aboutsummaryrefslogtreecommitdiff
path: root/Proj.thy
blob: 22feecbc86737ab016fa39c05df35aa0b04700f2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
(*  Title:  HoTT/Proj.thy
    Author: Josh Chen
    Date:   Jun 2018

Projection functions \<open>fst\<close> and \<open>snd\<close> for the dependent sum type.
*)

theory Proj
  imports
    HoTT_Methods
    Prod
    Sum
begin

consts
  fst :: "[Term, 'a] \<Rightarrow> Term"  ("(1fst[/_,/ _])")
  snd :: "[Term, 'a] \<Rightarrow> Term"  ("(1snd[/_,/ _])")


section \<open>Overloaded syntax for dependent and nondependent pairs\<close>

overloading
  fst_dep \<equiv> fst
  fst_nondep \<equiv> fst
begin
  definition fst_dep :: "[Term, Typefam] \<Rightarrow> Term" where
    "fst_dep A B \<equiv> \<^bold>\<lambda>p: (\<Sum>x:A. B x). indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) p"
  
  definition fst_nondep :: "[Term, Term] \<Rightarrow> Term" where
    "fst_nondep A B \<equiv> \<^bold>\<lambda>p: A \<times> B. indSum[A, \<lambda>_. B] (\<lambda>_. A) (\<lambda>x y. x) p"
end

overloading
  snd_dep \<equiv> snd
  snd_nondep \<equiv> snd
begin
  definition snd_dep :: "[Term, Typefam] \<Rightarrow> Term" where
    "snd_dep A B \<equiv> \<^bold>\<lambda>p: (\<Sum>x:A. B x). indSum[A,B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) p"
  
  definition snd_nondep :: "[Term, Term] \<Rightarrow> Term" where
    "snd_nondep A B \<equiv> \<^bold>\<lambda>p: A \<times> B. indSum[A, \<lambda>_. B] (\<lambda>_. B) (\<lambda>x y. y) p"
end


section \<open>Properties\<close>

text "Typing judgments and computation rules for the dependent and non-dependent projection functions."

lemma fst_dep_type:
  assumes "p : \<Sum>x:A. B x"
  shows "fst[A,B]`p : A"

proof
  show "fst[A,B]: (\<Sum>x:A. B x) \<rightarrow> A"
  proof (unfold fst_dep_def, standard)
    show "\<And>p. p : \<Sum>x:A. B x \<Longrightarrow> indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) p : A"
    proof
      show "A : U" by (wellformed jdgmt: assms)
    qed
  qed (wellformed jdgmt: assms)
qed (rule assms)


lemma fst_dep_comp:
  assumes "B: A \<rightarrow> U" and "a : A" and "b : B a"
  shows "fst[A,B]`(a,b) \<equiv> a"

proof -
  have "fst[A,B]`(a,b) \<equiv> indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) (a,b)"
  proof (unfold fst_dep_def, standard)
    show "(a,b) : \<Sum>x:A. B x" using assms ..
    show "\<And>p. p : \<Sum>x:A. B x \<Longrightarrow> indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) p : A"
    proof
      show "A : U" by (wellformed jdgmt: assms(2))
    qed
  qed
  
  also have "indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) (a,b) \<equiv> a"
  proof
    show "A : U" by (wellformed jdgmt: assms(2))
  qed (assumption, (rule assms)+)
  
  finally show "fst[A,B]`(a,b) \<equiv> a" .
qed


text "In proving results about the second dependent projection function we often use the following two lemmas."

lemma lemma1:
  assumes "p : \<Sum>x:A. B x"
  shows "B (fst[A,B]`p) : U"

proof -
  have *: "B: A \<rightarrow> U" by (wellformed jdgmt: assms)
  have "fst[A,B]`p : A" using assms by (rule fst_dep_type)
  then show "B (fst[A,B]`p) : U" by (rule *)
qed

lemma lemma2:
  assumes "B: A \<rightarrow> U" and "x : A" and "y : B x"
  shows "y : B (fst[A,B]`(x,y))"

proof -
  have "fst[A,B]`(x,y) \<equiv> x" using assms by (rule fst_dep_comp)
  then show "y : B (fst[A,B]`(x,y))" using assms by simp
qed


lemma snd_dep_type:
  assumes "p : \<Sum>x:A. B x"
  shows "snd[A,B]`p : B (fst[A,B]`p)"

proof
  show "snd[A, B] : \<Prod>p:(\<Sum>x:A. B x). B (fst[A,B]`p)"
  proof (unfold snd_dep_def, standard)
    show "\<And>p. p : \<Sum>x:A. B x \<Longrightarrow> indSum[A,B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) p : B (fst[A,B]`p)"
    proof (standard, elim lemma1)
      fix p assume *: "p : \<Sum>x:A. B x"
      have **: "B: A \<rightarrow> U" by (wellformed jdgmt: *)
      fix x y assume "x : A" and "y : B x"
      note ** this
      then show "y : B (fst[A,B]`(x,y))" by (rule lemma2)
    qed
  qed (wellformed jdgmt: assms)
qed (rule assms)


lemma snd_dep_comp:
  assumes "B: A \<rightarrow> U" and "a : A" and "b : B a"
  shows "snd[A,B]`(a,b) \<equiv> b"

proof -
  have "snd[A,B]`(a,b) \<equiv> indSum[A, B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) (a,b)"
  proof (unfold snd_dep_def, standard)
    show "(a,b) : \<Sum>x:A. B x" using assms ..

    fix p assume *: "p : \<Sum>x:A. B x"
    show "indSum[A,B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) p : B (fst[A,B]`p)"
    proof (standard, elim snd_dep_welltyped)
      show "\<And>x y. \<lbrakk>x : A; y : B x\<rbrakk> \<Longrightarrow> y : B (fst[A,B]`(x,y))" using assms
        by (elim snd_dep_const_type)
    qed (rule *)
  qed

  also have "indSum[A, B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) (a,b) \<equiv> b"
  proof (standard, elim snd_dep_welltyped)
    show "\<And>x y. \<lbrakk>x : A; y : B x\<rbrakk> \<Longrightarrow> y : B (fst[A,B]`(x,y))" using assms
      by (elim snd_dep_const_type)
  qed (rule assms)+

  finally show "snd[A,B]`(a,b) \<equiv> b" .
qed


text "For non-dependent projection functions:"

print_statement fst_dep_type
print_statement fst_dep_type[where ?p = p and ?A = A and ?B = "\<lambda>_. B"]


lemma fst_nondep_type: "p : A \<times> B \<Longrightarrow> fst[A,B]`p : A"
by (rule fst_dep_type[where ?B = "\<lambda>_. B"])
  

lemma fst_nondep_comp:
  assumes "a : A" and "b : B"
  shows "fst[A,B]`(a,b) \<equiv> a"
proof (unfold fst_nondep_def)
  have "A : U" using assms(1) ..
  then show "fst[A,B]`(a,b) \<equiv> a" unfolding fst_nondep_def 
qed

lemma snd_nondep_comp: "\<lbrakk>a : A; b : B\<rbrakk> \<Longrightarrow> snd[A,B]`(a,b) \<equiv> b"
proof -
  assume "a : A" and "b : B"
  then have "(a, b) : A \<times> B" ..
  then show "snd[A,B]`(a,b) \<equiv> b" unfolding snd_nondep_def by simp
qed