aboutsummaryrefslogtreecommitdiff
path: root/Eq.thy
diff options
context:
space:
mode:
authorJosh Chen2019-03-06 11:42:19 +0100
committerJosh Chen2019-03-06 11:42:19 +0100
commit8f7164976d08446e77a0e1eceaaa01f0ed363e5b (patch)
tree6cbf9e5963e0273e75b12436cf5b3adc2c30b05c /Eq.thy
parentfa4c19c5ddce4d1f2d5ad58170e89cb74cb7f7e1 (diff)
Make functions object-level
Diffstat (limited to 'Eq.thy')
-rw-r--r--Eq.thy163
1 files changed, 86 insertions, 77 deletions
diff --git a/Eq.thy b/Eq.thy
index 9a7ba47..ca03089 100644
--- a/Eq.thy
+++ b/Eq.thy
@@ -2,7 +2,12 @@
Isabelle/HoTT: Equality
Feb 2019
-Intensional equality, path induction, and proofs of various results.
+Contains:
+* Type definitions for intensional equality
+* Some setup for path induction
+* Basic properties of equality (inv, pathcomp)
+* The higher groupoid structure of types
+* Functoriality of functions (ap)
********)
@@ -71,32 +76,32 @@ section \<open>Properties of equality\<close>
subsection \<open>Symmetry (path inverse)\<close>
-definition inv :: "[t, t, t, t] \<Rightarrow> t"
-where "inv A x y p \<equiv> indEq (\<lambda>x y. &(y =[A] x)) (\<lambda>x. refl x) x y p"
+definition inv :: "[t, t, t] \<Rightarrow> t"
+where "inv A x y \<equiv> \<lambda>p: x =[A] y. indEq (\<lambda>x y. &(y =[A] x)) (\<lambda>x. refl x) x y p"
-syntax "_inv" :: "[t, t, t, t] \<Rightarrow> t" ("(2inv[_, _, _] _)" [0, 0, 0, 1000] 999)
-translations "inv[A, x, y] p" \<rightleftharpoons> "(CONST inv) A x y p"
+syntax "_inv" :: "[t, t, t] \<Rightarrow> t" ("(2inv[_, _, _])" [0, 0, 0] 999)
+translations "inv[A, x, y]" \<rightleftharpoons> "(CONST inv) A x y"
-syntax "_inv'" :: "t \<Rightarrow> t" ("~_" [1000])
+syntax "_inv'" :: "t \<Rightarrow> t" ("inv")
text \<open>Pretty-printing switch for path inverse:\<close>
ML \<open>val pretty_inv = Attrib.setup_config_bool @{binding "pretty_inv"} (K true)\<close>
print_translation \<open>
-let fun inv_tr' ctxt [A, x, y, p] =
+let fun inv_tr' ctxt [A, x, y] =
if Config.get ctxt pretty_inv
- then Syntax.const @{syntax_const "_inv'"} $ p
- else Syntax.const @{syntax_const "_inv"} $ A $ x $ y $ p
+ then Syntax.const @{syntax_const "_inv'"}
+ else Syntax.const @{syntax_const "_inv"} $ A $ x $ y
in
[(@{const_syntax inv}, inv_tr')]
end
\<close>
-lemma inv_type: "\<lbrakk>A: U i; x: A; y: A; p: x =[A] y\<rbrakk> \<Longrightarrow> inv[A, x, y] p: y =[A] x"
+lemma inv_type: "\<lbrakk>A: U i; x: A; y: A; p: x =[A] y\<rbrakk> \<Longrightarrow> inv[A, x, y]`p: y =[A] x"
unfolding inv_def by derive
-lemma inv_comp: "\<lbrakk>A: U i; a: A\<rbrakk> \<Longrightarrow> inv[A, a, a] (refl a) \<equiv> refl a"
+lemma inv_comp: "\<lbrakk>A: U i; a: A\<rbrakk> \<Longrightarrow> inv[A, a, a]`(refl a) \<equiv> refl a"
unfolding inv_def by derive
declare
@@ -114,27 +119,27 @@ by
path_ind "{x, z, _} x =[A] z",
rule Eq_intro, routine add: assms)
-definition pathcomp :: "[t, t, t, t, t, t] \<Rightarrow> t"
+definition pathcomp :: "[t, t, t, t] \<Rightarrow> t"
where
- "pathcomp A x y z p q \<equiv> (indEq
+ "pathcomp A x y z \<equiv> \<lambda>p: x =[A] y. \<lambda>q: y =[A] z. (indEq
(\<lambda>x y. & \<Prod>z: A. y =[A] z \<rightarrow> x =[A] z)
(\<lambda>x. \<lambda>z: A. \<lambda>q: x =[A] z. indEq (\<lambda>x z. & x =[A] z) (\<lambda>x. refl x) x z q)
x y p)`z`q"
syntax "_pathcomp" :: "[t, t, t, t, t, t] \<Rightarrow> t"
- ("(2pathcomp[_, _, _, _] _ _)" [0, 0, 0, 0, 1000, 1000] 999)
-translations "pathcomp[A, x, y, z] p q" \<rightleftharpoons> "(CONST pathcomp) A x y z p q"
+ ("(2pathcomp[_, _, _, _])" [0, 0, 0, 0] 999)
+translations "pathcomp[A, x, y, z]" \<rightleftharpoons> "(CONST pathcomp) A x y z"
-syntax "_pathcomp'" :: "[t, t] \<Rightarrow> t" (infixl "^" 110)
+syntax "_pathcomp'" :: "[t, t] \<Rightarrow> t" ("pathcomp")
ML \<open>val pretty_pathcomp = Attrib.setup_config_bool @{binding "pretty_pathcomp"} (K true)\<close>
\<comment> \<open>Pretty-printing switch for path composition\<close>
print_translation \<open>
-let fun pathcomp_tr' ctxt [A, x, y, z, p, q] =
+let fun pathcomp_tr' ctxt [A, x, y, z] =
if Config.get ctxt pretty_pathcomp
- then Syntax.const @{syntax_const "_pathcomp'"} $ p $ q
- else Syntax.const @{syntax_const "_pathcomp"} $ A $ x $ y $ z $ p $ q
+ then Syntax.const @{syntax_const "_pathcomp'"}
+ else Syntax.const @{syntax_const "_pathcomp"} $ A $ x $ y $ z
in
[(@{const_syntax pathcomp}, pathcomp_tr')]
end
@@ -142,12 +147,12 @@ end
corollary pathcomp_type:
assumes [intro]: "A: U i" "x: A" "y: A" "z: A" "p: x =[A] y" "q: y =[A] z"
- shows "pathcomp[A, x, y, z] p q: x =[A] z"
+ shows "pathcomp[A, x, y, z]`p`q: x =[A] z"
unfolding pathcomp_def by (derive lems: transitivity)
corollary pathcomp_comp:
assumes [intro]: "A: U i" "a: A"
- shows "pathcomp[A, a, a, a] (refl a) (refl a) \<equiv> refl a"
+ shows "pathcomp[A, a, a, a]`(refl a)`(refl a) \<equiv> refl a"
unfolding pathcomp_def by (derive lems: transitivity)
declare
@@ -159,45 +164,45 @@ section \<open>Higher groupoid structure of types\<close>
schematic_goal pathcomp_idr:
assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y"
- shows "?prf: pathcomp[A, x, y, y] p (refl y) =[x =[A] y] p"
+ shows "?prf: pathcomp[A, x, y, y]`p`(refl y) =[x =[A] y] p"
proof (path_ind' x y p)
- show "\<And>x. x: A \<Longrightarrow> refl(refl x): pathcomp[A, x, x, x] (refl x) (refl x) =[x =[A] x] (refl x)"
+ show "\<And>x. x: A \<Longrightarrow> refl(refl x): pathcomp[A, x, x, x]`(refl x)`(refl x) =[x =[A] x] (refl x)"
by derive
qed routine
schematic_goal pathcomp_idl:
assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y"
- shows "?prf: pathcomp[A, x, x, y] (refl x) p =[x =[A] y] p"
+ shows "?prf: pathcomp[A, x, x, y]`(refl x)`p =[x =[A] y] p"
proof (path_ind' x y p)
- show "\<And>x. x: A \<Longrightarrow> refl(refl x): pathcomp[A, x, x, x] (refl x) (refl x) =[x =[A] x] (refl x)"
+ show "\<And>x. x: A \<Longrightarrow> refl(refl x): pathcomp[A, x, x, x]`(refl x)`(refl x) =[x =[A] x] (refl x)"
by derive
qed routine
schematic_goal pathcomp_invr:
assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y"
- shows "?prf: pathcomp[A, x, y, x] p (inv[A, x, y] p) =[x =[A] x] (refl x)"
+ shows "?prf: pathcomp[A, x, y, x]`p`(inv[A, x, y]`p) =[x =[A] x] (refl x)"
proof (path_ind' x y p)
show
"\<And>x. x: A \<Longrightarrow> refl(refl x):
- pathcomp[A, x, x, x] (refl x) (inv[A, x, x] (refl x)) =[x =[A] x] (refl x)"
+ pathcomp[A, x, x, x]`(refl x)`(inv[A, x, x]`(refl x)) =[x =[A] x] (refl x)"
by derive
qed routine
schematic_goal pathcomp_invl:
assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y"
- shows "?prf: pathcomp[A, y, x, y] (inv[A, x, y] p) p =[y =[A] y] refl(y)"
+ shows "?prf: pathcomp[A, y, x, y]`(inv[A, x, y]`p)`p =[y =[A] y] refl(y)"
proof (path_ind' x y p)
show
"\<And>x. x: A \<Longrightarrow> refl(refl x):
- pathcomp[A, x, x, x] (inv[A, x, x] (refl x)) (refl x) =[x =[A] x] (refl x)"
+ pathcomp[A, x, x, x]`(inv[A, x, x]`(refl x))`(refl x) =[x =[A] x] (refl x)"
by derive
qed routine
schematic_goal inv_involutive:
assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y"
- shows "?prf: inv[A, y, x] (inv[A, x, y] p) =[x =[A] y] p"
+ shows "?prf: inv[A, y, x]`(inv[A, x, y]`p) =[x =[A] y] p"
proof (path_ind' x y p)
- show "\<And>x. x: A \<Longrightarrow> refl(refl x): inv A x x (inv A x x (refl x)) =[x =[A] x] (refl x)"
+ show "\<And>x. x: A \<Longrightarrow> refl(refl x): inv[A, x, x]`(inv[A, x, x]`(refl x)) =[x =[A] x] (refl x)"
by derive
qed routine
@@ -215,31 +220,31 @@ schematic_goal pathcomp_assoc:
assumes [intro]: "A: U i"
shows
"?prf: \<Prod>x: A. \<Prod>y: A. \<Prod>p: x =[A] y. \<Prod>z: A. \<Prod>q: y =[A] z. \<Prod>w: A. \<Prod>r: z =[A] w.
- pathcomp[A, x, y, w] p (pathcomp[A, y, z, w] q r) =[x =[A] w]
- pathcomp[A, x, z, w] (pathcomp[A, x, y, z] p q) r"
+ pathcomp[A, x, y, w]`p`(pathcomp[A, y, z, w]`q`r) =[x =[A] w]
+ pathcomp[A, x, z, w]`(pathcomp[A, x, y, z]`p`q)`r"
apply (quantify 3)
apply (path_ind "{x, y, p}
\<Prod>(z: A). \<Prod>(q: y =[A] z). \<Prod>(w: A). \<Prod>(r: z =[A] w).
- pathcomp[A, x, y, w] p (pathcomp[A, y, z, w] q r) =[x =[A] w]
- pathcomp[A, x, z, w] (pathcomp[A, x, y, z] p q) r")
+ pathcomp[A, x, y, w]`p`(pathcomp[A, y, z, w]`q`r) =[x =[A] w]
+ pathcomp[A, x, z, w]`(pathcomp[A, x, y, z]`p`q)`r")
apply (quantify 2)
apply (path_ind "{x, z, q}
\<Prod>(w: A). \<Prod>(r: z =[A] w).
- pathcomp[A, x, x, w] (refl x) (pathcomp[A, x, z, w] q r) =[x =[A] w]
- pathcomp[A, x, z, w] (pathcomp[A, x, x, z] (refl x) q) r")
+ pathcomp[A, x, x, w]`(refl x)`(pathcomp[A, x, z, w]`q`r) =[x =[A] w]
+ pathcomp[A, x, z, w]`(pathcomp[A, x, x, z]`(refl x)`q)`r")
apply (quantify 2)
apply (path_ind "{x, w, r}
- pathcomp[A, x, x, w] (refl x) (pathcomp[A, x, x, w] (refl x) r) =[x =[A] w]
- pathcomp[A, x, x, w] (pathcomp[A, x, x, x] (refl x) (refl x)) r")
+ pathcomp[A, x, x, w]`(refl x)`(pathcomp[A, x, x, w] `(refl x)`r) =[x =[A] w]
+ pathcomp[A, x, x, w]`(pathcomp[A, x, x, x]`(refl x)`(refl x))`r")
text \<open>The rest is now routine.\<close>
proof -
show
"\<And>x. x: A \<Longrightarrow> refl(refl x):
- pathcomp[A, x, x, x] (refl x) (pathcomp[A, x, x, x] (refl x) (refl x)) =[x =[A] x]
- pathcomp[A, x, x, x] (pathcomp[A, x, x, x] (refl x) (refl x)) (refl x)"
+ pathcomp[A, x, x, x]`(refl x)`(pathcomp[A, x, x, x]`(refl x)`(refl x)) =[x =[A] x]
+ pathcomp[A, x, x, x]`(pathcomp[A, x, x, x]`(refl x)`(refl x))`(refl x)"
by derive
qed routine
@@ -254,35 +259,35 @@ schematic_goal transfer:
by (path_ind' x y p, rule Eq_routine, routine)
definition ap :: "[t, t, t, t, t] \<Rightarrow> t"
-where "ap B f x y p \<equiv> indEq ({x, y, _} f`x =[B] f`y) (\<lambda>x. refl (f`x)) x y p"
+where "ap f A B x y \<equiv> \<lambda>p: x =[A] y. indEq ({x, y, _} f`x =[B] f`y) (\<lambda>x. refl (f`x)) x y p"
-syntax "_ap" :: "[t, t, t, t, t] \<Rightarrow> t" ("(2ap[_, _, _] _ _)" [0, 0, 0, 1000, 1000])
-translations "ap[B, x, y] f p" \<rightleftharpoons> "(CONST ap) B f x y p"
+syntax "_ap" :: "[t, t, t, t, t] \<Rightarrow> t" ("(2ap[_, _, _, _, _])")
+translations "ap[f, A, B, x, y]" \<rightleftharpoons> "(CONST ap) f A B x y"
-syntax "_ap'" :: "[t, t] \<Rightarrow> t" ("(_{_})" [1000, 0] 1000)
+syntax "_ap'" :: "t \<Rightarrow> t" ("ap[_]")
ML \<open>val pretty_ap = Attrib.setup_config_bool @{binding "pretty_ap"} (K true)\<close>
print_translation \<open>
-let fun ap_tr' ctxt [B, f, x, y, p] =
+let fun ap_tr' ctxt [f, A, B, x, y] =
if Config.get ctxt pretty_ap
- then Syntax.const @{syntax_const "_ap'"} $ f $ p
- else Syntax.const @{syntax_const "_ap"} $ B $ x $ y $ f $ p
+ then Syntax.const @{syntax_const "_ap'"} $ f
+ else Syntax.const @{syntax_const "_ap"} $ f $ A $ B $ x $ y
in
[(@{const_syntax ap}, ap_tr')]
end
\<close>
corollary ap_type:
- assumes
+ assumes [intro]:
"A: U i" "B: U i" "f: A \<rightarrow> B"
"x: A" "y: A" "p: x =[A] y"
- shows "ap[B, x, y] f p: f`x =[B] f`y"
-unfolding ap_def using assms by (rule transfer)
+ shows "ap[f, A, B, x, y]`p: f`x =[B] f`y"
+unfolding ap_def by routine
lemma ap_comp:
assumes [intro]: "A: U i" "B: U i" "f: A \<rightarrow> B" "x: A"
- shows "ap[B, x, x] f (refl x) \<equiv> refl (f`x)"
+ shows "ap[f, A, B, x, x]`(refl x) \<equiv> refl (f`x)"
unfolding ap_def by derive
declare
@@ -294,22 +299,22 @@ schematic_goal ap_func_pathcomp:
assumes [intro]: "A: U i" "B: U i" "f: A \<rightarrow> B"
shows
"?prf: \<Prod>x: A. \<Prod>y: A. \<Prod>p: x =[A] y. \<Prod>z: A. \<Prod>q: y =[A] z.
- ap[B, x, z] f (pathcomp[A, x, y, z] p q) =[f`x =[B] f`z]
- pathcomp[B, f`x, f`y, f`z] (ap[B, x, y] f p) (ap[B, y, z] f q)"
+ ap[f, A, B, x, z]`(pathcomp[A, x, y, z]`p`q) =[f`x =[B] f`z]
+ pathcomp[B, f`x, f`y, f`z]`(ap[f, A, B, x, y]`p)`(ap[f, A, B, y, z]`q)"
apply (quantify 3)
apply (path_ind "{x, y, p}
\<Prod>z: A. \<Prod>q: y =[A] z.
- ap[B, x, z] f (pathcomp[A, x, y, z] p q) =[f`x =[B] f`z]
- pathcomp[B, f`x, f`y, f`z] (ap[B, x, y] f p) (ap[B, y, z] f q)")
+ ap[f, A, B, x, z]`(pathcomp[A, x, y, z]`p`q) =[f`x =[B] f`z]
+ pathcomp[B, f`x, f`y, f`z]`(ap[f, A, B, x, y]`p)`(ap[f, A, B, y, z]`q)")
apply (quantify 2)
apply (path_ind "{x, z, q}
- ap[B, x, z] f (pathcomp[A, x, x, z] (refl x) q) =[f`x =[B] f`z]
- pathcomp[B, f`x, f`x, f`z] (ap[B, x, x] f (refl x)) (ap[B, x, z] f q)")
+ ap[f, A, B, x, z]`(pathcomp[A, x, x, z]`(refl x)`q) =[f`x =[B] f`z]
+ pathcomp[B, f`x, f`x, f`z]`(ap[f, A, B, x, x]`(refl x))`(ap[f, A, B, x, z]`q)")
proof -
show
"\<And>x. x: A \<Longrightarrow> refl(refl(f`x)) :
- ap[B, x, x] f (pathcomp[A, x, x, x] (refl x) (refl x)) =[f`x =[B] f`x]
- pathcomp[B, f`x, f`x, f`x] (ap[B, x, x] f (refl x)) (ap[B, x, x] f (refl x))"
+ ap[f, A, B, x, x]`(pathcomp[A, x, x, x]`(refl x)`(refl x)) =[f`x =[B] f`x]
+ pathcomp[B, f`x, f`x, f`x]`(ap[f, A, B, x, x]`(refl x))`(ap[f, A, B, x, x]`(refl x))"
by derive
qed routine
@@ -320,55 +325,59 @@ schematic_goal ap_func_compose:
"f: A \<rightarrow> B" "g: B \<rightarrow> C"
shows
"?prf: \<Prod>x: A. \<Prod>y: A. \<Prod>p: x =[A] y.
- ap[C, f`x, f`y] g (ap[B, x, y] f p) =[g`(f`x) =[C] g`(f`y)]
- ap[C, x, y] (g o[A] f) p"
+ ap[g, B, C, f`x, f`y]`(ap[f, A, B, x, y]`p) =[g`(f`x) =[C] g`(f`y)]
+ ap[g o[A] f, A, C, x, y]`p"
apply (quantify 3)
apply (path_ind "{x, y, p}
- ap[C, f`x, f`y] g (ap[B, x, y] f p) =[g`(f`x) =[C] g`(f`y)]
- ap[C, x, y] (g o[A] f) p")
+ ap[g, B, C, f`x, f`y]`(ap[f, A, B, x, y]`p) =[g`(f`x) =[C] g`(f`y)]
+ ap[g o[A] f, A, C, x, y]`p")
proof -
show "\<And>x. x: A \<Longrightarrow> refl(refl (g`(f`x))) :
- ap[C, f`x, f`x] g (ap[B, x, x] f (refl x)) =[g`(f`x) =[C] g`(f`x)]
- ap[C, x, x] (g o[A] f) (refl x)"
+ ap[g, B, C, f`x, f`x]`(ap[f, A, B, x, x]`(refl x)) =[g`(f`x) =[C] g`(f`x)]
+ ap[g o[A] f, A, C, x, x]`(refl x)"
unfolding compose_def by derive
fix x y p assume [intro]: "x: A" "y: A" "p: x =[A] y"
- show "ap[C, f`x, f`y] g (ap[B, x, y] f p) =[g`(f`x) =[C] g`(f`y)] ap[C, x, y] (g o[A] f) p: U i"
+ show
+ "ap[g, B, C, f`x, f`y]`(ap[f, A, B, x, y]`p) =[g`(f`x) =[C] g`(f`y)]
+ ap[g o[A] f, A, C, x, y]`p: U i"
proof
have
- "ap[C, x, y] (g o[A] f) p: (\<lambda>x: A. g`(f`x))`x =[C] (\<lambda>x: A. g`(f`x))`y"
+ "ap[g o[A] f, A, C, x, y]`p: (\<lambda>x: A. g`(f`x))`x =[C] (\<lambda>x: A. g`(f`x))`y"
unfolding compose_def by derive
moreover have
"(\<lambda>x: A. g`(f`x))`x =[C] (\<lambda>x: A. g`(f`x))`y \<equiv> g`(f`x) =[C] g`(f`y)" by derive
ultimately show
- "ap[C, x, y] (g o[A] f) p: g`(f`x) =[C] g`(f`y)" by simp
+ "ap[g o[A] f, A, C, x, y]`p: g`(f`x) =[C] g`(f`y)" by simp
qed derive
qed routine
-declare[[pretty_inv=false, pretty_ap=false]]
+
schematic_goal ap_func_inv:
assumes [intro]:
"A: U i" "B: U i" "f: A \<rightarrow> B"
"x: A" "y: A" "p: x =[A] y"
- shows "?prf: ap[B, y, x] f (inv[A, x, y] p) =[f`y =[B] f`x] inv[B, f`x, f`y] (ap[B, x, y] f p)"
+ shows "?prf:
+ ap[f, A, B, y, x]`(inv[A, x, y]`p) =[f`y =[B] f`x] inv[B, f`x, f`y]`(ap[f, A, B, x, y]`p)"
proof (path_ind' x y p)
show "\<And>x. x: A \<Longrightarrow> refl(refl(f`x)):
- ap[B, x, x] f (inv[A, x, x] (refl x)) =[f`x =[B] f`x] inv[B, f`x, f`x] (ap[B, x, x] f (refl x))"
+ ap[f, A, B, x, x]`(inv[A, x, x]`(refl x)) =[f`x =[B] f`x]
+ inv[B, f`x, f`x]`(ap[f, A, B, x, x]`(refl x))"
by derive
qed routine
schematic_goal ap_func_id:
assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y"
- shows "?prf: ap A (id A) x y p =[x =[A] y] p"
+ shows "?prf: ap[id A, A, A, x, y]`p =[x =[A] y] p"
proof (path_ind' x y p)
fix x assume [intro]: "x: A"
- show "refl(refl x): ap[A, x, x] (id A) (refl x) =[x =[A] x] refl x" by derive
+ show "refl(refl x): ap[id A, A, A, x, x]`(refl x) =[x =[A] x] refl x" by derive
fix y p assume [intro]: "y: A" "p: x =[A] y"
- have "ap[A, x, y] (id A) p: (id A)`x =[A] (id A)`y" by derive
+ have "ap[id A, A, A, x, y]`p: (id A)`x =[A] (id A)`y" by derive
moreover have "(id A)`x =[A] (id A)`y \<equiv> x =[A] y" by derive
- ultimately have [intro]: "ap[A, x, y] (id A) p: x =[A] y" by simp
+ ultimately have [intro]: "ap[id A, A, A, x, y]`p: x =[A] y" by simp
- show "ap[A, x, y] (id A) p =[x =[A] y] p: U i" by derive
+ show "ap[id A, A, A, x, y]`p =[x =[A] y] p: U i" by derive
qed