term, Term, Term, Term] \<Rightarrow> Term" ("(1_\<^sup>-\<^sup>1[_, _, _])" 500) + where "p\<^sup>-\<^sup>1[A,x,y] \<equiv> inv[A,x,y]`p" + + abbreviation compose_pretty :: "[Term, Term, Term, Term, Term, Term] \<Rightarrow> Term" ("(1_ \<bullet>[_, _, _, _]/ _)") + where "p \<bullet>[A,x,y,z] q \<equiv> compose[A,x,y,z]`p`q" + +end
\ No newline at end of file diff --git a/HoTT.thy b/HoTT.thy deleted file mode 100644 index cfb29df..0000000 --- a/HoTT.thy +++ /dev/null @@ -1,248 +0,0 @@ -theory HoTT - imports Pure -begin - -section \<open>Setup\<close> -text "For ML files, routines and setup." - -section \<open>Basic definitions\<close> -text "A single meta-level type \<open>Term\<close> suffices to implement the object-level types and terms. -We do not implement universes, but simply follow the informal notation in the HoTT book." - -typedecl Term - -section \<open>Judgments\<close> - -consts - is_a_type :: "Term \<Rightarrow> prop" ("(_ : U)" [0] 1000) - is_of_type :: "[Term, Term] \<Rightarrow> prop" ("(3_ :/ _)" [0, 0] 1000) - -section \<open>Definitional equality\<close> -text "We take the meta-equality \<open>\<equiv>\<close>, defined by the Pure framework for any of its terms, and use it additionally for definitional/judgmental equality of types and terms in our theory. - -Note that the Pure framework already provides axioms and results for various properties of \<open>\<equiv>\<close>, which we make use of and extend where necessary." - -theorem equal_types: - assumes "A \<equiv> B" and "A : U" - shows "B : U" using assms by simp - -theorem equal_type_element: - assumes "A \<equiv> B" and "x : A" - shows "x : B" using assms by simp - -lemmas type_equality [intro, simp] = equal_types equal_types[rotated] equal_type_element equal_type_element[rotated] - -section \<open>Type families\<close> -text "Type families are implemented using meta-level lambda expressions \<open>P::Term \<Rightarrow> Term\<close> that further satisfy the following property." - -abbreviation is_type_family :: "[Term \<Rightarrow> Term, Term] \<Rightarrow> prop" ("(3_:/ _ \<rightarrow> U)") - where "P: A \<rightarrow> U \<equiv> (\<And>x::Term. x : A \<Longrightarrow> P(x) : U)" - -section \<open>Types\<close> - -subsection \<open>Dependent function/product\<close> - -axiomatization - Prod :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term" and - lambda :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term" -syntax - "_PROD" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3\<Prod>_:_./ _)" 30) - "_LAMBDA" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3\<^bold>\<lambda>_:_./ _)" 30) - "_PROD_ASCII" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3PROD _:_./ _)" 30) - "_LAMBDA_ASCII" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3%%_:_./ _)" 30) -translations - "\<Prod>x:A. B" \<rightleftharpoons> "CONST Prod A (\<lambda>x. B)" - "\<^bold>\<lambda>x:A. b" \<rightleftharpoons> "CONST lambda A (\<lambda>x. b)" - "PROD x:A. B" \<rightharpoonup> "CONST Prod A (\<lambda>x. B)" - "%%x:A. b" \<rightharpoonup> "CONST lambda A (\<lambda>x. b)" - (* The above syntax translations bind the x in the expressions B, b. *) - -abbreviation Function :: "[Term, Term] \<Rightarrow> Term" (infixr "\<rightarrow>" 40) - where "A\<rightarrow>B \<equiv> \<Prod>_:A. B" - -axiomatization - appl :: "[Term, Term] \<Rightarrow> Term" (infixl "`" 60) -where - Prod_form: "\<And>(A::Term) (B::Term \<Rightarrow> Term). \<lbrakk>A : U; B : A \<rightarrow> U\<rbrakk> \<Longrightarrow> \<Prod>x:A. B(x) : U" -and - Prod_intro [intro]: - "\<And>(A::Term) (B::Term \<Rightarrow> Term) (b::Term \<Rightarrow> Term). (\<And>x::Term. x : A \<Longrightarrow> b(x) : B(x)) \<Longrightarrow> \<^bold>\<lambda>x:A. b(x) : \<Prod>x:A. B(x)" -and - Prod_elim [elim]: - "\<And>(A::Term) (B::Term \<Rightarrow> Term) (f::Term) (a::Term). \<lbrakk>f : \<Prod>x:A. B(x); a : A\<rbrakk> \<Longrightarrow> f`a : B(a)" -and - Prod_comp [simp]: "\<And>(A::Term) (b::Term \<Rightarrow> Term) (a::Term). a : A \<Longrightarrow> (\<^bold>\<lambda>x:A. b(x))`a \<equiv> b(a)" -and - Prod_uniq [simp]: "\<And>A f::Term. \<^bold>\<lambda>x:A. (f`x) \<equiv> f" - -lemmas Prod_formation [intro] = Prod_form Prod_form[rotated] - -text "Note that the syntax \<open>\<^bold>\<lambda>\<close> (bold lambda) used for dependent functions clashes with the proof term syntax (cf. \<section>2.5.2 of the Isabelle/Isar Implementation)." - -subsection \<open>Dependent pair/sum\<close> - -axiomatization - Sum :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term" -syntax - "_SUM" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3\<Sum>_:_./ _)" 20) - "_SUM_ASCII" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3SUM _:_./ _)" 20) -translations - "\<Sum>x:A. B" \<rightleftharpoons> "CONST Sum A (\<lambda>x. B)" - "SUM x:A. B" \<rightharpoonup> "CONST Sum A (\<lambda>x. B)" - -abbreviation Pair :: "[Term, Term] \<Rightarrow> Term" (infixr "\<times>" 50) - where "A\<times>B \<equiv> \<Sum>_:A. B" - -axiomatization - pair :: "[Term, Term] \<Rightarrow> Term" ("(1'(_,/ _'))") and - indSum :: "(Term \<Rightarrow> Term) \<Rightarrow> Term" -where - Sum_form: "\<And>(A::Term) (B::Term \<Rightarrow> Term). \<lbrakk>A : U; B: A \<rightarrow> U\<rbrakk> \<Longrightarrow> \<Sum>x:A. B(x) : U" -and - Sum_intro [intro]: - "\<And>(A::Term) (B::Term \<Rightarrow> Term) (a::Term) (b::Term). \<lbrakk>a : A; b : B(a)\<rbrakk> \<Longrightarrow> (a, b) : \<Sum>x:A. B(x)" -and - Sum_elim [elim]: - "\<And>(A::Term) (B::Term \<Rightarrow> Term) (C::Term \<Rightarrow> Term) (f::Term) (p::Term). - \<lbrakk>C: \<Sum>x:A. B(x) \<rightarrow> U; f : \<Prod>x:A. \<Prod>y:B(x). C((x,y)); p : \<Sum>x:A. B(x)\<rbrakk> \<Longrightarrow> indSum(C)`f`p : C(p)" -and - Sum_comp [simp]: "\<And>(C::Term \<Rightarrow> Term) (f::Term) (a::Term) (b::Term). indSum(C)`f`(a,b) \<equiv> f`a`b" - -lemmas Sum_formation [intro] = Sum_form Sum_form[rotated] - -text "We choose to formulate the elimination rule by using the object-level function type and function application as much as possible. -Hence only the type family \<open>C\<close> is left as a meta-level argument to the inductor indSum." - -subsubsection \<open>Projections\<close> - -consts - fst :: "[Term, 'a] \<Rightarrow> Term" ("(1fst[/_,/ _])") - snd :: "[Term, 'a] \<Rightarrow> Term" ("(1snd[/_,/ _])") -overloading - fst_dep \<equiv> fst - snd_dep \<equiv> snd - fst_nondep \<equiv> fst - snd_nondep \<equiv> snd -begin -definition fst_dep :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term" where - "fst_dep A B \<equiv> indSum(\<lambda>_. A)`(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). x)" - -definition snd_dep :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term" where - "snd_dep A B \<equiv> indSum(\<lambda>_. A)`(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). y)" - -definition fst_nondep :: "[Term, Term] \<Rightarrow> Term" where - "fst_nondep A B \<equiv> indSum(\<lambda>_. A)`(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B. x)" - -definition snd_nondep :: "[Term, Term] \<Rightarrow> Term" where - "snd_nondep A B \<equiv> indSum(\<lambda>_. A)`(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B. y)" -end - -lemma fst_dep_comp: "\<lbrakk>a : A; b : B(a)\<rbrakk> \<Longrightarrow> fst[A,B]`(a,b) \<equiv> a" unfolding fst_dep_def by simp -lemma snd_dep_comp: "\<lbrakk>a : A; b : B(a)\<rbrakk> \<Longrightarrow> snd[A,B]`(a,b) \<equiv> b" unfolding snd_dep_def by simp - -lemma fst_nondep_comp: "\<lbrakk>a : A; b : B\<rbrakk> \<Longrightarrow> fst[A,B]`(a,b) \<equiv> a" unfolding fst_nondep_def by simp -lemma snd_nondep_comp: "\<lbrakk>a : A; b : B\<rbrakk> \<Longrightarrow> snd[A,B]`(a,b) \<equiv> b" unfolding snd_nondep_def by simp - -\<comment> \<open>Simplification rules for projections\<close> -lemmas fst_snd_simps [simp] = fst_dep_comp snd_dep_comp fst_nondep_comp snd_nondep_comp - -subsection \<open>Equality type\<close> - -axiomatization - Equal :: "[Term, Term, Term] \<Rightarrow> Term" -syntax - "_EQUAL" :: "[Term, Term, Term] \<Rightarrow> Term" ("(3_ =\<^sub>_/ _)" [101, 101] 100) - "_EQUAL_ASCII" :: "[Term, Term, Term] \<Rightarrow> Term" ("(3_ =[_]/ _)" [101, 101] 100) -translations - "a =\<^sub>A b" \<rightleftharpoons> "CONST Equal A a b" - "a =[A] b" \<rightharpoonup> "CONST Equal A a b" - -axiomatization - refl :: "Term \<Rightarrow> Term" ("(refl'(_'))") and - indEqual :: "[Term, [Term, Term, Term] \<Rightarrow> Term] \<Rightarrow> Term" ("(indEqual[_])") -where - Equal_form: "\<And>A a b::Term. \<lbrakk>A : U; a : A; b : A\<rbrakk> \<Longrightarrow> a =\<^sub>A b : U" - (* Should I write a permuted version \<open>\<lbrakk>A : U; b : A; a : A\<rbrakk> \<Longrightarrow> \<dots>\<close>? *) -and - Equal_intro [intro]: "\<And>A x::Term. x : A \<Longrightarrow> refl(x) : x =\<^sub>A x" -and - Equal_elim [elim]: - "\<And>(A::Term) (C::[Term, Term, Term] \<Rightarrow> Term) (f::Term) (a::Term) (b::Term) (p::Term). - \<lbrakk> \<And>x y::Term. \<lbrakk>x : A; y : A\<rbrakk> \<Longrightarrow> C(x)(y): x =\<^sub>A y \<rightarrow> U; - f : \<Prod>x:A. C(x)(x)(refl(x)); - a : A; - b : A; - p : a =\<^sub>A b \<rbrakk> - \<Longrightarrow> indEqual[A](C)`f`a`b`p : C(a)(b)(p)" -and - Equal_comp [simp]: - "\<And>(A::Term) (C::[Term, Term, Term] \<Rightarrow> Term) (f::Term) (a::Term). indEqual[A](C)`f`a`a`refl(a) \<equiv> f`a" - -lemmas Equal_formation [intro] = Equal_form Equal_form[rotated 1] Equal_form[rotated 2] - -subsubsection \<open>Properties of equality\<close> - -text "Symmetry/Path inverse" - -definition inv :: "[Term, Term, Term] \<Rightarrow> Term" ("(1inv[_,/ _,/ _])") - where "inv[A,x,y] \<equiv> indEqual[A](\<lambda>x y _. y =\<^sub>A x)`(\<^bold>\<lambda>x:A. refl(x))`x`y" - -lemma inv_comp: "\<And>A a::Term. a : A \<Longrightarrow> inv[A,a,a]`refl(a) \<equiv> refl(a)" unfolding inv_def by simp - -text "Transitivity/Path composition" - -\<comment> \<open>"Raw" composition function\<close> -abbreviation compose' :: "Term \<Rightarrow> Term" ("(1compose''[_])") - where "compose'[A] \<equiv> indEqual[A](\<lambda>x y _. \<Prod>z:A. \<Prod>q: y =\<^sub>A z. x =\<^sub>A z)`(indEqual[A](\<lambda>x z _. x =\<^sub>A z)`(\<^bold>\<lambda>x:A. refl(x)))" - -\<comment> \<open>"Natural" composition function\<close> -abbreviation compose :: "[Term, Term, Term, Term] \<Rightarrow> Term" ("(1compose[_,/ _,/ _,/ _])") - where "compose[A,x,y,z] \<equiv> \<^bold>\<lambda>p:x =\<^sub>A y. \<^bold>\<lambda>q:y =\<^sub>A z. compose'[A]`x`y`p`z`q" - -(**** GOOD CANDIDATE FOR AUTOMATION ****) -lemma compose_comp: - assumes "a : A" - shows "compose[A,a,a,a]`refl(a)`refl(a) \<equiv> refl(a)" using assms Equal_intro[OF assms] by simp - -text "The above proof is a good candidate for proof automation; in particular we would like the system to be able to automatically find the conditions of the \<open>using\<close> clause in the proof. -This would likely involve something like: - 1. Recognizing that there is a function application that can be simplified. - 2. Noting that the obstruction to applying \<open>Prod_comp\<close> is the requirement that \<open>refl(a) : a =\<^sub>A a\<close>. - 3. Obtaining such a condition, using the known fact \<open>a : A\<close> and the introduction rule \<open>Equal_intro\<close>." - -lemmas Equal_simps [simp] = inv_comp compose_comp - -subsubsection \<open>Pretty printing\<close> - -abbreviation inv_pretty :: "[Term, Term, Term, Term] \<Rightarrow> Term" ("(1_\<^sup>-\<^sup>1\<^sub>_\<^sub>,\<^sub>_\<^sub>,\<^sub>_)" 500) - where "p\<^sup>-\<^sup>1\<^sub>A\<^sub>,\<^sub>x\<^sub>,\<^sub>y \<equiv> inv[A,x,y]`p" - -abbreviation compose_pretty :: "[Term, Term, Term, Term, Term, Term] \<Rightarrow> Term" ("(1_ \<bullet>\<^sub>_\<^sub>,\<^sub>_\<^sub>,\<^sub>_\<^sub>,\<^sub>_/ _)") - where "p \<bullet>\<^sub>A\<^sub>,\<^sub>x\<^sub>,\<^sub>y\<^sub>,\<^sub>z q \<equiv> compose[A,x,y,z]`p`q" - -end - -(* -subsubsection \<open>Empty type\<close> - -axiomatization - Null :: Term and - ind_Null :: "Term \<Rightarrow> Term \<Rightarrow> Term" ("(ind'_Null'(_,/ _'))") -where - Null_form: "Null : U" and - Null_elim: "\<And>C x a. \<lbrakk>x : Null \<Longrightarrow> C(x) : U; a : Null\<rbrakk> \<Longrightarrow> ind_Null(C(x), a) : C(a)" - -subsubsection \<open>Natural numbers\<close> - -axiomatization - Nat :: Term and - zero :: Term ("0") and - succ :: "Term \<Rightarrow> Term" and (* how to enforce \<open>succ : Nat\<rightarrow>Nat\<close>? *) - ind_Nat :: "Term \<Rightarrow> Term \<Rightarrow> Term \<Rightarrow> Term \<Rightarrow> Term" -where - Nat_form: "Nat : U" and - Nat_intro1: "0 : Nat" and - Nat_intro2: "\<And>n. n : Nat \<Longrightarrow> succ n : Nat" - (* computation rules *) - -*)
\ No newline at end of file diff --git a/HoTT_Base.thy b/HoTT_Base.thy new file mode 100644 index 0000000..9650c4c --- /dev/null +++ b/HoTT_Base.thy @@ -0,0 +1,52 @@ +(* Title: HoTT/HoTT_Base.thy + Author: Josh Chen + +Basic setup and definitions of a homotopy type theory object logic. +*) + +theory HoTT_Base + imports Pure + +begin + +section \<open>Basic definitions\<close> + +text "A single meta-level type \<open>Term\<close> suffices to implement the object-level types and terms. +We do not implement universes, but simply follow the informal notation in the HoTT book." + +typedecl Term + +section \<open>Judgments\<close> + +consts +is_a_type :: "Term \<Rightarrow> prop" ("(_ : U)" [0] 1000) +is_of_type :: "[Term, Term] \<Rightarrow> prop" ("(3_ :/ _)" [0, 0] 1000) + + +section \<open>Definitional equality\<close> + +text "We use the Pure equality \<open>\<equiv>\<close> for definitional/judgmental equality of types and terms in our theory." + +theorem equal_types: + assumes "A \<equiv> B" and "A : U" + shows "B : U" using assms by simp + +theorem equal_type_element: + assumes "A \<equiv> B" and "x : A" + shows "x : B" using assms by simp + +lemmas type_equality [intro, simp] = + equal_types + equal_types[rotated] + equal_type_element + equal_type_element[rotated] + + +section \<open>Type families\<close> + +text "A type family is a meta lambda term \<open>P :: Term \<Rightarrow> Term\<close> that further satisfies the following property." + +abbreviation is_type_family :: "[Term \<Rightarrow> Term, Term] \<Rightarrow> prop" ("(3_:/ _ \<rightarrow> U)") + where "P: A \<rightarrow> U \<equiv> (\<And>x. x : A \<Longrightarrow> P(x) : U)" + +end
\ No newline at end of file diff --git a/HoTT_Theorems.thy b/HoTT_Theorems.thy index f05363a..95f1d0c 100644 --- a/HoTT_Theorems.thy +++ b/HoTT_Theorems.thy @@ -6,13 +6,13 @@ text "A bunch of theorems and other statements for sanity-checking, as well as t Things that *should* be automated: \<bullet> Checking that \<open>A\<close> is a well-formed type, when writing things like \<open>x : A\<close> and \<open>A : U\<close>. - \<bullet> Checking that the argument to a (dependent/non-dependent) function matches the type? Also the arguments to a pair? -" + \<bullet> Checking that the argument to a (dependent/non-dependent) function matches the type? Also the arguments to a pair?" \<comment> \<open>Turn on trace for unification and the simplifier, for debugging.\<close> declare[[unify_trace_simp, unify_trace_types, simp_trace, simp_trace_depth_limit=1]] -section \<open>Functions\<close> + +section \<open>\<Prod> type\<close> subsection \<open>Typing functions\<close> @@ -35,6 +35,7 @@ proof then show "\<^bold>\<lambda>y:B. a : B \<rightarrow> A" .. qed + subsection \<open>Function application\<close> proposition "a : A \<Longrightarrow> (\<^bold>\<lambda>x:A. x)`a \<equiv> a" by simp @@ -47,7 +48,10 @@ lemma "a : A \<Longrightarrow> (\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). f lemma "\<lbrakk>a : A; b : B(a); c : C(a)(b)\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). \<^bold>\<lambda>z:C(x)(y). f x y z)`a`b`c \<equiv> f a b c" by simp -proposition wellformed_currying: + +subsection \<open>Currying functions\<close> + +proposition curried_function_formation: fixes A::Term and B::"Term \<Rightarrow> Term" and @@ -67,7 +71,7 @@ proof qed (rule assms) (**** GOOD CANDIDATE FOR AUTOMATION - EISBACH! ****) -proposition triply_curried: +proposition higher_order_currying_formation: fixes A::Term and B::"Term \<Rightarrow> Term" and @@ -94,7 +98,8 @@ proof qed qed (rule assms) -lemma curried_type: +(**** AND PROBABLY THIS TOO? ****) +lemma curried_type_judgment: fixes a b A::Term and B::"Term \<Rightarrow> Term" and @@ -115,6 +120,9 @@ qed text "Note that the propositions and proofs above often say nothing about the well-formedness of the types, or the well-typedness of the lambdas involved; one has to be very explicit and prove such things separately! This is the result of the choices made regarding the premises of the type rules." + +section \<open>\<Sum> type\<close> + text "The following shows that the dependent sum inductor has the type we expect it to have:" lemma @@ -126,7 +134,7 @@ proof - "P \<equiv> \<Sum>x:A. B(x)" have "\<^bold>\<lambda>f:F. \<^bold>\<lambda>p:P. indSum(C)`f`p : \<Prod>f:F. \<Prod>p:P. C(p)" - proof (rule curried_type) + proof (rule curried_type_judgment) fix f p::Term assume "f : F" and "p : P" with assms show "indSum(C)`f`p : C(p)" unfolding F_def P_def .. @@ -135,15 +143,42 @@ proof - then show "indSum(C) : \<Prod>f:F. \<Prod>p:P. C(p)" by simp qed +(**** AUTOMATION CANDIDATE ****) +text "Propositional uniqueness principle for dependent sums:" + +text "We would like to eventually automate proving that 'a given type \<open>A\<close> is inhabited', i.e. search for an element \<open>a:A\<close>. + +A good starting point would be to automate the application of elimination rules." + +notepad begin + +fix A B assume "A : U" and "B: A \<rightarrow> U" + +define C where "C \<equiv> \<lambda>p. p =[\<Sum>x:A. B(x)] (fst[A,B]`p, snd[A,B]`p)" +have *: "C: \<Sum>x:A. B(x) \<rightarrow> U" +proof - + fix p assume "p : \<Sum>x:A. B(x)" + have "(fst[A,B]`p, snd[A,B]`p) : \<Sum>x:A. B(x)" + +define f where "f \<equiv> \<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). refl((x,y))" +have "f`x`y : C((x,y))" +sorry + +have "p : \<Sum>x:A. B(x) \<Longrightarrow> indSum(C)`f`p : C(p)" using * ** by (rule Sum_elim) + +end + +section \<open>Universes and polymorphism\<close> + text "Polymorphic identity function." consts Ui::Term definition Id where "Id \<equiv> \<^bold>\<lambda>A:Ui. \<^bold>\<lambda>x:A. x" -(* Have to think about universes... *) + (* -section \<open>Nats\<close> +section \<open>Natural numbers\<close> text "Here's a dumb proof that 2 is a natural number." diff --git a/Prod.thy b/Prod.thy new file mode 100644 index 0000000..9ecab4d --- /dev/null +++ b/Prod.thy @@ -0,0 +1,48 @@ +(* Title: HoTT/Prod.thy + Author: Josh Chen + +Dependent product (function) type for the HoTT logic. +*) + +theory Prod + imports HoTT_Base + +begin + +axiomatization + Prod :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term" and + lambda :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term" and + appl :: "[Term, Term] \<Rightarrow> Term" (infixl "`" 60) + +syntax + "_PROD" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3\<Prod>_:_./ _)" 30) + "_LAMBDA" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3\<^bold>\<lambda>_:_./ _)" 30) + "_PROD_ASCII" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3PROD _:_./ _)" 30) + "_LAMBDA_ASCII" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3%%_:_./ _)" 30) + +\<comment> \<open>The translations below bind the variable \<open>x\<close> in the expressions \<open>B\<close> and \<open>b\<close>.\<close> +translations + "\<Prod>x:A. B" \<rightleftharpoons> "CONST Prod A (\<lambda>x. B)" + "\<^bold>\<lambda>x:A. b" \<rightleftharpoons> "CONST lambda A (\<lambda>x. b)" + "PROD x:A. B" \<rightharpoonup> "CONST Prod A (\<lambda>x. B)" + "%%x:A. b" \<rightharpoonup> "CONST lambda A (\<lambda>x. b)" + +\<comment> \<open>Type rules\<close> +axiomatization where + Prod_form [intro]: "\<And>A B. \<lbrakk>A : U; B : A \<rightarrow> U\<rbrakk> \<Longrightarrow> \<Prod>x:A. B(x) : U" +and + Prod_intro [intro]: "\<And>A B b. (\<And>x. x : A \<Longrightarrow> b(x) : B(x)) \<Longrightarrow> \<^bold>\<lambda>x:A. b(x) : \<Prod>x:A. B(x)" +and + Prod_elim [elim]: "\<And>A B f a. \<lbrakk>f : \<Prod>x:A. B(x); a : A\<rbrakk> \<Longrightarrow> f`a : B(a)" +and + Prod_comp [simp]: "\<And>A b a. a : A \<Longrightarrow> (\<^bold>\<lambda>x:A. b(x))`a \<equiv> b(a)" +and + Prod_uniq [simp]: "\<And>A f. \<^bold>\<lambda>x:A. (f`x) \<equiv> f" + +text "Note that the syntax \<open>\<^bold>\<lambda>\<close> (bold lambda) used for dependent functions clashes with the proof term syntax (cf. \<section>2.5.2 of the Isabelle/Isar Implementation)." + +\<comment> \<open>Nondependent functions are a special case.\<close> +abbreviation Function :: "[Term, Term] \<Rightarrow> Term" (infixr "\<rightarrow>" 40) + where "A \<rightarrow> B \<equiv> \<Prod>_:A. B" + +end
\ No newline at end of file @@ -0,0 +1,78 @@ +(* Title: HoTT/Sum.thy + Author: Josh Chen + +Dependent sum type. +*) + +theory Sum + imports HoTT_Base Prod + +begin + +axiomatization + Sum :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term" and + pair :: "[Term, Term] \<Rightarrow> Term" ("(1'(_,/ _'))") and + indSum :: "(Term \<Rightarrow> Term) \<Rightarrow> Term" + +syntax + "_SUM" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3\<Sum>_:_./ _)" 20) + "_SUM_ASCII" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3SUM _:_./ _)" 20) + +translations + "\<Sum>x:A. B" \<rightleftharpoons> "CONST Sum A (\<lambda>x. B)" + "SUM x:A. B" \<rightharpoonup> "CONST Sum A (\<lambda>x. B)" + +axiomatization where + Sum_form [intro]: "\<And>A B. \<lbrakk>A : U; B: A \<rightarrow> U\<rbrakk> \<Longrightarrow> \<Sum>x:A. B(x) : U" +and + Sum_intro [intro]: "\<And>A B a b. \<lbrakk>a : A; b : B(a)\<rbrakk> \<Longrightarrow> (a, b) : \<Sum>x:A. B(x)" +and + Sum_elim [elim]: "\<And>A B C f p. + \<lbrakk> C: \<Sum>x:A. B(x) \<rightarrow> U; + f : \<Prod>x:A. \<Prod>y:B(x). C((x,y)); + p : \<Sum>x:A. B(x) \<rbrakk> \<Longrightarrow> indSum(C)`f`p : C(p)" +and + Sum_comp [simp]: "\<And>(C::Term \<Rightarrow> Term) (f::Term) (a::Term) (b::Term). indSum(C)`f`(a,b) \<equiv> f`a`b" + +text "We choose to formulate the elimination rule by using the object-level function type and function application as much as possible. +Hence only the type family \<open>C\<close> is left as a meta-level argument to the inductor indSum." + +\<comment> \<open>Nondependent pair\<close> +abbreviation Pair :: "[Term, Term] \<Rightarrow> Term" (infixr "\<times>" 50) + where "A\<times>B \<equiv> \<Sum>_:A. B" + +subsubsection \<open>Projections\<close> + +consts + fst :: "[Term, 'a] \<Rightarrow> Term" ("(1fst[/_,/ _])") + snd :: "[Term, 'a] \<Rightarrow> Term" ("(1snd[/_,/ _])") + +overloading + fst_dep \<equiv> fst + snd_dep \<equiv> snd + fst_nondep \<equiv> fst + snd_nondep \<equiv> snd +begin + definition fst_dep :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term" where + "fst_dep A B \<equiv> indSum(\<lambda>_. A)`(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). x)" + + definition snd_dep :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term" where + "snd_dep A B \<equiv> indSum(\<lambda>_. A)`(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). y)" + + definition fst_nondep :: "[Term, Term] \<Rightarrow> Term" where + "fst_nondep A B \<equiv> indSum(\<lambda>_. A)`(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B. x)" + + definition snd_nondep :: "[Term, Term] \<Rightarrow> Term" where + "snd_nondep A B \<equiv> indSum(\<lambda>_. A)`(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B. y)" +end + +text "Simplification rules for the projections:" + +lemma fst_dep_comp: "\<lbrakk>a : A; b : B(a)\<rbrakk> \<Longrightarrow> fst[A,B]`(a,b) \<equiv> a" unfolding fst_dep_def by simp +lemma snd_dep_comp: "\<lbrakk>a : A; b : B(a)\<rbrakk> \<Longrightarrow> snd[A,B]`(a,b) \<equiv> b" unfolding snd_dep_def by simp + +lemma fst_nondep_comp: "\<lbrakk>a : A; b : B\<rbrakk> \<Longrightarrow> fst[A,B]`(a,b) \<equiv> a" unfolding fst_nondep_def by simp +lemma snd_nondep_comp: "\<lbrakk>a : A; b : B\<rbrakk> \<Longrightarrow> snd[A,B]`(a,b) \<equiv> b" unfolding snd_nondep_def by simp + +lemmas fst_snd_simps [simp] = fst_dep_comp snd_dep_comp fst_nondep_comp snd_nondep_comp +end
\ No newline at end of file |