aboutsummaryrefslogtreecommitdiff
path: root/Prod.thy
diff options
context:
space:
mode:
Diffstat (limited to 'Prod.thy')
-rw-r--r--Prod.thy48
1 files changed, 48 insertions, 0 deletions
diff --git a/Prod.thy b/Prod.thy
new file mode 100644
index 0000000..9ecab4d
--- /dev/null
+++ b/Prod.thy
@@ -0,0 +1,48 @@
+(* Title: HoTT/Prod.thy
+ Author: Josh Chen
+
+Dependent product (function) type for the HoTT logic.
+*)
+
+theory Prod
+ imports HoTT_Base
+
+begin
+
+axiomatization
+ Prod :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term" and
+ lambda :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term" and
+ appl :: "[Term, Term] \<Rightarrow> Term" (infixl "`" 60)
+
+syntax
+ "_PROD" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3\<Prod>_:_./ _)" 30)
+ "_LAMBDA" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3\<^bold>\<lambda>_:_./ _)" 30)
+ "_PROD_ASCII" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3PROD _:_./ _)" 30)
+ "_LAMBDA_ASCII" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3%%_:_./ _)" 30)
+
+\<comment> \<open>The translations below bind the variable \<open>x\<close> in the expressions \<open>B\<close> and \<open>b\<close>.\<close>
+translations
+ "\<Prod>x:A. B" \<rightleftharpoons> "CONST Prod A (\<lambda>x. B)"
+ "\<^bold>\<lambda>x:A. b" \<rightleftharpoons> "CONST lambda A (\<lambda>x. b)"
+ "PROD x:A. B" \<rightharpoonup> "CONST Prod A (\<lambda>x. B)"
+ "%%x:A. b" \<rightharpoonup> "CONST lambda A (\<lambda>x. b)"
+
+\<comment> \<open>Type rules\<close>
+axiomatization where
+ Prod_form [intro]: "\<And>A B. \<lbrakk>A : U; B : A \<rightarrow> U\<rbrakk> \<Longrightarrow> \<Prod>x:A. B(x) : U"
+and
+ Prod_intro [intro]: "\<And>A B b. (\<And>x. x : A \<Longrightarrow> b(x) : B(x)) \<Longrightarrow> \<^bold>\<lambda>x:A. b(x) : \<Prod>x:A. B(x)"
+and
+ Prod_elim [elim]: "\<And>A B f a. \<lbrakk>f : \<Prod>x:A. B(x); a : A\<rbrakk> \<Longrightarrow> f`a : B(a)"
+and
+ Prod_comp [simp]: "\<And>A b a. a : A \<Longrightarrow> (\<^bold>\<lambda>x:A. b(x))`a \<equiv> b(a)"
+and
+ Prod_uniq [simp]: "\<And>A f. \<^bold>\<lambda>x:A. (f`x) \<equiv> f"
+
+text "Note that the syntax \<open>\<^bold>\<lambda>\<close> (bold lambda) used for dependent functions clashes with the proof term syntax (cf. \<section>2.5.2 of the Isabelle/Isar Implementation)."
+
+\<comment> \<open>Nondependent functions are a special case.\<close>
+abbreviation Function :: "[Term, Term] \<Rightarrow> Term" (infixr "\<rightarrow>" 40)
+ where "A \<rightarrow> B \<equiv> \<Prod>_:A. B"
+
+end \ No newline at end of file