aboutsummaryrefslogtreecommitdiff
path: root/HoTT.thy
blob: 682319d6d040034e67b7e3022bf41d8ac27eb02a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
theory HoTT
imports Pure
begin

section \<open>Setup\<close>
text \<open>
For ML files, routines and setup.
\<close>

section \<open>Basic definitions\<close>
text \<open>
A single meta-level type \<open>Term\<close> suffices to implement the object-level types and terms.
For now we do not implement universes, but simply follow the informal notation in the HoTT book.
\<close> (* Actually unsure if a single meta-type suffices... *)

typedecl Term

subsection \<open>Judgements\<close>
consts
  is_a_type :: "Term \<Rightarrow> prop"           ("(_ : U)" [0] 1000)
  is_of_type :: "Term \<Rightarrow> Term \<Rightarrow> prop"  ("(3_ :/ _)" [0, 0] 1000)

subsection \<open>Basic axioms\<close>
subsubsection \<open>Definitional equality\<close>
text\<open>
We take the meta-equality \<equiv>, defined by the Pure framework for any of its terms,
and use it additionally for definitional/judgmental equality of types and terms in our theory.

Note that the Pure framework already provides axioms and results for the various properties of \<equiv>,
which we make use of and extend where necessary.
\<close>

subsubsection \<open>Type-related properties\<close>

axiomatization where
  term_substitution: "\<And>(A::Term) (x::Term) y::Term. x \<equiv> y \<Longrightarrow> A(x) \<equiv> A(y)" and
  equal_types: "\<And>(A::Term) (B::Term) x::Term. \<lbrakk>A \<equiv> B; x : A\<rbrakk> \<Longrightarrow> x : B" and
  inhabited_implies_type: "\<And>(x::Term) A::Term. x : A \<Longrightarrow> A : U"

subsection \<open>Basic types\<close>

subsubsection \<open>Nondependent function type\<close>
(*
Write this for now to test stuff, later I should make
this an instance of the dependent function. 
Same for the nondependent product below.

Note that the syntax \<^bold>\<lambda> (bold lambda) clashes with the proof term syntax!
(See \<section>2.5.2, The Isabelle/Isar Implementation.)
*)

axiomatization
  Function :: "Term \<Rightarrow> Term \<Rightarrow> Term"  (infixr "\<rightarrow>" 10) and
  lambda :: "Term \<Rightarrow> Term \<Rightarrow> Term \<Rightarrow> Term"  ("(3\<^bold>\<lambda>_:_./ _)" [1000, 0, 0] 10) and
  appl :: "Term \<Rightarrow> Term \<Rightarrow> Term"      ("(3_`/_)" [10, 10] 10)
where
  Function_form: "\<And>(A::Term) B::Term. \<lbrakk>A : U; B : U\<rbrakk> \<Longrightarrow> A\<rightarrow>B : U" and
  Function_intro: "\<And>(A::Term) (B::Term) b::Term. (\<And>x. x : A \<Longrightarrow> b(x) : B) \<Longrightarrow> \<^bold>\<lambda>x:A. b(x) : A\<rightarrow>B" and
  Function_elim: "\<And>A B f a. \<lbrakk>f : A\<rightarrow>B; a : A\<rbrakk> \<Longrightarrow> f`a : B"
  (* beta and eta reductions should go here *)

subsubsection \<open>Nondependent product type\<close>

axiomatization
  Product :: "Term \<Rightarrow> Term \<Rightarrow> Term"  ("(_\<times>/ _)") and
  pair :: "Term \<Rightarrow> Term \<Rightarrow> Term"     ("(_,/ _)") and
  rec_Product :: "Term \<Rightarrow> Term \<Rightarrow> Term \<Rightarrow> Term \<Rightarrow> Term"  ("(rec'_Product'(_,_,_,_'))")
where
  Product_form: "\<And>A B. \<lbrakk>A : U; B : U\<rbrakk> \<Longrightarrow> A\<times>B : U" and
  Product_intro: "\<And>A B a b. \<lbrakk>a : A; b : B\<rbrakk> \<Longrightarrow> (a,b) : A\<times>B" and
  Product_elim: "\<And>A B C g. \<lbrakk>A : U; B : U; C : U; g : A\<rightarrow>B\<rightarrow>C\<rbrakk> \<Longrightarrow> rec_Product(A,B,C,g) : (A\<times>B)\<rightarrow>C" and
  Product_comp: "\<And>A B C g a b. \<lbrakk>C : U; g : A\<rightarrow>B\<rightarrow>C; a : A; b : B\<rbrakk> \<Longrightarrow> rec_Product(A,B,C,g)`(a,b) \<equiv> (g`a)`b"

\<comment> \<open>Projection onto first component\<close>
definition proj1 :: "Term \<Rightarrow> Term \<Rightarrow> Term" ("(proj1\<langle>_,_\<rangle>)") where
  "proj1\<langle>A,B\<rangle> \<equiv> rec_Product(A, B, A, \<^bold>\<lambda>x. \<^bold>\<lambda>y. x)"

subsubsection \<open>Empty type\<close>

axiomatization
  Null :: Term and
  ind_Null :: "Term \<Rightarrow> Term \<Rightarrow> Term" ("(ind'_Null'(_,/ _'))")
where
  Null_form: "Null : U" and
  Null_elim: "\<And>C x a. \<lbrakk>x : Null \<Longrightarrow> C(x) : U; a : Null\<rbrakk> \<Longrightarrow> ind_Null(C(x), a) : C(a)"

subsubsection \<open>Natural numbers\<close>

axiomatization
  Nat :: Term and
  zero :: Term ("0") and
  succ :: "Term \<Rightarrow> Term" and  (* how to enforce \<open>succ : Nat\<rightarrow>Nat\<close>? *)
  ind_Nat :: "Term \<Rightarrow> Term \<Rightarrow> Term \<Rightarrow> Term \<Rightarrow> Term"
where
  Nat_form: "Nat : U" and
  Nat_intro1: "0 : Nat" and
  Nat_intro2: "\<And>n. n : Nat \<Longrightarrow> succ n : Nat"
  (* computation rules *)

subsubsection \<open>Equality type\<close>

axiomatization
  Equal :: "Term \<Rightarrow> Term \<Rightarrow> Term \<Rightarrow> Term"  ("(_ =_ _)") and
  refl :: "Term \<Rightarrow> Term"                   ("(refl'(_'))")
where
  Equal_form: "\<And>A a b. \<lbrakk>a : A; b : A\<rbrakk> \<Longrightarrow> a =A b : U" and
  Equal_intro: "\<And>A x. x : A \<Longrightarrow> refl x : x =A x"

end