diff options
Diffstat (limited to 'HoTT.thy')
-rw-r--r-- | HoTT.thy | 248 |
1 files changed, 0 insertions, 248 deletions
diff --git a/HoTT.thy b/HoTT.thy deleted file mode 100644 index cfb29df..0000000 --- a/HoTT.thy +++ /dev/null @@ -1,248 +0,0 @@ -theory HoTT - imports Pure -begin - -section \<open>Setup\<close> -text "For ML files, routines and setup." - -section \<open>Basic definitions\<close> -text "A single meta-level type \<open>Term\<close> suffices to implement the object-level types and terms. -We do not implement universes, but simply follow the informal notation in the HoTT book." - -typedecl Term - -section \<open>Judgments\<close> - -consts - is_a_type :: "Term \<Rightarrow> prop" ("(_ : U)" [0] 1000) - is_of_type :: "[Term, Term] \<Rightarrow> prop" ("(3_ :/ _)" [0, 0] 1000) - -section \<open>Definitional equality\<close> -text "We take the meta-equality \<open>\<equiv>\<close>, defined by the Pure framework for any of its terms, and use it additionally for definitional/judgmental equality of types and terms in our theory. - -Note that the Pure framework already provides axioms and results for various properties of \<open>\<equiv>\<close>, which we make use of and extend where necessary." - -theorem equal_types: - assumes "A \<equiv> B" and "A : U" - shows "B : U" using assms by simp - -theorem equal_type_element: - assumes "A \<equiv> B" and "x : A" - shows "x : B" using assms by simp - -lemmas type_equality [intro, simp] = equal_types equal_types[rotated] equal_type_element equal_type_element[rotated] - -section \<open>Type families\<close> -text "Type families are implemented using meta-level lambda expressions \<open>P::Term \<Rightarrow> Term\<close> that further satisfy the following property." - -abbreviation is_type_family :: "[Term \<Rightarrow> Term, Term] \<Rightarrow> prop" ("(3_:/ _ \<rightarrow> U)") - where "P: A \<rightarrow> U \<equiv> (\<And>x::Term. x : A \<Longrightarrow> P(x) : U)" - -section \<open>Types\<close> - -subsection \<open>Dependent function/product\<close> - -axiomatization - Prod :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term" and - lambda :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term" -syntax - "_PROD" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3\<Prod>_:_./ _)" 30) - "_LAMBDA" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3\<^bold>\<lambda>_:_./ _)" 30) - "_PROD_ASCII" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3PROD _:_./ _)" 30) - "_LAMBDA_ASCII" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3%%_:_./ _)" 30) -translations - "\<Prod>x:A. B" \<rightleftharpoons> "CONST Prod A (\<lambda>x. B)" - "\<^bold>\<lambda>x:A. b" \<rightleftharpoons> "CONST lambda A (\<lambda>x. b)" - "PROD x:A. B" \<rightharpoonup> "CONST Prod A (\<lambda>x. B)" - "%%x:A. b" \<rightharpoonup> "CONST lambda A (\<lambda>x. b)" - (* The above syntax translations bind the x in the expressions B, b. *) - -abbreviation Function :: "[Term, Term] \<Rightarrow> Term" (infixr "\<rightarrow>" 40) - where "A\<rightarrow>B \<equiv> \<Prod>_:A. B" - -axiomatization - appl :: "[Term, Term] \<Rightarrow> Term" (infixl "`" 60) -where - Prod_form: "\<And>(A::Term) (B::Term \<Rightarrow> Term). \<lbrakk>A : U; B : A \<rightarrow> U\<rbrakk> \<Longrightarrow> \<Prod>x:A. B(x) : U" -and - Prod_intro [intro]: - "\<And>(A::Term) (B::Term \<Rightarrow> Term) (b::Term \<Rightarrow> Term). (\<And>x::Term. x : A \<Longrightarrow> b(x) : B(x)) \<Longrightarrow> \<^bold>\<lambda>x:A. b(x) : \<Prod>x:A. B(x)" -and - Prod_elim [elim]: - "\<And>(A::Term) (B::Term \<Rightarrow> Term) (f::Term) (a::Term). \<lbrakk>f : \<Prod>x:A. B(x); a : A\<rbrakk> \<Longrightarrow> f`a : B(a)" -and - Prod_comp [simp]: "\<And>(A::Term) (b::Term \<Rightarrow> Term) (a::Term). a : A \<Longrightarrow> (\<^bold>\<lambda>x:A. b(x))`a \<equiv> b(a)" -and - Prod_uniq [simp]: "\<And>A f::Term. \<^bold>\<lambda>x:A. (f`x) \<equiv> f" - -lemmas Prod_formation [intro] = Prod_form Prod_form[rotated] - -text "Note that the syntax \<open>\<^bold>\<lambda>\<close> (bold lambda) used for dependent functions clashes with the proof term syntax (cf. \<section>2.5.2 of the Isabelle/Isar Implementation)." - -subsection \<open>Dependent pair/sum\<close> - -axiomatization - Sum :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term" -syntax - "_SUM" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3\<Sum>_:_./ _)" 20) - "_SUM_ASCII" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3SUM _:_./ _)" 20) -translations - "\<Sum>x:A. B" \<rightleftharpoons> "CONST Sum A (\<lambda>x. B)" - "SUM x:A. B" \<rightharpoonup> "CONST Sum A (\<lambda>x. B)" - -abbreviation Pair :: "[Term, Term] \<Rightarrow> Term" (infixr "\<times>" 50) - where "A\<times>B \<equiv> \<Sum>_:A. B" - -axiomatization - pair :: "[Term, Term] \<Rightarrow> Term" ("(1'(_,/ _'))") and - indSum :: "(Term \<Rightarrow> Term) \<Rightarrow> Term" -where - Sum_form: "\<And>(A::Term) (B::Term \<Rightarrow> Term). \<lbrakk>A : U; B: A \<rightarrow> U\<rbrakk> \<Longrightarrow> \<Sum>x:A. B(x) : U" -and - Sum_intro [intro]: - "\<And>(A::Term) (B::Term \<Rightarrow> Term) (a::Term) (b::Term). \<lbrakk>a : A; b : B(a)\<rbrakk> \<Longrightarrow> (a, b) : \<Sum>x:A. B(x)" -and - Sum_elim [elim]: - "\<And>(A::Term) (B::Term \<Rightarrow> Term) (C::Term \<Rightarrow> Term) (f::Term) (p::Term). - \<lbrakk>C: \<Sum>x:A. B(x) \<rightarrow> U; f : \<Prod>x:A. \<Prod>y:B(x). C((x,y)); p : \<Sum>x:A. B(x)\<rbrakk> \<Longrightarrow> indSum(C)`f`p : C(p)" -and - Sum_comp [simp]: "\<And>(C::Term \<Rightarrow> Term) (f::Term) (a::Term) (b::Term). indSum(C)`f`(a,b) \<equiv> f`a`b" - -lemmas Sum_formation [intro] = Sum_form Sum_form[rotated] - -text "We choose to formulate the elimination rule by using the object-level function type and function application as much as possible. -Hence only the type family \<open>C\<close> is left as a meta-level argument to the inductor indSum." - -subsubsection \<open>Projections\<close> - -consts - fst :: "[Term, 'a] \<Rightarrow> Term" ("(1fst[/_,/ _])") - snd :: "[Term, 'a] \<Rightarrow> Term" ("(1snd[/_,/ _])") -overloading - fst_dep \<equiv> fst - snd_dep \<equiv> snd - fst_nondep \<equiv> fst - snd_nondep \<equiv> snd -begin -definition fst_dep :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term" where - "fst_dep A B \<equiv> indSum(\<lambda>_. A)`(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). x)" - -definition snd_dep :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term" where - "snd_dep A B \<equiv> indSum(\<lambda>_. A)`(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). y)" - -definition fst_nondep :: "[Term, Term] \<Rightarrow> Term" where - "fst_nondep A B \<equiv> indSum(\<lambda>_. A)`(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B. x)" - -definition snd_nondep :: "[Term, Term] \<Rightarrow> Term" where - "snd_nondep A B \<equiv> indSum(\<lambda>_. A)`(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B. y)" -end - -lemma fst_dep_comp: "\<lbrakk>a : A; b : B(a)\<rbrakk> \<Longrightarrow> fst[A,B]`(a,b) \<equiv> a" unfolding fst_dep_def by simp -lemma snd_dep_comp: "\<lbrakk>a : A; b : B(a)\<rbrakk> \<Longrightarrow> snd[A,B]`(a,b) \<equiv> b" unfolding snd_dep_def by simp - -lemma fst_nondep_comp: "\<lbrakk>a : A; b : B\<rbrakk> \<Longrightarrow> fst[A,B]`(a,b) \<equiv> a" unfolding fst_nondep_def by simp -lemma snd_nondep_comp: "\<lbrakk>a : A; b : B\<rbrakk> \<Longrightarrow> snd[A,B]`(a,b) \<equiv> b" unfolding snd_nondep_def by simp - -\<comment> \<open>Simplification rules for projections\<close> -lemmas fst_snd_simps [simp] = fst_dep_comp snd_dep_comp fst_nondep_comp snd_nondep_comp - -subsection \<open>Equality type\<close> - -axiomatization - Equal :: "[Term, Term, Term] \<Rightarrow> Term" -syntax - "_EQUAL" :: "[Term, Term, Term] \<Rightarrow> Term" ("(3_ =\<^sub>_/ _)" [101, 101] 100) - "_EQUAL_ASCII" :: "[Term, Term, Term] \<Rightarrow> Term" ("(3_ =[_]/ _)" [101, 101] 100) -translations - "a =\<^sub>A b" \<rightleftharpoons> "CONST Equal A a b" - "a =[A] b" \<rightharpoonup> "CONST Equal A a b" - -axiomatization - refl :: "Term \<Rightarrow> Term" ("(refl'(_'))") and - indEqual :: "[Term, [Term, Term, Term] \<Rightarrow> Term] \<Rightarrow> Term" ("(indEqual[_])") -where - Equal_form: "\<And>A a b::Term. \<lbrakk>A : U; a : A; b : A\<rbrakk> \<Longrightarrow> a =\<^sub>A b : U" - (* Should I write a permuted version \<open>\<lbrakk>A : U; b : A; a : A\<rbrakk> \<Longrightarrow> \<dots>\<close>? *) -and - Equal_intro [intro]: "\<And>A x::Term. x : A \<Longrightarrow> refl(x) : x =\<^sub>A x" -and - Equal_elim [elim]: - "\<And>(A::Term) (C::[Term, Term, Term] \<Rightarrow> Term) (f::Term) (a::Term) (b::Term) (p::Term). - \<lbrakk> \<And>x y::Term. \<lbrakk>x : A; y : A\<rbrakk> \<Longrightarrow> C(x)(y): x =\<^sub>A y \<rightarrow> U; - f : \<Prod>x:A. C(x)(x)(refl(x)); - a : A; - b : A; - p : a =\<^sub>A b \<rbrakk> - \<Longrightarrow> indEqual[A](C)`f`a`b`p : C(a)(b)(p)" -and - Equal_comp [simp]: - "\<And>(A::Term) (C::[Term, Term, Term] \<Rightarrow> Term) (f::Term) (a::Term). indEqual[A](C)`f`a`a`refl(a) \<equiv> f`a" - -lemmas Equal_formation [intro] = Equal_form Equal_form[rotated 1] Equal_form[rotated 2] - -subsubsection \<open>Properties of equality\<close> - -text "Symmetry/Path inverse" - -definition inv :: "[Term, Term, Term] \<Rightarrow> Term" ("(1inv[_,/ _,/ _])") - where "inv[A,x,y] \<equiv> indEqual[A](\<lambda>x y _. y =\<^sub>A x)`(\<^bold>\<lambda>x:A. refl(x))`x`y" - -lemma inv_comp: "\<And>A a::Term. a : A \<Longrightarrow> inv[A,a,a]`refl(a) \<equiv> refl(a)" unfolding inv_def by simp - -text "Transitivity/Path composition" - -\<comment> \<open>"Raw" composition function\<close> -abbreviation compose' :: "Term \<Rightarrow> Term" ("(1compose''[_])") - where "compose'[A] \<equiv> indEqual[A](\<lambda>x y _. \<Prod>z:A. \<Prod>q: y =\<^sub>A z. x =\<^sub>A z)`(indEqual[A](\<lambda>x z _. x =\<^sub>A z)`(\<^bold>\<lambda>x:A. refl(x)))" - -\<comment> \<open>"Natural" composition function\<close> -abbreviation compose :: "[Term, Term, Term, Term] \<Rightarrow> Term" ("(1compose[_,/ _,/ _,/ _])") - where "compose[A,x,y,z] \<equiv> \<^bold>\<lambda>p:x =\<^sub>A y. \<^bold>\<lambda>q:y =\<^sub>A z. compose'[A]`x`y`p`z`q" - -(**** GOOD CANDIDATE FOR AUTOMATION ****) -lemma compose_comp: - assumes "a : A" - shows "compose[A,a,a,a]`refl(a)`refl(a) \<equiv> refl(a)" using assms Equal_intro[OF assms] by simp - -text "The above proof is a good candidate for proof automation; in particular we would like the system to be able to automatically find the conditions of the \<open>using\<close> clause in the proof. -This would likely involve something like: - 1. Recognizing that there is a function application that can be simplified. - 2. Noting that the obstruction to applying \<open>Prod_comp\<close> is the requirement that \<open>refl(a) : a =\<^sub>A a\<close>. - 3. Obtaining such a condition, using the known fact \<open>a : A\<close> and the introduction rule \<open>Equal_intro\<close>." - -lemmas Equal_simps [simp] = inv_comp compose_comp - -subsubsection \<open>Pretty printing\<close> - -abbreviation inv_pretty :: "[Term, Term, Term, Term] \<Rightarrow> Term" ("(1_\<^sup>-\<^sup>1\<^sub>_\<^sub>,\<^sub>_\<^sub>,\<^sub>_)" 500) - where "p\<^sup>-\<^sup>1\<^sub>A\<^sub>,\<^sub>x\<^sub>,\<^sub>y \<equiv> inv[A,x,y]`p" - -abbreviation compose_pretty :: "[Term, Term, Term, Term, Term, Term] \<Rightarrow> Term" ("(1_ \<bullet>\<^sub>_\<^sub>,\<^sub>_\<^sub>,\<^sub>_\<^sub>,\<^sub>_/ _)") - where "p \<bullet>\<^sub>A\<^sub>,\<^sub>x\<^sub>,\<^sub>y\<^sub>,\<^sub>z q \<equiv> compose[A,x,y,z]`p`q" - -end - -(* -subsubsection \<open>Empty type\<close> - -axiomatization - Null :: Term and - ind_Null :: "Term \<Rightarrow> Term \<Rightarrow> Term" ("(ind'_Null'(_,/ _'))") -where - Null_form: "Null : U" and - Null_elim: "\<And>C x a. \<lbrakk>x : Null \<Longrightarrow> C(x) : U; a : Null\<rbrakk> \<Longrightarrow> ind_Null(C(x), a) : C(a)" - -subsubsection \<open>Natural numbers\<close> - -axiomatization - Nat :: Term and - zero :: Term ("0") and - succ :: "Term \<Rightarrow> Term" and (* how to enforce \<open>succ : Nat\<rightarrow>Nat\<close>? *) - ind_Nat :: "Term \<Rightarrow> Term \<Rightarrow> Term \<Rightarrow> Term \<Rightarrow> Term" -where - Nat_form: "Nat : U" and - Nat_intro1: "0 : Nat" and - Nat_intro2: "\<And>n. n : Nat \<Longrightarrow> succ n : Nat" - (* computation rules *) - -*)
\ No newline at end of file |