aboutsummaryrefslogtreecommitdiff
path: root/Univalence.thy
blob: 04e1d67862ed61fa8db16aac439a3aa2ef5cfd5c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
(********
Isabelle/HoTT: Univalence
Feb 2019

********)

theory Univalence
imports HoTT_Methods Prod Sum Eq

begin


section \<open>Homotopy\<close>

definition homotopic :: "[t, t \<Rightarrow> t, t, t] \<Rightarrow> t"  ("(2homotopic[_, _] _ _)" [0, 0, 1000, 1000])
where "homotopic[A, B] f g \<equiv> \<Prod>x: A. f`x =[B x] g`x"

declare homotopic_def [comp]

syntax "_homotopic" :: "[t, idt, t, t, t] \<Rightarrow> t"  ("(1_ ~[_: _. _]/ _)" [101, 0, 0, 0, 101] 100)
translations "f ~[x: A. B] g" \<rightleftharpoons> "(CONST homotopic) A (\<lambda>x. B) f g"

(*
syntax "_homotopic'" :: "[t, t] \<Rightarrow> t"  ("(2_ ~ _)" [1000, 1000])

ML \<open>val pretty_homotopic = Attrib.setup_config_bool @{binding "pretty_homotopic"} (K true)\<close>

print_translation \<open>
let fun homotopic_tr' ctxt [A, B, f, g] =
  if Config.get ctxt pretty_homotopic
  then Syntax.const @{syntax_const "_homotopic'"} $ f $ g
  else @{const homotopic} $ A $ B $ f $ g
in
  [(@{const_syntax homotopic}, homotopic_tr')]
end
\<close>
*)

lemma homotopic_type:
  assumes [intro]: "A: U i" "B: A \<leadsto> U i" "f: \<Prod>x: A. B x" "g: \<Prod>x: A. B x"
  shows "f ~[x: A. B x] g: U i"
by derive

declare homotopic_type [intro]

schematic_goal fun_eq_imp_homotopic:
  assumes [intro]:
    "p: f =[\<Prod>x: A. B x] g"
    "f: \<Prod>x: A. B x" "g: \<Prod>x: A. B x"
    "A: U i" "B: A \<leadsto> U i"
  shows "?prf: f ~[x: A. B x] g"
proof (path_ind' f g p)
  show "\<And>f. f : \<Prod>(x: A). B x \<Longrightarrow> \<lambda>x: A. refl(f`x): f ~[x: A. B x] f" by derive
qed routine

definition happly :: "[t, t \<Rightarrow> t, t, t, t] \<Rightarrow> t"
where "happly A B f g p \<equiv> indEq (\<lambda>f g. & f ~[x: A. B x] g) (\<lambda>f. \<lambda>(x: A). refl(f`x)) f g p"

syntax "_happly" :: "[idt, t, t, t, t, t] \<Rightarrow> t"
  ("(2happly[_: _. _] _ _ _)" [0, 0, 0, 1000, 1000, 1000])
translations "happly[x: A. B] f g p"  \<rightleftharpoons> "(CONST happly) A (\<lambda>x. B) f g p"

corollary happly_type:
  assumes [intro]:
    "p: f =[\<Prod>x: A. B x] g"
    "f: \<Prod>x: A. B x" "g: \<Prod>x: A. B x"
    "A: U i" "B: A \<leadsto> U i"
  shows "happly[x: A. B x] f g p: f ~[x: A. B x] g"
unfolding happly_def by (derive lems: fun_eq_imp_homotopic)


section \<open>Transport and homotopy\<close>

schematic_goal transport_invl_hom:
  assumes [intro]:
    "A: U i" "P: A \<rightarrow> U j"
    "x: A" "y: A" "p: x =[A] y"
  shows "?prf:
    (transport[P, y, x] (inv[A, x, y] p)) o[P`x] (transport[P, x, y] p) ~[w: P`x. P`x] id(P`x)"
proof (rule happly_type[OF transport_invl])
  show "(transport[P, y, x] (inv[A, x, y] p)) o[P`x] (transport[P, x, y] p): P`x \<rightarrow> P`x"
  proof show "P`y: U j" by routine qed routine
qed routine

schematic_goal transport_invr_hom:
  assumes [intro]:
    "A: U i" "P: A \<rightarrow> U j"
    "x: A" "y: A" "p: x =[A] y"
  shows "?prf:
    (transport[P, x, y] p) o[P`y] (transport[P, y, x] (inv[A, x, y] p)) ~[w: P`y. P`y] id(P`y)"
proof (rule happly_type[OF transport_invr])
  show "(transport[P, x, y] p) o[P`y] (transport[P, y, x] (inv[A, x, y] p)): P`y \<rightarrow> P`y"
  proof show "P`x: U j" by routine qed routine
qed routine

declare
  transport_invl_hom [intro]
  transport_invr_hom [intro]


section \<open>Equivalence\<close>

text \<open>For now, we define equivalence in terms of bi-invertibility.\<close>

definition biinv :: "[t, t, t] \<Rightarrow> t"  ("(2biinv[_, _]/ _)")
where "biinv[A, B] f \<equiv>
  (\<Sum>g: B \<rightarrow> A. g o[A] f ~[x:A. A] id A) \<times> (\<Sum>g: B \<rightarrow> A. f o[B] g ~[x: B. B] id B)"

text \<open>
The meanings of the syntax defined above are:
\<^item> @{term "f ~[x: A. B x] g"} expresses that @{term f} and @{term g} are homotopic functions of type @{term "\<Prod>x:A. B x"}.
\<^item> @{term "biinv[A, B] f"} expresses that the function @{term f} of type @{term "A \<rightarrow> B"} is bi-invertible.
\<close>

lemma biinv_type:
  assumes [intro]: "A: U i" "B: U i" "f: A \<rightarrow> B"
  shows "biinv[A, B] f: U i"
unfolding biinv_def by derive

declare biinv_type [intro]

schematic_goal id_is_biinv:
  assumes [intro]: "A: U i"
  shows "?prf: biinv[A, A] (id A)"
unfolding biinv_def proof (rule Sum_routine, compute)
  show "<id A, \<lambda>x: A. refl x>: \<Sum>(g: A \<rightarrow> A). (g o[A] id A) ~[x: A. A] (id A)" by derive
  show "<id A, \<lambda>x: A. refl x>: \<Sum>(g: A \<rightarrow> A). (id A o[A] g) ~[x: A. A] (id A)" by derive
qed routine

definition equivalence :: "[t, t] \<Rightarrow> t"  (infix "\<simeq>" 100)
where "A \<simeq> B \<equiv> \<Sum>f: A \<rightarrow> B. biinv[A, B] f"

schematic_goal equivalence_symmetric:
  assumes [intro]: "A: U i"
  shows "?prf: A \<simeq> A"
unfolding equivalence_def proof (rule Sum_routine)
  show "\<And>f. f : A \<rightarrow> A \<Longrightarrow> biinv[A, A] f : U i" unfolding biinv_def by derive
  show "id A: A \<rightarrow> A" by routine
qed (routine add: id_is_biinv)


section \<open>Univalence\<close>

declare[[goals_limit=100, pretty_transport=true]]

lemma lem: "\<And>A. A: U i \<Longrightarrow> (id (U i))`A \<equiv> A" by derive

schematic_goal
  assumes [intro]: "A: U i" "B: U i" "p: A =[U i] B"
  shows "?prf: biinv[A, B] (transport[id(U i), A, B] p)"
apply (path_ind' A B p)
apply (unfold biinv_def)
  show "?a : biinv[A, B] (transport[id(U i), A, B] p)"

oops

schematic_goal
  assumes [intro]: "A: U i" "B: U i" "p: A =[U i] B"
  shows "?prf: biinv[id(U i)`A, id(U i)`B] (transport[id(U i), A, B] p)"
unfolding biinv_def
apply (rule Sum_routine)
prefer 2 apply (rule Sum_routine)
prefer 3 apply (rule transport_invl_hom)
prefer 9 apply (rule Sum_routine)
prefer 3 apply (rule transport_invr_hom)
proof -
  show "U i: U (Suc i)" by hierarchy
  show "U i: U (Suc i)" by hierarchy
  show "\<And>g. g : id (U i)`B \<rightarrow> id (U i)`A \<Longrightarrow> (transport[id(U i), A, B] p) o[id (U i)`B] g ~[x: id (U i)`B. id (U i)`B] id (id (U i)`B) : U i"
  proof
    show "id (U i)`B : U i" by derive
    show "id (U i)`B : U i" by derive
    show "id (id (U i)`B) : id (U i)`B \<rightarrow> id (U i)`B" by derive
    show
      "\<And>g. g : id (U i)`B \<rightarrow> id (U i)`A \<Longrightarrow>
        (transport[id(U i), A, B] p) o[id (U i)`B] g: id (U i)`B \<rightarrow> id (U i)`B"
    apply rule
    prefer 4 apply assumption
    proof -
      show "id (U i)`B : U i" by derive
      show "id (U i)`A : U i" by derive
      show "id (U i)`B : U i" by derive
    
oops
    

schematic_goal type_eq_imp_equiv:
  assumes [intro]: "A: U i" "B: U i"
  shows "?prf: (A =[U i] B) \<rightarrow> A \<simeq> B"
unfolding equivalence_def
apply (rule Prod_routine, rule Sum_routine)
prefer 2
  show *: "\<And>f. f: A \<rightarrow> B \<Longrightarrow> isequiv[A, B] f: U i"
  unfolding isequiv_def by (derive lems: assms

  show "\<And>p. p: A =[U i] B \<Longrightarrow> transport p: A \<rightarrow> B"
  by (derive lems: assms transport_type[where ?i="Suc i"]  \<comment> \<open>Instantiate @{thm transport_type} with a suitable universe level here...\<close>

  show "\<And>p. p: A =[U i] B \<Longrightarrow> ind\<^sub>= (\<lambda>_. <<id, \<^bold>\<lambda>x. refl x>, <id, \<^bold>\<lambda>x. refl x>>) p: isequiv[A, B] (transport p)"
  proof (elim Equal_elim)
    show "\<And>T. T: U i \<Longrightarrow> <<id, \<^bold>\<lambda>x. refl x>, <id, \<^bold>\<lambda>x. refl x>>: isequiv[T, T] (transport (refl T))"
    by (derive lems: transport_comp[where ?i="Suc i" and ?A="U i"] id_isequiv)
    \<comment> \<open>...and also here.\<close>
    
    show "\<And>A B p. \<lbrakk>A: U i; B: U i; p: A =[U i] B\<rbrakk> \<Longrightarrow> isequiv[A, B] (transport p): U i"
    unfolding isequiv_def by (derive lems: assms transport_type
  qed fact+
qed (derive lems: assms

(*
section \<open>The univalence axiom\<close>

axiomatization univalence :: "[t, t] \<Rightarrow> t" where UA: "univalence A B: isequiv[A, B] idtoeqv"
*)

end