(******** Isabelle/HoTT: Univalence Feb 2019 ********) theory Univalence imports HoTT_Methods Prod Sum Eq begin section \Homotopy\ definition homotopic :: "[t, t \ t, t, t] \ t" ("(2homotopic[_, _] _ _)" [0, 0, 1000, 1000]) where "homotopic[A, B] f g \ \x: A. f`x =[B x] g`x" declare homotopic_def [comp] syntax "_homotopic" :: "[t, idt, t, t, t] \ t" ("(1_ ~[_: _. _]/ _)" [101, 0, 0, 0, 101] 100) translations "f ~[x: A. B] g" \ "(CONST homotopic) A (\x. B) f g" (* syntax "_homotopic'" :: "[t, t] \ t" ("(2_ ~ _)" [1000, 1000]) ML \val pretty_homotopic = Attrib.setup_config_bool @{binding "pretty_homotopic"} (K true)\ print_translation \ let fun homotopic_tr' ctxt [A, B, f, g] = if Config.get ctxt pretty_homotopic then Syntax.const @{syntax_const "_homotopic'"} $ f $ g else @{const homotopic} $ A $ B $ f $ g in [(@{const_syntax homotopic}, homotopic_tr')] end \ *) lemma homotopic_type: assumes [intro]: "A: U i" "B: A \ U i" "f: \x: A. B x" "g: \x: A. B x" shows "f ~[x: A. B x] g: U i" by derive declare homotopic_type [intro] schematic_goal fun_eq_imp_homotopic: assumes [intro]: "p: f =[\x: A. B x] g" "f: \x: A. B x" "g: \x: A. B x" "A: U i" "B: A \ U i" shows "?prf: f ~[x: A. B x] g" proof (path_ind' f g p) show "\f. f : \(x: A). B x \ \x: A. refl(f`x): f ~[x: A. B x] f" by derive qed routine definition happly :: "[t, t \ t, t, t, t] \ t" where "happly A B f g p \ indEq (\f g. & f ~[x: A. B x] g) (\f. \(x: A). refl(f`x)) f g p" syntax "_happly" :: "[idt, t, t, t, t, t] \ t" ("(2happly[_: _. _] _ _ _)" [0, 0, 0, 1000, 1000, 1000]) translations "happly[x: A. B] f g p" \ "(CONST happly) A (\x. B) f g p" corollary happly_type: assumes [intro]: "p: f =[\x: A. B x] g" "f: \x: A. B x" "g: \x: A. B x" "A: U i" "B: A \ U i" shows "happly[x: A. B x] f g p: f ~[x: A. B x] g" unfolding happly_def by (derive lems: fun_eq_imp_homotopic) section \Transport and homotopy\ schematic_goal transport_invl_hom: assumes [intro]: "A: U i" "P: A \ U j" "x: A" "y: A" "p: x =[A] y" shows "?prf: (transport[P, y, x] (inv[A, x, y] p)) o[P`x] (transport[P, x, y] p) ~[w: P`x. P`x] id(P`x)" proof (rule happly_type[OF transport_invl]) show "(transport[P, y, x] (inv[A, x, y] p)) o[P`x] (transport[P, x, y] p): P`x \ P`x" proof show "P`y: U j" by routine qed routine qed routine schematic_goal transport_invr_hom: assumes [intro]: "A: U i" "P: A \ U j" "x: A" "y: A" "p: x =[A] y" shows "?prf: (transport[P, x, y] p) o[P`y] (transport[P, y, x] (inv[A, x, y] p)) ~[w: P`y. P`y] id(P`y)" proof (rule happly_type[OF transport_invr]) show "(transport[P, x, y] p) o[P`y] (transport[P, y, x] (inv[A, x, y] p)): P`y \ P`y" proof show "P`x: U j" by routine qed routine qed routine declare transport_invl_hom [intro] transport_invr_hom [intro] section \Equivalence\ text \For now, we define equivalence in terms of bi-invertibility.\ definition biinv :: "[t, t, t] \ t" ("(2biinv[_, _]/ _)") where "biinv[A, B] f \ (\g: B \ A. g o[A] f ~[x:A. A] id A) \ (\g: B \ A. f o[B] g ~[x: B. B] id B)" text \ The meanings of the syntax defined above are: \<^item> @{term "f ~[x: A. B x] g"} expresses that @{term f} and @{term g} are homotopic functions of type @{term "\x:A. B x"}. \<^item> @{term "biinv[A, B] f"} expresses that the function @{term f} of type @{term "A \ B"} is bi-invertible. \ lemma biinv_type: assumes [intro]: "A: U i" "B: U i" "f: A \ B" shows "biinv[A, B] f: U i" unfolding biinv_def by derive declare biinv_type [intro] schematic_goal id_is_biinv: assumes [intro]: "A: U i" shows "?prf: biinv[A, A] (id A)" unfolding biinv_def proof (rule Sum_routine, compute) show "x: A. refl x>: \(g: A \ A). (g o[A] id A) ~[x: A. A] (id A)" by derive show "x: A. refl x>: \(g: A \ A). (id A o[A] g) ~[x: A. A] (id A)" by derive qed routine definition equivalence :: "[t, t] \ t" (infix "\" 100) where "A \ B \ \f: A \ B. biinv[A, B] f" schematic_goal equivalence_symmetric: assumes [intro]: "A: U i" shows "?prf: A \ A" unfolding equivalence_def proof (rule Sum_routine) show "\f. f : A \ A \ biinv[A, A] f : U i" unfolding biinv_def by derive show "id A: A \ A" by routine qed (routine add: id_is_biinv) section \Univalence\ declare[[goals_limit=100, pretty_transport=true]] lemma lem: "\A. A: U i \ (id (U i))`A \ A" by derive schematic_goal assumes [intro]: "A: U i" "B: U i" "p: A =[U i] B" shows "?prf: biinv[A, B] (transport[id(U i), A, B] p)" apply (path_ind' A B p) apply (unfold biinv_def) show "?a : biinv[A, B] (transport[id(U i), A, B] p)" oops schematic_goal assumes [intro]: "A: U i" "B: U i" "p: A =[U i] B" shows "?prf: biinv[id(U i)`A, id(U i)`B] (transport[id(U i), A, B] p)" unfolding biinv_def apply (rule Sum_routine) prefer 2 apply (rule Sum_routine) prefer 3 apply (rule transport_invl_hom) prefer 9 apply (rule Sum_routine) prefer 3 apply (rule transport_invr_hom) proof - show "U i: U (Suc i)" by hierarchy show "U i: U (Suc i)" by hierarchy show "\g. g : id (U i)`B \ id (U i)`A \ (transport[id(U i), A, B] p) o[id (U i)`B] g ~[x: id (U i)`B. id (U i)`B] id (id (U i)`B) : U i" proof show "id (U i)`B : U i" by derive show "id (U i)`B : U i" by derive show "id (id (U i)`B) : id (U i)`B \ id (U i)`B" by derive show "\g. g : id (U i)`B \ id (U i)`A \ (transport[id(U i), A, B] p) o[id (U i)`B] g: id (U i)`B \ id (U i)`B" apply rule prefer 4 apply assumption proof - show "id (U i)`B : U i" by derive show "id (U i)`A : U i" by derive show "id (U i)`B : U i" by derive oops schematic_goal type_eq_imp_equiv: assumes [intro]: "A: U i" "B: U i" shows "?prf: (A =[U i] B) \ A \ B" unfolding equivalence_def apply (rule Prod_routine, rule Sum_routine) prefer 2 show *: "\f. f: A \ B \ isequiv[A, B] f: U i" unfolding isequiv_def by (derive lems: assms show "\p. p: A =[U i] B \ transport p: A \ B" by (derive lems: assms transport_type[where ?i="Suc i"] \ \Instantiate @{thm transport_type} with a suitable universe level here...\ show "\p. p: A =[U i] B \ ind\<^sub>= (\_. <\x. refl x>, \x. refl x>>) p: isequiv[A, B] (transport p)" proof (elim Equal_elim) show "\T. T: U i \ <\x. refl x>, \x. refl x>>: isequiv[T, T] (transport (refl T))" by (derive lems: transport_comp[where ?i="Suc i" and ?A="U i"] id_isequiv) \ \...and also here.\ show "\A B p. \A: U i; B: U i; p: A =[U i] B\ \ isequiv[A, B] (transport p): U i" unfolding isequiv_def by (derive lems: assms transport_type qed fact+ qed (derive lems: assms (* section \The univalence axiom\ axiomatization univalence :: "[t, t] \ t" where UA: "univalence A B: isequiv[A, B] idtoeqv" *) end