diff options
-rw-r--r-- | Eq.thy | 163 | ||||
-rw-r--r-- | Projections.thy | 40 | ||||
-rw-r--r-- | Type_Families.thy | 80 | ||||
-rw-r--r-- | Univalence.thy | 36 |
4 files changed, 173 insertions, 146 deletions
@@ -2,7 +2,12 @@ Isabelle/HoTT: Equality Feb 2019 -Intensional equality, path induction, and proofs of various results. +Contains: +* Type definitions for intensional equality +* Some setup for path induction +* Basic properties of equality (inv, pathcomp) +* The higher groupoid structure of types +* Functoriality of functions (ap) ********) @@ -71,32 +76,32 @@ section \<open>Properties of equality\<close> subsection \<open>Symmetry (path inverse)\<close> -definition inv :: "[t, t, t, t] \<Rightarrow> t" -where "inv A x y p \<equiv> indEq (\<lambda>x y. &(y =[A] x)) (\<lambda>x. refl x) x y p" +definition inv :: "[t, t, t] \<Rightarrow> t" +where "inv A x y \<equiv> \<lambda>p: x =[A] y. indEq (\<lambda>x y. &(y =[A] x)) (\<lambda>x. refl x) x y p" -syntax "_inv" :: "[t, t, t, t] \<Rightarrow> t" ("(2inv[_, _, _] _)" [0, 0, 0, 1000] 999) -translations "inv[A, x, y] p" \<rightleftharpoons> "(CONST inv) A x y p" +syntax "_inv" :: "[t, t, t] \<Rightarrow> t" ("(2inv[_, _, _])" [0, 0, 0] 999) +translations "inv[A, x, y]" \<rightleftharpoons> "(CONST inv) A x y" -syntax "_inv'" :: "t \<Rightarrow> t" ("~_" [1000]) +syntax "_inv'" :: "t \<Rightarrow> t" ("inv") text \<open>Pretty-printing switch for path inverse:\<close> ML \<open>val pretty_inv = Attrib.setup_config_bool @{binding "pretty_inv"} (K true)\<close> print_translation \<open> -let fun inv_tr' ctxt [A, x, y, p] = +let fun inv_tr' ctxt [A, x, y] = if Config.get ctxt pretty_inv - then Syntax.const @{syntax_const "_inv'"} $ p - else Syntax.const @{syntax_const "_inv"} $ A $ x $ y $ p + then Syntax.const @{syntax_const "_inv'"} + else Syntax.const @{syntax_const "_inv"} $ A $ x $ y in [(@{const_syntax inv}, inv_tr')] end \<close> -lemma inv_type: "\<lbrakk>A: U i; x: A; y: A; p: x =[A] y\<rbrakk> \<Longrightarrow> inv[A, x, y] p: y =[A] x" +lemma inv_type: "\<lbrakk>A: U i; x: A; y: A; p: x =[A] y\<rbrakk> \<Longrightarrow> inv[A, x, y]`p: y =[A] x" unfolding inv_def by derive -lemma inv_comp: "\<lbrakk>A: U i; a: A\<rbrakk> \<Longrightarrow> inv[A, a, a] (refl a) \<equiv> refl a" +lemma inv_comp: "\<lbrakk>A: U i; a: A\<rbrakk> \<Longrightarrow> inv[A, a, a]`(refl a) \<equiv> refl a" unfolding inv_def by derive declare @@ -114,27 +119,27 @@ by path_ind "{x, z, _} x =[A] z", rule Eq_intro, routine add: assms) -definition pathcomp :: "[t, t, t, t, t, t] \<Rightarrow> t" +definition pathcomp :: "[t, t, t, t] \<Rightarrow> t" where - "pathcomp A x y z p q \<equiv> (indEq + "pathcomp A x y z \<equiv> \<lambda>p: x =[A] y. \<lambda>q: y =[A] z. (indEq (\<lambda>x y. & \<Prod>z: A. y =[A] z \<rightarrow> x =[A] z) (\<lambda>x. \<lambda>z: A. \<lambda>q: x =[A] z. indEq (\<lambda>x z. & x =[A] z) (\<lambda>x. refl x) x z q) x y p)`z`q" syntax "_pathcomp" :: "[t, t, t, t, t, t] \<Rightarrow> t" - ("(2pathcomp[_, _, _, _] _ _)" [0, 0, 0, 0, 1000, 1000] 999) -translations "pathcomp[A, x, y, z] p q" \<rightleftharpoons> "(CONST pathcomp) A x y z p q" + ("(2pathcomp[_, _, _, _])" [0, 0, 0, 0] 999) +translations "pathcomp[A, x, y, z]" \<rightleftharpoons> "(CONST pathcomp) A x y z" -syntax "_pathcomp'" :: "[t, t] \<Rightarrow> t" (infixl "^" 110) +syntax "_pathcomp'" :: "[t, t] \<Rightarrow> t" ("pathcomp") ML \<open>val pretty_pathcomp = Attrib.setup_config_bool @{binding "pretty_pathcomp"} (K true)\<close> \<comment> \<open>Pretty-printing switch for path composition\<close> print_translation \<open> -let fun pathcomp_tr' ctxt [A, x, y, z, p, q] = +let fun pathcomp_tr' ctxt [A, x, y, z] = if Config.get ctxt pretty_pathcomp - then Syntax.const @{syntax_const "_pathcomp'"} $ p $ q - else Syntax.const @{syntax_const "_pathcomp"} $ A $ x $ y $ z $ p $ q + then Syntax.const @{syntax_const "_pathcomp'"} + else Syntax.const @{syntax_const "_pathcomp"} $ A $ x $ y $ z in [(@{const_syntax pathcomp}, pathcomp_tr')] end @@ -142,12 +147,12 @@ end corollary pathcomp_type: assumes [intro]: "A: U i" "x: A" "y: A" "z: A" "p: x =[A] y" "q: y =[A] z" - shows "pathcomp[A, x, y, z] p q: x =[A] z" + shows "pathcomp[A, x, y, z]`p`q: x =[A] z" unfolding pathcomp_def by (derive lems: transitivity) corollary pathcomp_comp: assumes [intro]: "A: U i" "a: A" - shows "pathcomp[A, a, a, a] (refl a) (refl a) \<equiv> refl a" + shows "pathcomp[A, a, a, a]`(refl a)`(refl a) \<equiv> refl a" unfolding pathcomp_def by (derive lems: transitivity) declare @@ -159,45 +164,45 @@ section \<open>Higher groupoid structure of types\<close> schematic_goal pathcomp_idr: assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y" - shows "?prf: pathcomp[A, x, y, y] p (refl y) =[x =[A] y] p" + shows "?prf: pathcomp[A, x, y, y]`p`(refl y) =[x =[A] y] p" proof (path_ind' x y p) - show "\<And>x. x: A \<Longrightarrow> refl(refl x): pathcomp[A, x, x, x] (refl x) (refl x) =[x =[A] x] (refl x)" + show "\<And>x. x: A \<Longrightarrow> refl(refl x): pathcomp[A, x, x, x]`(refl x)`(refl x) =[x =[A] x] (refl x)" by derive qed routine schematic_goal pathcomp_idl: assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y" - shows "?prf: pathcomp[A, x, x, y] (refl x) p =[x =[A] y] p" + shows "?prf: pathcomp[A, x, x, y]`(refl x)`p =[x =[A] y] p" proof (path_ind' x y p) - show "\<And>x. x: A \<Longrightarrow> refl(refl x): pathcomp[A, x, x, x] (refl x) (refl x) =[x =[A] x] (refl x)" + show "\<And>x. x: A \<Longrightarrow> refl(refl x): pathcomp[A, x, x, x]`(refl x)`(refl x) =[x =[A] x] (refl x)" by derive qed routine schematic_goal pathcomp_invr: assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y" - shows "?prf: pathcomp[A, x, y, x] p (inv[A, x, y] p) =[x =[A] x] (refl x)" + shows "?prf: pathcomp[A, x, y, x]`p`(inv[A, x, y]`p) =[x =[A] x] (refl x)" proof (path_ind' x y p) show "\<And>x. x: A \<Longrightarrow> refl(refl x): - pathcomp[A, x, x, x] (refl x) (inv[A, x, x] (refl x)) =[x =[A] x] (refl x)" + pathcomp[A, x, x, x]`(refl x)`(inv[A, x, x]`(refl x)) =[x =[A] x] (refl x)" by derive qed routine schematic_goal pathcomp_invl: assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y" - shows "?prf: pathcomp[A, y, x, y] (inv[A, x, y] p) p =[y =[A] y] refl(y)" + shows "?prf: pathcomp[A, y, x, y]`(inv[A, x, y]`p)`p =[y =[A] y] refl(y)" proof (path_ind' x y p) show "\<And>x. x: A \<Longrightarrow> refl(refl x): - pathcomp[A, x, x, x] (inv[A, x, x] (refl x)) (refl x) =[x =[A] x] (refl x)" + pathcomp[A, x, x, x]`(inv[A, x, x]`(refl x))`(refl x) =[x =[A] x] (refl x)" by derive qed routine schematic_goal inv_involutive: assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y" - shows "?prf: inv[A, y, x] (inv[A, x, y] p) =[x =[A] y] p" + shows "?prf: inv[A, y, x]`(inv[A, x, y]`p) =[x =[A] y] p" proof (path_ind' x y p) - show "\<And>x. x: A \<Longrightarrow> refl(refl x): inv A x x (inv A x x (refl x)) =[x =[A] x] (refl x)" + show "\<And>x. x: A \<Longrightarrow> refl(refl x): inv[A, x, x]`(inv[A, x, x]`(refl x)) =[x =[A] x] (refl x)" by derive qed routine @@ -215,31 +220,31 @@ schematic_goal pathcomp_assoc: assumes [intro]: "A: U i" shows "?prf: \<Prod>x: A. \<Prod>y: A. \<Prod>p: x =[A] y. \<Prod>z: A. \<Prod>q: y =[A] z. \<Prod>w: A. \<Prod>r: z =[A] w. - pathcomp[A, x, y, w] p (pathcomp[A, y, z, w] q r) =[x =[A] w] - pathcomp[A, x, z, w] (pathcomp[A, x, y, z] p q) r" + pathcomp[A, x, y, w]`p`(pathcomp[A, y, z, w]`q`r) =[x =[A] w] + pathcomp[A, x, z, w]`(pathcomp[A, x, y, z]`p`q)`r" apply (quantify 3) apply (path_ind "{x, y, p} \<Prod>(z: A). \<Prod>(q: y =[A] z). \<Prod>(w: A). \<Prod>(r: z =[A] w). - pathcomp[A, x, y, w] p (pathcomp[A, y, z, w] q r) =[x =[A] w] - pathcomp[A, x, z, w] (pathcomp[A, x, y, z] p q) r") + pathcomp[A, x, y, w]`p`(pathcomp[A, y, z, w]`q`r) =[x =[A] w] + pathcomp[A, x, z, w]`(pathcomp[A, x, y, z]`p`q)`r") apply (quantify 2) apply (path_ind "{x, z, q} \<Prod>(w: A). \<Prod>(r: z =[A] w). - pathcomp[A, x, x, w] (refl x) (pathcomp[A, x, z, w] q r) =[x =[A] w] - pathcomp[A, x, z, w] (pathcomp[A, x, x, z] (refl x) q) r") + pathcomp[A, x, x, w]`(refl x)`(pathcomp[A, x, z, w]`q`r) =[x =[A] w] + pathcomp[A, x, z, w]`(pathcomp[A, x, x, z]`(refl x)`q)`r") apply (quantify 2) apply (path_ind "{x, w, r} - pathcomp[A, x, x, w] (refl x) (pathcomp[A, x, x, w] (refl x) r) =[x =[A] w] - pathcomp[A, x, x, w] (pathcomp[A, x, x, x] (refl x) (refl x)) r") + pathcomp[A, x, x, w]`(refl x)`(pathcomp[A, x, x, w] `(refl x)`r) =[x =[A] w] + pathcomp[A, x, x, w]`(pathcomp[A, x, x, x]`(refl x)`(refl x))`r") text \<open>The rest is now routine.\<close> proof - show "\<And>x. x: A \<Longrightarrow> refl(refl x): - pathcomp[A, x, x, x] (refl x) (pathcomp[A, x, x, x] (refl x) (refl x)) =[x =[A] x] - pathcomp[A, x, x, x] (pathcomp[A, x, x, x] (refl x) (refl x)) (refl x)" + pathcomp[A, x, x, x]`(refl x)`(pathcomp[A, x, x, x]`(refl x)`(refl x)) =[x =[A] x] + pathcomp[A, x, x, x]`(pathcomp[A, x, x, x]`(refl x)`(refl x))`(refl x)" by derive qed routine @@ -254,35 +259,35 @@ schematic_goal transfer: by (path_ind' x y p, rule Eq_routine, routine) definition ap :: "[t, t, t, t, t] \<Rightarrow> t" -where "ap B f x y p \<equiv> indEq ({x, y, _} f`x =[B] f`y) (\<lambda>x. refl (f`x)) x y p" +where "ap f A B x y \<equiv> \<lambda>p: x =[A] y. indEq ({x, y, _} f`x =[B] f`y) (\<lambda>x. refl (f`x)) x y p" -syntax "_ap" :: "[t, t, t, t, t] \<Rightarrow> t" ("(2ap[_, _, _] _ _)" [0, 0, 0, 1000, 1000]) -translations "ap[B, x, y] f p" \<rightleftharpoons> "(CONST ap) B f x y p" +syntax "_ap" :: "[t, t, t, t, t] \<Rightarrow> t" ("(2ap[_, _, _, _, _])") +translations "ap[f, A, B, x, y]" \<rightleftharpoons> "(CONST ap) f A B x y" -syntax "_ap'" :: "[t, t] \<Rightarrow> t" ("(_{_})" [1000, 0] 1000) +syntax "_ap'" :: "t \<Rightarrow> t" ("ap[_]") ML \<open>val pretty_ap = Attrib.setup_config_bool @{binding "pretty_ap"} (K true)\<close> print_translation \<open> -let fun ap_tr' ctxt [B, f, x, y, p] = +let fun ap_tr' ctxt [f, A, B, x, y] = if Config.get ctxt pretty_ap - then Syntax.const @{syntax_const "_ap'"} $ f $ p - else Syntax.const @{syntax_const "_ap"} $ B $ x $ y $ f $ p + then Syntax.const @{syntax_const "_ap'"} $ f + else Syntax.const @{syntax_const "_ap"} $ f $ A $ B $ x $ y in [(@{const_syntax ap}, ap_tr')] end \<close> corollary ap_type: - assumes + assumes [intro]: "A: U i" "B: U i" "f: A \<rightarrow> B" "x: A" "y: A" "p: x =[A] y" - shows "ap[B, x, y] f p: f`x =[B] f`y" -unfolding ap_def using assms by (rule transfer) + shows "ap[f, A, B, x, y]`p: f`x =[B] f`y" +unfolding ap_def by routine lemma ap_comp: assumes [intro]: "A: U i" "B: U i" "f: A \<rightarrow> B" "x: A" - shows "ap[B, x, x] f (refl x) \<equiv> refl (f`x)" + shows "ap[f, A, B, x, x]`(refl x) \<equiv> refl (f`x)" unfolding ap_def by derive declare @@ -294,22 +299,22 @@ schematic_goal ap_func_pathcomp: assumes [intro]: "A: U i" "B: U i" "f: A \<rightarrow> B" shows "?prf: \<Prod>x: A. \<Prod>y: A. \<Prod>p: x =[A] y. \<Prod>z: A. \<Prod>q: y =[A] z. - ap[B, x, z] f (pathcomp[A, x, y, z] p q) =[f`x =[B] f`z] - pathcomp[B, f`x, f`y, f`z] (ap[B, x, y] f p) (ap[B, y, z] f q)" + ap[f, A, B, x, z]`(pathcomp[A, x, y, z]`p`q) =[f`x =[B] f`z] + pathcomp[B, f`x, f`y, f`z]`(ap[f, A, B, x, y]`p)`(ap[f, A, B, y, z]`q)" apply (quantify 3) apply (path_ind "{x, y, p} \<Prod>z: A. \<Prod>q: y =[A] z. - ap[B, x, z] f (pathcomp[A, x, y, z] p q) =[f`x =[B] f`z] - pathcomp[B, f`x, f`y, f`z] (ap[B, x, y] f p) (ap[B, y, z] f q)") + ap[f, A, B, x, z]`(pathcomp[A, x, y, z]`p`q) =[f`x =[B] f`z] + pathcomp[B, f`x, f`y, f`z]`(ap[f, A, B, x, y]`p)`(ap[f, A, B, y, z]`q)") apply (quantify 2) apply (path_ind "{x, z, q} - ap[B, x, z] f (pathcomp[A, x, x, z] (refl x) q) =[f`x =[B] f`z] - pathcomp[B, f`x, f`x, f`z] (ap[B, x, x] f (refl x)) (ap[B, x, z] f q)") + ap[f, A, B, x, z]`(pathcomp[A, x, x, z]`(refl x)`q) =[f`x =[B] f`z] + pathcomp[B, f`x, f`x, f`z]`(ap[f, A, B, x, x]`(refl x))`(ap[f, A, B, x, z]`q)") proof - show "\<And>x. x: A \<Longrightarrow> refl(refl(f`x)) : - ap[B, x, x] f (pathcomp[A, x, x, x] (refl x) (refl x)) =[f`x =[B] f`x] - pathcomp[B, f`x, f`x, f`x] (ap[B, x, x] f (refl x)) (ap[B, x, x] f (refl x))" + ap[f, A, B, x, x]`(pathcomp[A, x, x, x]`(refl x)`(refl x)) =[f`x =[B] f`x] + pathcomp[B, f`x, f`x, f`x]`(ap[f, A, B, x, x]`(refl x))`(ap[f, A, B, x, x]`(refl x))" by derive qed routine @@ -320,55 +325,59 @@ schematic_goal ap_func_compose: "f: A \<rightarrow> B" "g: B \<rightarrow> C" shows "?prf: \<Prod>x: A. \<Prod>y: A. \<Prod>p: x =[A] y. - ap[C, f`x, f`y] g (ap[B, x, y] f p) =[g`(f`x) =[C] g`(f`y)] - ap[C, x, y] (g o[A] f) p" + ap[g, B, C, f`x, f`y]`(ap[f, A, B, x, y]`p) =[g`(f`x) =[C] g`(f`y)] + ap[g o[A] f, A, C, x, y]`p" apply (quantify 3) apply (path_ind "{x, y, p} - ap[C, f`x, f`y] g (ap[B, x, y] f p) =[g`(f`x) =[C] g`(f`y)] - ap[C, x, y] (g o[A] f) p") + ap[g, B, C, f`x, f`y]`(ap[f, A, B, x, y]`p) =[g`(f`x) =[C] g`(f`y)] + ap[g o[A] f, A, C, x, y]`p") proof - show "\<And>x. x: A \<Longrightarrow> refl(refl (g`(f`x))) : - ap[C, f`x, f`x] g (ap[B, x, x] f (refl x)) =[g`(f`x) =[C] g`(f`x)] - ap[C, x, x] (g o[A] f) (refl x)" + ap[g, B, C, f`x, f`x]`(ap[f, A, B, x, x]`(refl x)) =[g`(f`x) =[C] g`(f`x)] + ap[g o[A] f, A, C, x, x]`(refl x)" unfolding compose_def by derive fix x y p assume [intro]: "x: A" "y: A" "p: x =[A] y" - show "ap[C, f`x, f`y] g (ap[B, x, y] f p) =[g`(f`x) =[C] g`(f`y)] ap[C, x, y] (g o[A] f) p: U i" + show + "ap[g, B, C, f`x, f`y]`(ap[f, A, B, x, y]`p) =[g`(f`x) =[C] g`(f`y)] + ap[g o[A] f, A, C, x, y]`p: U i" proof have - "ap[C, x, y] (g o[A] f) p: (\<lambda>x: A. g`(f`x))`x =[C] (\<lambda>x: A. g`(f`x))`y" + "ap[g o[A] f, A, C, x, y]`p: (\<lambda>x: A. g`(f`x))`x =[C] (\<lambda>x: A. g`(f`x))`y" unfolding compose_def by derive moreover have "(\<lambda>x: A. g`(f`x))`x =[C] (\<lambda>x: A. g`(f`x))`y \<equiv> g`(f`x) =[C] g`(f`y)" by derive ultimately show - "ap[C, x, y] (g o[A] f) p: g`(f`x) =[C] g`(f`y)" by simp + "ap[g o[A] f, A, C, x, y]`p: g`(f`x) =[C] g`(f`y)" by simp qed derive qed routine -declare[[pretty_inv=false, pretty_ap=false]] + schematic_goal ap_func_inv: assumes [intro]: "A: U i" "B: U i" "f: A \<rightarrow> B" "x: A" "y: A" "p: x =[A] y" - shows "?prf: ap[B, y, x] f (inv[A, x, y] p) =[f`y =[B] f`x] inv[B, f`x, f`y] (ap[B, x, y] f p)" + shows "?prf: + ap[f, A, B, y, x]`(inv[A, x, y]`p) =[f`y =[B] f`x] inv[B, f`x, f`y]`(ap[f, A, B, x, y]`p)" proof (path_ind' x y p) show "\<And>x. x: A \<Longrightarrow> refl(refl(f`x)): - ap[B, x, x] f (inv[A, x, x] (refl x)) =[f`x =[B] f`x] inv[B, f`x, f`x] (ap[B, x, x] f (refl x))" + ap[f, A, B, x, x]`(inv[A, x, x]`(refl x)) =[f`x =[B] f`x] + inv[B, f`x, f`x]`(ap[f, A, B, x, x]`(refl x))" by derive qed routine schematic_goal ap_func_id: assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y" - shows "?prf: ap A (id A) x y p =[x =[A] y] p" + shows "?prf: ap[id A, A, A, x, y]`p =[x =[A] y] p" proof (path_ind' x y p) fix x assume [intro]: "x: A" - show "refl(refl x): ap[A, x, x] (id A) (refl x) =[x =[A] x] refl x" by derive + show "refl(refl x): ap[id A, A, A, x, x]`(refl x) =[x =[A] x] refl x" by derive fix y p assume [intro]: "y: A" "p: x =[A] y" - have "ap[A, x, y] (id A) p: (id A)`x =[A] (id A)`y" by derive + have "ap[id A, A, A, x, y]`p: (id A)`x =[A] (id A)`y" by derive moreover have "(id A)`x =[A] (id A)`y \<equiv> x =[A] y" by derive - ultimately have [intro]: "ap[A, x, y] (id A) p: x =[A] y" by simp + ultimately have [intro]: "ap[id A, A, A, x, y]`p: x =[A] y" by simp - show "ap[A, x, y] (id A) p =[x =[A] y] p: U i" by derive + show "ap[id A, A, A, x, y]`p =[x =[A] y] p: U i" by derive qed diff --git a/Projections.thy b/Projections.thy index 1473e08..9eeb57f 100644 --- a/Projections.thy +++ b/Projections.thy @@ -11,35 +11,33 @@ imports HoTT_Methods Prod Sum begin -definition fst :: "[t, t] \<Rightarrow> t" where "fst A p \<equiv> indSum (\<lambda>_. A) (\<lambda>x y. x) p" +definition fst ("(2fst[_, _])") +where "fst[A, B] \<equiv> \<lambda>(p: \<Sum>x: A. B x). indSum (\<lambda>_. A) (\<lambda>x y. x) p" -lemma fst_type: - assumes "A: U i" and "p: \<Sum>x: A. B x" shows "fst A p: A" -unfolding fst_def by (derive lems: assms) +definition snd ("(2snd[_, _])") +where "snd[A, B] \<equiv> \<lambda>(p: \<Sum>x: A. B x). indSum (\<lambda>p. B (fst[A, B]`p)) (\<lambda>x y. y) p" -declare fst_type [intro] +lemma fst_type: + assumes [intro]: "A: U i" "B: A \<leadsto> U i" + shows "fst[A, B]: (\<Sum>x: A. B x) \<rightarrow> A" +unfolding fst_def by derive lemma fst_cmp: - assumes "A: U i" and "B: A \<leadsto> U i" and "a: A" and "b: B a" shows "fst A <a, b> \<equiv> a" -unfolding fst_def by (subst comp) (derive lems: assms) - -declare fst_cmp [comp] - -definition snd :: "[t, t \<Rightarrow> t, t] \<Rightarrow> t" where "snd A B p \<equiv> indSum (\<lambda>p. B (fst A p)) (\<lambda>x y. y) p" + assumes [intro]: "A: U i" "B: A \<leadsto> U i" "a: A" "b: B a" + shows "fst[A, B]`<a, b> \<equiv> a" +unfolding fst_def by derive lemma snd_type: - assumes "A: U i" and "B: A \<leadsto> U i" and "p: \<Sum>x: A. B x" shows "snd A B p: B (fst A p)" -unfolding snd_def proof (routine add: assms) - fix x y assume "x: A" and "y: B x" - with assms have [comp]: "fst A <x, y> \<equiv> x" by derive - note \<open>y: B x\<close> then show "y: B (fst A <x, y>)" by compute -qed + assumes [intro]: "A: U i" "B: A \<leadsto> U i" + shows "snd[A, B]: \<Prod>(p: \<Sum>x: A. B x). B (fst[A,B]`p)" +unfolding snd_def by (derive lems: fst_type comp: fst_cmp) lemma snd_cmp: - assumes "A: U i" and "B: A \<leadsto> U i" and "a: A" and "b: B a" shows "snd A B <a,b> \<equiv> b" -unfolding snd_def by (derive lems: assms) + assumes [intro]: "A: U i" "B: A \<leadsto> U i" "a: A" "b: B a" + shows "snd[A, B]`<a, b> \<equiv> b" +unfolding snd_def proof derive qed (derive lems: assms fst_type comp: fst_cmp) -lemmas Proj_type [intro] = fst_type snd_type -lemmas Proj_comp [comp] = fst_cmp snd_cmp +lemmas proj_type [intro] = fst_type snd_type +lemmas proj_comp [comp] = fst_cmp snd_cmp end diff --git a/Type_Families.thy b/Type_Families.thy index b1e7686..f874e3d 100644 --- a/Type_Families.thy +++ b/Type_Families.thy @@ -7,7 +7,7 @@ Various results viewing type families as fibrations: transport, dependent map, p ********) theory Type_Families -imports HoTT_Methods Sum Eq +imports HoTT_Methods Sum Projections Eq begin @@ -23,31 +23,31 @@ proof (path_ind' x y p) show "\<And>x. x: A \<Longrightarrow> id P x: P x \<rightarrow> P x" by derive qed routine -definition transport :: "[t \<Rightarrow> t, t, t, t] \<Rightarrow> t" ("(2transport[_, _, _] _)" [0, 0, 0, 1000]) -where "transport[P, x, y] p \<equiv> indEq (\<lambda>a b. & (P a \<rightarrow> P b)) (\<lambda>x. id P x) x y p" +definition transport :: "[t, t \<Rightarrow> t, t, t] \<Rightarrow> t" ("(2transport[_, _, _, _])") +where "transport[A, P, x, y] \<equiv> \<lambda>p: x =[A] y. indEq (\<lambda>a b. & (P a \<rightarrow> P b)) (\<lambda>x. id P x) x y p" -syntax "_transport'" :: "[t, t] \<Rightarrow> t" ("(2_*)" [1000]) +syntax "_transport'" :: "t \<Rightarrow> t" ("transport[_]") ML \<open>val pretty_transport = Attrib.setup_config_bool @{binding "pretty_transport"} (K true)\<close> print_translation \<open> -let fun transport_tr' ctxt [P, x, y, p] = +let fun transport_tr' ctxt [A, P, x, y] = if Config.get ctxt pretty_transport - then Syntax.const @{syntax_const "_transport'"} $ p - else @{const transport} $ P $ x $ y $ p + then Syntax.const @{syntax_const "_transport'"} $ P + else @{const transport} $ A $ P $ x $ y in [(@{const_syntax transport}, transport_tr')] end \<close> corollary transport_type: - assumes "A: U i" "P: A \<leadsto> U j" "x: A" "y: A" "p: x =[A] y" - shows "transport[P, x, y] p: P x \<rightarrow> P y" -unfolding transport_def using assms by (rule transport) + assumes [intro]: "A: U i" "P: A \<leadsto> U j" "x: A" "y: A" "p: x =[A] y" + shows "transport[A, P, x, y]`p: P x \<rightarrow> P y" +unfolding transport_def by derive lemma transport_comp: assumes [intro]: "A: U i" "P: A \<leadsto> U j" "a: A" - shows "transport P a a (refl a) \<equiv> id P a" + shows "transport[A, P, a, a]`(refl a) \<equiv> id P a" unfolding transport_def by derive declare @@ -56,59 +56,85 @@ declare schematic_goal transport_invl: assumes [intro]: - "P: A \<leadsto> U j" "A: U i" + "A: U i" "P: A \<leadsto> U j" "x: A" "y: A" "p: x =[A] y" shows "?prf: - (transport[P, y, x] (inv[A, x, y] p)) o[P x] (transport[P, x, y] p) =[P x \<rightarrow> P x] id P x" + (transport[A, P, y, x]`(inv[A, x, y]`p)) o[P x] (transport[A, P, x, y]`p) =[P x \<rightarrow> P x] id P x" proof (path_ind' x y p) fix x assume [intro]: "x: A" show "refl (id P x) : - transport[P, x, x] (inv[A, x, x] (refl x)) o[P x] (transport[P, x, x] (refl x)) =[P x \<rightarrow> P x] + transport[A, P, x, x]`(inv[A, x, x]`(refl x)) o[P x] (transport[A, P, x, x]`(refl x)) =[P x \<rightarrow> P x] id P x" by derive fix y p assume [intro]: "y: A" "p: x =[A] y" show - "transport[P, y, x] (inv[A, x, y] p) o[P x] transport[P, x, y] p =[P x \<rightarrow> P x] id P x: U j" + "transport[A, P, y, x]`(inv[A, x, y]`p) o[P x] transport[A, P, x, y]`p =[P x \<rightarrow> P x] id P x : + U j" by derive qed schematic_goal transport_invr: assumes [intro]: - "P: A \<leadsto> U j" "A: U i" + "A: U i" "P: A \<leadsto> U j" "x: A" "y: A" "p: x =[A] y" shows "?prf: - (transport[P, x, y] p) o[P y] (transport[P, y, x] (inv[A, x, y] p)) =[P y \<rightarrow> P y] id P y" + (transport[A, P, x, y]`p) o[P y] (transport[A, P, y, x]`(inv[A, x, y]`p)) =[P y \<rightarrow> P y] id P y" proof (path_ind' x y p) fix x assume [intro]: "x: A" show "refl (id P x) : - (transport[P, x, x] (refl x)) o[P x] transport[P, x, x] (inv[A, x, x] (refl x)) =[P x \<rightarrow> P x] - id P x" + (transport[A, P, x, x]`(refl x)) o[P x] transport[A, P, x, x]`(inv[A, x, x]`(refl x)) + =[P x \<rightarrow> P x] id P x" by derive fix y p assume [intro]: "y: A" "p: x =[A] y" show - "transport[P, x, y] p o[P y] transport[P, y, x] (inv[A, x, y] p) =[P y \<rightarrow> P y] id P y: U j" + "transport[A, P, x, y]`p o[P y] transport[A, P, y, x]`(inv[A, x, y]`p) =[P y \<rightarrow> P y] id P y : + U j" by derive qed -(* The two proofs above are rather brittle: the assumption "P: A \<leadsto> U j" needs to be put first - in order for the method derive to automatically work. -*) - declare transport_invl [intro] transport_invr [intro] schematic_goal path_lifting: - assumes - "A: U i" "P: A \<leadsto> U j" + assumes [intro]: + "P: A \<leadsto> U i" "A: U i" + "x: A" "y: A" "p: x =[A] y" + shows "?prf: \<Prod>u: P x. <x, u> =[\<Sum>x: A. P x] <y, (transport[A, P, x, y]`p)`u>" +proof (path_ind' x y p, rule Prod_routine) + fix x u assume [intro]: "x: A" "u: P x" + have "(transport[A, P, x, x]`(refl x))`u \<equiv> u" by derive + thus "(refl <x, u>): <x, u> =[\<Sum>(x: A). P x] <x, (transport[A, P, x, x]`(refl x))`u>" + proof simp qed routine +qed routine + +definition lift :: "[t, t \<Rightarrow> t, t, t] \<Rightarrow> t" ("(2lift[_, _, _, _])") +where + "lift[A, P, x, y] \<equiv> \<lambda>u: P x. \<lambda>p: x =[A] y. (indEq + (\<lambda>x y p. \<Prod>u: P x. <x, u> =[\<Sum>(x: A). P x] <y, (transport[A, P, x, y]`p)`u>) + (\<lambda>x. \<lambda>(u: P x). refl <x, u>) x y p)`u" + +corollary lift_type: + assumes [intro]: + "P: A \<leadsto> U i" "A: U i" + "x: A" "y: A" "p: x =[A] y" "u: P x" + shows "lift[A, P, x, y]`u`p: <x, u> =[\<Sum>x: A. P x] <y, (transport[A, P, x, y]`p)`u>" +unfolding lift_def by (derive lems: path_lifting) + +schematic_goal lift_comp: + assumes [intro]: + "P: A \<leadsto> U i" "A: U i" "x: A" "y: A" "p: x =[A] y" - shows "?prf: <x, u> =[\<Sum>x: A. P x] <y, (transport[P, x, y] p)`u>" + "u: P x" + defines "Fst \<equiv> ap[fst[A, P], \<Sum>x: A. P x, A, <x, u>, <y, (transport[A, P, x, y]`p)`u>]" + shows "?prf: Fst`(lift[A, P, x, y]`u`p) =[x =[A] y] p" +proof derive oops diff --git a/Univalence.thy b/Univalence.thy index 30110f1..322dbbd 100644 --- a/Univalence.thy +++ b/Univalence.thy @@ -117,22 +117,16 @@ schematic_goal transport_invl_hom: "P: A \<leadsto> U j" "A: U i" "x: A" "y: A" "p: x =[A] y" shows "?prf: - (transport[P, y, x] (inv[A, x, y] p)) o[P x] (transport[P, x, y] p) ~[w: P x. P x] id P x" -proof (rule happly_type[OF transport_invl]) - show "(transport[P, y, x] (inv[A, x, y] p)) o[P x] (transport[P, x, y] p): P x \<rightarrow> P x" - proof show "P y: U j" by routine qed routine -qed routine + (transport[A, P, y, x]`(inv[A, x, y]`p)) o[P x] (transport[A, P, x, y]`p) ~[w: P x. P x] id P x" +by (rule happly_type[OF transport_invl], derive) schematic_goal transport_invr_hom: assumes [intro]: - "P: A \<leadsto> U j" "A: U i" - "x: A" "y: A" "p: x =[A] y" + "A: U i" "P: A \<leadsto> U j" + "y: A" "x: A" "p: x =[A] y" shows "?prf: - (transport[P, x, y] p) o[P y] (transport[P, y, x] (inv[A, x, y] p)) ~[w: P y. P y] id P y" -proof (rule happly_type[OF transport_invr]) - show "(transport[P, x, y] p) o[P y] (transport[P, y, x] (inv[A, x, y] p)): P y \<rightarrow> P y" - proof show "P x: U j" by routine qed routine -qed routine + (transport[A, P, x, y]`p) o[P y] (transport[A, P, y, x]`(inv[A, x, y]`p)) ~[w: P y. P y] id P y" +by (rule happly_type[OF transport_invr], derive) declare transport_invl_hom [intro] @@ -145,7 +139,7 @@ It is used in the derivation of @{text idtoeqv} in the next section. schematic_goal transport_biinv: assumes [intro]: "p: A =[U i] B" "A: U i" "B: U i" - shows "?prf: biinv[A, B] (transport[Id, A, B] p)" + shows "?prf: biinv[A, B] (transport[U i, Id, A, B]`p)" unfolding biinv_def apply (rule Sum_routine) prefer 2 @@ -173,25 +167,25 @@ done *) definition idtoeqv :: "[ord, t, t] \<Rightarrow> t" ("(2idtoeqv[_, _, _])") where " idtoeqv[i, A, B] \<equiv> - \<lambda>(p: A =[U i] B). - < transport (Id) A B p, < - < transport[Id, B, A] (inv[U i, A, B] p), + \<lambda>p: A =[U i] B. + < transport[U i, Id, A, B]`p, < + < transport[U i, Id, B, A]`(inv[U i, A, B]`p), happly[x: A. A] - ((transport[Id, B, A] (inv[U i, A, B] p)) o[A] transport[Id, A, B] p) + ((transport[U i, Id, B, A]`(inv[U i, A, B]`p)) o[A] transport[U i, Id, A, B]`p) (id A) (indEq (\<lambda>A B p. - (transport[Id, B, A] (inv[U i, A, B] p)) o[A] transport[Id, A, B] p + (transport[U i, Id, B, A]`(inv[U i, A, B]`p)) o[A] transport[U i, Id, A, B]`p =[A \<rightarrow> A] id A) (\<lambda>x. refl (id x)) A B p) >, - < transport (Id) B A (inv[U i, A, B] p), + < transport[U i, Id, B, A]`(inv[U i, A, B]`p), happly[x: B. B] - ((transport[Id, A, B] p) o[B] (transport[Id, B, A] (inv[U i, A, B] p))) + ((transport[U i, Id, A, B]`p) o[B] (transport[U i, Id, B, A]`(inv[U i, A, B]`p))) (id B) (indEq (\<lambda>A B p. - transport[Id, A, B] p o[B] (transport[Id, B, A] (inv[U i, A, B] p)) + transport[U i, Id, A, B]`p o[B] (transport[U i, Id, B, A]`(inv[U i, A, B]`p)) =[B \<rightarrow> B] id B) (\<lambda>x. refl (id x)) A B p) > |