From 8f7164976d08446e77a0e1eceaaa01f0ed363e5b Mon Sep 17 00:00:00 2001 From: Josh Chen Date: Wed, 6 Mar 2019 11:42:19 +0100 Subject: Make functions object-level --- Eq.thy | 163 ++++++++++++++++++++++++++++++++++------------------------------- 1 file changed, 86 insertions(+), 77 deletions(-) (limited to 'Eq.thy') diff --git a/Eq.thy b/Eq.thy index 9a7ba47..ca03089 100644 --- a/Eq.thy +++ b/Eq.thy @@ -2,7 +2,12 @@ Isabelle/HoTT: Equality Feb 2019 -Intensional equality, path induction, and proofs of various results. +Contains: +* Type definitions for intensional equality +* Some setup for path induction +* Basic properties of equality (inv, pathcomp) +* The higher groupoid structure of types +* Functoriality of functions (ap) ********) @@ -71,32 +76,32 @@ section \Properties of equality\ subsection \Symmetry (path inverse)\ -definition inv :: "[t, t, t, t] \ t" -where "inv A x y p \ indEq (\x y. &(y =[A] x)) (\x. refl x) x y p" +definition inv :: "[t, t, t] \ t" +where "inv A x y \ \p: x =[A] y. indEq (\x y. &(y =[A] x)) (\x. refl x) x y p" -syntax "_inv" :: "[t, t, t, t] \ t" ("(2inv[_, _, _] _)" [0, 0, 0, 1000] 999) -translations "inv[A, x, y] p" \ "(CONST inv) A x y p" +syntax "_inv" :: "[t, t, t] \ t" ("(2inv[_, _, _])" [0, 0, 0] 999) +translations "inv[A, x, y]" \ "(CONST inv) A x y" -syntax "_inv'" :: "t \ t" ("~_" [1000]) +syntax "_inv'" :: "t \ t" ("inv") text \Pretty-printing switch for path inverse:\ ML \val pretty_inv = Attrib.setup_config_bool @{binding "pretty_inv"} (K true)\ print_translation \ -let fun inv_tr' ctxt [A, x, y, p] = +let fun inv_tr' ctxt [A, x, y] = if Config.get ctxt pretty_inv - then Syntax.const @{syntax_const "_inv'"} $ p - else Syntax.const @{syntax_const "_inv"} $ A $ x $ y $ p + then Syntax.const @{syntax_const "_inv'"} + else Syntax.const @{syntax_const "_inv"} $ A $ x $ y in [(@{const_syntax inv}, inv_tr')] end \ -lemma inv_type: "\A: U i; x: A; y: A; p: x =[A] y\ \ inv[A, x, y] p: y =[A] x" +lemma inv_type: "\A: U i; x: A; y: A; p: x =[A] y\ \ inv[A, x, y]`p: y =[A] x" unfolding inv_def by derive -lemma inv_comp: "\A: U i; a: A\ \ inv[A, a, a] (refl a) \ refl a" +lemma inv_comp: "\A: U i; a: A\ \ inv[A, a, a]`(refl a) \ refl a" unfolding inv_def by derive declare @@ -114,27 +119,27 @@ by path_ind "{x, z, _} x =[A] z", rule Eq_intro, routine add: assms) -definition pathcomp :: "[t, t, t, t, t, t] \ t" +definition pathcomp :: "[t, t, t, t] \ t" where - "pathcomp A x y z p q \ (indEq + "pathcomp A x y z \ \p: x =[A] y. \q: y =[A] z. (indEq (\x y. & \z: A. y =[A] z \ x =[A] z) (\x. \z: A. \q: x =[A] z. indEq (\x z. & x =[A] z) (\x. refl x) x z q) x y p)`z`q" syntax "_pathcomp" :: "[t, t, t, t, t, t] \ t" - ("(2pathcomp[_, _, _, _] _ _)" [0, 0, 0, 0, 1000, 1000] 999) -translations "pathcomp[A, x, y, z] p q" \ "(CONST pathcomp) A x y z p q" + ("(2pathcomp[_, _, _, _])" [0, 0, 0, 0] 999) +translations "pathcomp[A, x, y, z]" \ "(CONST pathcomp) A x y z" -syntax "_pathcomp'" :: "[t, t] \ t" (infixl "^" 110) +syntax "_pathcomp'" :: "[t, t] \ t" ("pathcomp") ML \val pretty_pathcomp = Attrib.setup_config_bool @{binding "pretty_pathcomp"} (K true)\ \ \Pretty-printing switch for path composition\ print_translation \ -let fun pathcomp_tr' ctxt [A, x, y, z, p, q] = +let fun pathcomp_tr' ctxt [A, x, y, z] = if Config.get ctxt pretty_pathcomp - then Syntax.const @{syntax_const "_pathcomp'"} $ p $ q - else Syntax.const @{syntax_const "_pathcomp"} $ A $ x $ y $ z $ p $ q + then Syntax.const @{syntax_const "_pathcomp'"} + else Syntax.const @{syntax_const "_pathcomp"} $ A $ x $ y $ z in [(@{const_syntax pathcomp}, pathcomp_tr')] end @@ -142,12 +147,12 @@ end corollary pathcomp_type: assumes [intro]: "A: U i" "x: A" "y: A" "z: A" "p: x =[A] y" "q: y =[A] z" - shows "pathcomp[A, x, y, z] p q: x =[A] z" + shows "pathcomp[A, x, y, z]`p`q: x =[A] z" unfolding pathcomp_def by (derive lems: transitivity) corollary pathcomp_comp: assumes [intro]: "A: U i" "a: A" - shows "pathcomp[A, a, a, a] (refl a) (refl a) \ refl a" + shows "pathcomp[A, a, a, a]`(refl a)`(refl a) \ refl a" unfolding pathcomp_def by (derive lems: transitivity) declare @@ -159,45 +164,45 @@ section \Higher groupoid structure of types\ schematic_goal pathcomp_idr: assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y" - shows "?prf: pathcomp[A, x, y, y] p (refl y) =[x =[A] y] p" + shows "?prf: pathcomp[A, x, y, y]`p`(refl y) =[x =[A] y] p" proof (path_ind' x y p) - show "\x. x: A \ refl(refl x): pathcomp[A, x, x, x] (refl x) (refl x) =[x =[A] x] (refl x)" + show "\x. x: A \ refl(refl x): pathcomp[A, x, x, x]`(refl x)`(refl x) =[x =[A] x] (refl x)" by derive qed routine schematic_goal pathcomp_idl: assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y" - shows "?prf: pathcomp[A, x, x, y] (refl x) p =[x =[A] y] p" + shows "?prf: pathcomp[A, x, x, y]`(refl x)`p =[x =[A] y] p" proof (path_ind' x y p) - show "\x. x: A \ refl(refl x): pathcomp[A, x, x, x] (refl x) (refl x) =[x =[A] x] (refl x)" + show "\x. x: A \ refl(refl x): pathcomp[A, x, x, x]`(refl x)`(refl x) =[x =[A] x] (refl x)" by derive qed routine schematic_goal pathcomp_invr: assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y" - shows "?prf: pathcomp[A, x, y, x] p (inv[A, x, y] p) =[x =[A] x] (refl x)" + shows "?prf: pathcomp[A, x, y, x]`p`(inv[A, x, y]`p) =[x =[A] x] (refl x)" proof (path_ind' x y p) show "\x. x: A \ refl(refl x): - pathcomp[A, x, x, x] (refl x) (inv[A, x, x] (refl x)) =[x =[A] x] (refl x)" + pathcomp[A, x, x, x]`(refl x)`(inv[A, x, x]`(refl x)) =[x =[A] x] (refl x)" by derive qed routine schematic_goal pathcomp_invl: assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y" - shows "?prf: pathcomp[A, y, x, y] (inv[A, x, y] p) p =[y =[A] y] refl(y)" + shows "?prf: pathcomp[A, y, x, y]`(inv[A, x, y]`p)`p =[y =[A] y] refl(y)" proof (path_ind' x y p) show "\x. x: A \ refl(refl x): - pathcomp[A, x, x, x] (inv[A, x, x] (refl x)) (refl x) =[x =[A] x] (refl x)" + pathcomp[A, x, x, x]`(inv[A, x, x]`(refl x))`(refl x) =[x =[A] x] (refl x)" by derive qed routine schematic_goal inv_involutive: assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y" - shows "?prf: inv[A, y, x] (inv[A, x, y] p) =[x =[A] y] p" + shows "?prf: inv[A, y, x]`(inv[A, x, y]`p) =[x =[A] y] p" proof (path_ind' x y p) - show "\x. x: A \ refl(refl x): inv A x x (inv A x x (refl x)) =[x =[A] x] (refl x)" + show "\x. x: A \ refl(refl x): inv[A, x, x]`(inv[A, x, x]`(refl x)) =[x =[A] x] (refl x)" by derive qed routine @@ -215,31 +220,31 @@ schematic_goal pathcomp_assoc: assumes [intro]: "A: U i" shows "?prf: \x: A. \y: A. \p: x =[A] y. \z: A. \q: y =[A] z. \w: A. \r: z =[A] w. - pathcomp[A, x, y, w] p (pathcomp[A, y, z, w] q r) =[x =[A] w] - pathcomp[A, x, z, w] (pathcomp[A, x, y, z] p q) r" + pathcomp[A, x, y, w]`p`(pathcomp[A, y, z, w]`q`r) =[x =[A] w] + pathcomp[A, x, z, w]`(pathcomp[A, x, y, z]`p`q)`r" apply (quantify 3) apply (path_ind "{x, y, p} \(z: A). \(q: y =[A] z). \(w: A). \(r: z =[A] w). - pathcomp[A, x, y, w] p (pathcomp[A, y, z, w] q r) =[x =[A] w] - pathcomp[A, x, z, w] (pathcomp[A, x, y, z] p q) r") + pathcomp[A, x, y, w]`p`(pathcomp[A, y, z, w]`q`r) =[x =[A] w] + pathcomp[A, x, z, w]`(pathcomp[A, x, y, z]`p`q)`r") apply (quantify 2) apply (path_ind "{x, z, q} \(w: A). \(r: z =[A] w). - pathcomp[A, x, x, w] (refl x) (pathcomp[A, x, z, w] q r) =[x =[A] w] - pathcomp[A, x, z, w] (pathcomp[A, x, x, z] (refl x) q) r") + pathcomp[A, x, x, w]`(refl x)`(pathcomp[A, x, z, w]`q`r) =[x =[A] w] + pathcomp[A, x, z, w]`(pathcomp[A, x, x, z]`(refl x)`q)`r") apply (quantify 2) apply (path_ind "{x, w, r} - pathcomp[A, x, x, w] (refl x) (pathcomp[A, x, x, w] (refl x) r) =[x =[A] w] - pathcomp[A, x, x, w] (pathcomp[A, x, x, x] (refl x) (refl x)) r") + pathcomp[A, x, x, w]`(refl x)`(pathcomp[A, x, x, w] `(refl x)`r) =[x =[A] w] + pathcomp[A, x, x, w]`(pathcomp[A, x, x, x]`(refl x)`(refl x))`r") text \The rest is now routine.\ proof - show "\x. x: A \ refl(refl x): - pathcomp[A, x, x, x] (refl x) (pathcomp[A, x, x, x] (refl x) (refl x)) =[x =[A] x] - pathcomp[A, x, x, x] (pathcomp[A, x, x, x] (refl x) (refl x)) (refl x)" + pathcomp[A, x, x, x]`(refl x)`(pathcomp[A, x, x, x]`(refl x)`(refl x)) =[x =[A] x] + pathcomp[A, x, x, x]`(pathcomp[A, x, x, x]`(refl x)`(refl x))`(refl x)" by derive qed routine @@ -254,35 +259,35 @@ schematic_goal transfer: by (path_ind' x y p, rule Eq_routine, routine) definition ap :: "[t, t, t, t, t] \ t" -where "ap B f x y p \ indEq ({x, y, _} f`x =[B] f`y) (\x. refl (f`x)) x y p" +where "ap f A B x y \ \p: x =[A] y. indEq ({x, y, _} f`x =[B] f`y) (\x. refl (f`x)) x y p" -syntax "_ap" :: "[t, t, t, t, t] \ t" ("(2ap[_, _, _] _ _)" [0, 0, 0, 1000, 1000]) -translations "ap[B, x, y] f p" \ "(CONST ap) B f x y p" +syntax "_ap" :: "[t, t, t, t, t] \ t" ("(2ap[_, _, _, _, _])") +translations "ap[f, A, B, x, y]" \ "(CONST ap) f A B x y" -syntax "_ap'" :: "[t, t] \ t" ("(_{_})" [1000, 0] 1000) +syntax "_ap'" :: "t \ t" ("ap[_]") ML \val pretty_ap = Attrib.setup_config_bool @{binding "pretty_ap"} (K true)\ print_translation \ -let fun ap_tr' ctxt [B, f, x, y, p] = +let fun ap_tr' ctxt [f, A, B, x, y] = if Config.get ctxt pretty_ap - then Syntax.const @{syntax_const "_ap'"} $ f $ p - else Syntax.const @{syntax_const "_ap"} $ B $ x $ y $ f $ p + then Syntax.const @{syntax_const "_ap'"} $ f + else Syntax.const @{syntax_const "_ap"} $ f $ A $ B $ x $ y in [(@{const_syntax ap}, ap_tr')] end \ corollary ap_type: - assumes + assumes [intro]: "A: U i" "B: U i" "f: A \ B" "x: A" "y: A" "p: x =[A] y" - shows "ap[B, x, y] f p: f`x =[B] f`y" -unfolding ap_def using assms by (rule transfer) + shows "ap[f, A, B, x, y]`p: f`x =[B] f`y" +unfolding ap_def by routine lemma ap_comp: assumes [intro]: "A: U i" "B: U i" "f: A \ B" "x: A" - shows "ap[B, x, x] f (refl x) \ refl (f`x)" + shows "ap[f, A, B, x, x]`(refl x) \ refl (f`x)" unfolding ap_def by derive declare @@ -294,22 +299,22 @@ schematic_goal ap_func_pathcomp: assumes [intro]: "A: U i" "B: U i" "f: A \ B" shows "?prf: \x: A. \y: A. \p: x =[A] y. \z: A. \q: y =[A] z. - ap[B, x, z] f (pathcomp[A, x, y, z] p q) =[f`x =[B] f`z] - pathcomp[B, f`x, f`y, f`z] (ap[B, x, y] f p) (ap[B, y, z] f q)" + ap[f, A, B, x, z]`(pathcomp[A, x, y, z]`p`q) =[f`x =[B] f`z] + pathcomp[B, f`x, f`y, f`z]`(ap[f, A, B, x, y]`p)`(ap[f, A, B, y, z]`q)" apply (quantify 3) apply (path_ind "{x, y, p} \z: A. \q: y =[A] z. - ap[B, x, z] f (pathcomp[A, x, y, z] p q) =[f`x =[B] f`z] - pathcomp[B, f`x, f`y, f`z] (ap[B, x, y] f p) (ap[B, y, z] f q)") + ap[f, A, B, x, z]`(pathcomp[A, x, y, z]`p`q) =[f`x =[B] f`z] + pathcomp[B, f`x, f`y, f`z]`(ap[f, A, B, x, y]`p)`(ap[f, A, B, y, z]`q)") apply (quantify 2) apply (path_ind "{x, z, q} - ap[B, x, z] f (pathcomp[A, x, x, z] (refl x) q) =[f`x =[B] f`z] - pathcomp[B, f`x, f`x, f`z] (ap[B, x, x] f (refl x)) (ap[B, x, z] f q)") + ap[f, A, B, x, z]`(pathcomp[A, x, x, z]`(refl x)`q) =[f`x =[B] f`z] + pathcomp[B, f`x, f`x, f`z]`(ap[f, A, B, x, x]`(refl x))`(ap[f, A, B, x, z]`q)") proof - show "\x. x: A \ refl(refl(f`x)) : - ap[B, x, x] f (pathcomp[A, x, x, x] (refl x) (refl x)) =[f`x =[B] f`x] - pathcomp[B, f`x, f`x, f`x] (ap[B, x, x] f (refl x)) (ap[B, x, x] f (refl x))" + ap[f, A, B, x, x]`(pathcomp[A, x, x, x]`(refl x)`(refl x)) =[f`x =[B] f`x] + pathcomp[B, f`x, f`x, f`x]`(ap[f, A, B, x, x]`(refl x))`(ap[f, A, B, x, x]`(refl x))" by derive qed routine @@ -320,55 +325,59 @@ schematic_goal ap_func_compose: "f: A \ B" "g: B \ C" shows "?prf: \x: A. \y: A. \p: x =[A] y. - ap[C, f`x, f`y] g (ap[B, x, y] f p) =[g`(f`x) =[C] g`(f`y)] - ap[C, x, y] (g o[A] f) p" + ap[g, B, C, f`x, f`y]`(ap[f, A, B, x, y]`p) =[g`(f`x) =[C] g`(f`y)] + ap[g o[A] f, A, C, x, y]`p" apply (quantify 3) apply (path_ind "{x, y, p} - ap[C, f`x, f`y] g (ap[B, x, y] f p) =[g`(f`x) =[C] g`(f`y)] - ap[C, x, y] (g o[A] f) p") + ap[g, B, C, f`x, f`y]`(ap[f, A, B, x, y]`p) =[g`(f`x) =[C] g`(f`y)] + ap[g o[A] f, A, C, x, y]`p") proof - show "\x. x: A \ refl(refl (g`(f`x))) : - ap[C, f`x, f`x] g (ap[B, x, x] f (refl x)) =[g`(f`x) =[C] g`(f`x)] - ap[C, x, x] (g o[A] f) (refl x)" + ap[g, B, C, f`x, f`x]`(ap[f, A, B, x, x]`(refl x)) =[g`(f`x) =[C] g`(f`x)] + ap[g o[A] f, A, C, x, x]`(refl x)" unfolding compose_def by derive fix x y p assume [intro]: "x: A" "y: A" "p: x =[A] y" - show "ap[C, f`x, f`y] g (ap[B, x, y] f p) =[g`(f`x) =[C] g`(f`y)] ap[C, x, y] (g o[A] f) p: U i" + show + "ap[g, B, C, f`x, f`y]`(ap[f, A, B, x, y]`p) =[g`(f`x) =[C] g`(f`y)] + ap[g o[A] f, A, C, x, y]`p: U i" proof have - "ap[C, x, y] (g o[A] f) p: (\x: A. g`(f`x))`x =[C] (\x: A. g`(f`x))`y" + "ap[g o[A] f, A, C, x, y]`p: (\x: A. g`(f`x))`x =[C] (\x: A. g`(f`x))`y" unfolding compose_def by derive moreover have "(\x: A. g`(f`x))`x =[C] (\x: A. g`(f`x))`y \ g`(f`x) =[C] g`(f`y)" by derive ultimately show - "ap[C, x, y] (g o[A] f) p: g`(f`x) =[C] g`(f`y)" by simp + "ap[g o[A] f, A, C, x, y]`p: g`(f`x) =[C] g`(f`y)" by simp qed derive qed routine -declare[[pretty_inv=false, pretty_ap=false]] + schematic_goal ap_func_inv: assumes [intro]: "A: U i" "B: U i" "f: A \ B" "x: A" "y: A" "p: x =[A] y" - shows "?prf: ap[B, y, x] f (inv[A, x, y] p) =[f`y =[B] f`x] inv[B, f`x, f`y] (ap[B, x, y] f p)" + shows "?prf: + ap[f, A, B, y, x]`(inv[A, x, y]`p) =[f`y =[B] f`x] inv[B, f`x, f`y]`(ap[f, A, B, x, y]`p)" proof (path_ind' x y p) show "\x. x: A \ refl(refl(f`x)): - ap[B, x, x] f (inv[A, x, x] (refl x)) =[f`x =[B] f`x] inv[B, f`x, f`x] (ap[B, x, x] f (refl x))" + ap[f, A, B, x, x]`(inv[A, x, x]`(refl x)) =[f`x =[B] f`x] + inv[B, f`x, f`x]`(ap[f, A, B, x, x]`(refl x))" by derive qed routine schematic_goal ap_func_id: assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y" - shows "?prf: ap A (id A) x y p =[x =[A] y] p" + shows "?prf: ap[id A, A, A, x, y]`p =[x =[A] y] p" proof (path_ind' x y p) fix x assume [intro]: "x: A" - show "refl(refl x): ap[A, x, x] (id A) (refl x) =[x =[A] x] refl x" by derive + show "refl(refl x): ap[id A, A, A, x, x]`(refl x) =[x =[A] x] refl x" by derive fix y p assume [intro]: "y: A" "p: x =[A] y" - have "ap[A, x, y] (id A) p: (id A)`x =[A] (id A)`y" by derive + have "ap[id A, A, A, x, y]`p: (id A)`x =[A] (id A)`y" by derive moreover have "(id A)`x =[A] (id A)`y \ x =[A] y" by derive - ultimately have [intro]: "ap[A, x, y] (id A) p: x =[A] y" by simp + ultimately have [intro]: "ap[id A, A, A, x, y]`p: x =[A] y" by simp - show "ap[A, x, y] (id A) p =[x =[A] y] p: U i" by derive + show "ap[id A, A, A, x, y]`p =[x =[A] y] p: U i" by derive qed -- cgit v1.2.3