diff options
-rw-r--r-- | Proj.thy | 63 |
1 files changed, 23 insertions, 40 deletions
@@ -50,42 +50,35 @@ lemma fst_dep_type: assumes "p : \<Sum>x:A. B x" shows "fst[A,B]`p : A" -proof \<comment> \<open>The standard reasoner knows to backchain with the product elimination rule here...\<close> - \<comment> \<open>Also write about this proof: compare the effect of letting the standard reasoner do simplifications, as opposed to using the minus switch and writing everything out explicitly from first principles.\<close> - - have *: "\<Sum>x:A. B x : U" using assms .. - +proof show "fst[A,B]: (\<Sum>x:A. B x) \<rightarrow> A" - - proof (unfold fst_dep_def, standard) \<comment> \<open>...and with the product introduction rule here...\<close> + proof (unfold fst_dep_def, standard) show "\<And>p. p : \<Sum>x:A. B x \<Longrightarrow> indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) p : A" - - proof \<comment> \<open>...and with sum elimination here.\<close> - show "A : U" using * .. + proof + show "A : U" by (wellformed jdgmt: assms) qed - - qed (rule *) - + qed (wellformed jdgmt: assms) qed (rule assms) -lemma fst_dep_comp: (* Potential for automation *) +lemma fst_dep_comp: assumes "B: A \<rightarrow> U" and "a : A" and "b : B a" shows "fst[A,B]`(a,b) \<equiv> a" proof - - \<comment> "Write about this proof: unfolding, how we set up the introduction rules (explain \<open>..\<close>), do a trace of the proof, explain the meaning of keywords, etc." - - have *: "A : U" using assms(2) .. (* I keep thinking this should not have to be done explicitly, but rather automated. *) - have "fst[A,B]`(a,b) \<equiv> indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) (a,b)" proof (unfold fst_dep_def, standard) - show "\<And>p. p : \<Sum>x:A. B x \<Longrightarrow> indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) p : A" using * .. show "(a,b) : \<Sum>x:A. B x" using assms .. + show "\<And>p. p : \<Sum>x:A. B x \<Longrightarrow> indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) p : A" + proof + show "A : U" by (wellformed jdgmt: assms(2)) + qed qed also have "indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) (a,b) \<equiv> a" - by (rule Sum_comp) (rule *, assumption, (rule assms)+) + proof + show "A : U" by (wellformed jdgmt: assms(2)) + qed (assumption, (rule assms)+) finally show "fst[A,B]`(a,b) \<equiv> a" . qed @@ -93,20 +86,17 @@ qed text "In proving results about the second dependent projection function we often use the following two lemmas." -lemma snd_dep_welltyped: +lemma lemma1: assumes "p : \<Sum>x:A. B x" shows "B (fst[A,B]`p) : U" proof - - have "\<Sum>x:A. B x : U" using assms .. - then have *: "B: A \<rightarrow> U" .. - + have *: "B: A \<rightarrow> U" by (wellformed jdgmt: assms) have "fst[A,B]`p : A" using assms by (rule fst_dep_type) then show "B (fst[A,B]`p) : U" by (rule *) qed - -lemma snd_dep_const_type: +lemma lemma2: assumes "B: A \<rightarrow> U" and "x : A" and "y : B x" shows "y : B (fst[A,B]`(x,y))" @@ -121,24 +111,17 @@ lemma snd_dep_type: shows "snd[A,B]`p : B (fst[A,B]`p)" proof - have *: "\<Sum>x:A. B x : U" using assms .. - show "snd[A, B] : \<Prod>p:(\<Sum>x:A. B x). B (fst[A,B]`p)" - proof (unfold snd_dep_def, standard) show "\<And>p. p : \<Sum>x:A. B x \<Longrightarrow> indSum[A,B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) p : B (fst[A,B]`p)" - - proof (standard, elim snd_dep_welltyped) - fix x y assume 1: "x : A" and 2: "y : B x" - show "y : B (fst[A,B]`(x,y))" - proof - - have "B: A \<rightarrow> U" using * .. - then show "y : B (fst[A,B]`(x,y))" using 1 2 by (rule snd_dep_const_type) - qed + proof (standard, elim lemma1) + fix p assume *: "p : \<Sum>x:A. B x" + have **: "B: A \<rightarrow> U" by (wellformed jdgmt: *) + fix x y assume "x : A" and "y : B x" + note ** this + then show "y : B (fst[A,B]`(x,y))" by (rule lemma2) qed - - qed (rule *) - + qed (wellformed jdgmt: assms) qed (rule assms) |