aboutsummaryrefslogtreecommitdiff
path: root/Sum.thy
diff options
context:
space:
mode:
authorJosh Chen2018-06-18 18:34:04 +0200
committerJosh Chen2018-06-18 18:34:04 +0200
commit4eca07fed1b54a59718dad04425527f9cc02af9f (patch)
treec20bab88522ff8f68d5a689cf1b35d9790737176 /Sum.thy
parent21077433667f6c2281aa522f170b93bb0c8c23ea (diff)
Dependent projection properties done.
Diffstat (limited to 'Sum.thy')
-rw-r--r--Sum.thy85
1 files changed, 58 insertions, 27 deletions
diff --git a/Sum.thy b/Sum.thy
index 0a062cf..08c0de0 100644
--- a/Sum.thy
+++ b/Sum.thy
@@ -86,7 +86,7 @@ begin
"snd_nondep A B \<equiv> \<^bold>\<lambda>p: A \<times> B. indSum[A, \<lambda>_. B] (\<lambda>_. B) (\<lambda>x y. y) p"
end
-text "Results about projections:"
+text "Typing judgments and computation rules for the dependent and non-dependent projection functions."
lemma fst_dep_type:
assumes "p : \<Sum>x:A. B x"
@@ -105,7 +105,7 @@ proof \<comment> \<open>The standard reasoner knows to backchain with the produc
proof \<comment> \<open>...and with sum elimination here.\<close>
show "A : U" using * ..
qed
-
+
qed (rule *)
qed (rule assms)
@@ -133,57 +133,89 @@ proof -
qed
+text "In proving results about the second dependent projection function we often use the following two lemmas."
+
+lemma snd_dep_welltyped:
+ assumes "p : \<Sum>x:A. B x"
+ shows "B (fst[A,B]`p) : U"
+proof -
+ have "\<Sum>x:A. B x : U" using assms ..
+ then have *: "B: A \<rightarrow> U" ..
+
+ have "fst[A,B]`p : A" using assms by (rule fst_dep_type)
+ then show "B (fst[A,B]`p) : U" by (rule *)
+qed
+
+lemma snd_dep_const_type:
+ assumes "B: A \<rightarrow> U" and "x : A" and "y : B x"
+ shows "y : B (fst[A,B]`(x,y))"
+proof -
+ have "fst[A,B]`(x,y) \<equiv> x" using assms by (rule fst_dep_comp)
+ then show "y : B (fst[A,B]`(x,y))" using assms by simp
+qed
+
+
lemma snd_dep_type:
assumes "p : \<Sum>x:A. B x"
shows "snd[A,B]`p : B (fst[A,B]`p)"
-oops
-\<comment> \<open>Do we need this for the following lemma?\<close>
+proof
+ have *: "\<Sum>x:A. B x : U" using assms ..
+ show "snd[A, B] : \<Prod>p:(\<Sum>x:A. B x). B (fst[A,B]`p)"
-lemma snd_dep_comp:
- assumes "B: A \<rightarrow> U" and "a : A" and "b : B a"
- shows "snd[A,B]`(a,b) \<equiv> b"
-proof -
- \<comment> \<open>We use the following two lemmas:\<close>
+ proof (unfold snd_dep_def, standard)
+ show "\<And>p. p : \<Sum>x:A. B x \<Longrightarrow> indSum[A,B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) p : B (fst[A,B]`p)"
- have lemma1: "\<And>p. p : \<Sum>x:A. B x \<Longrightarrow> B (fst[A,B]`p) : U"
- proof -
- fix p assume "p : \<Sum>x:A. B x"
- then have "fst[A,B]`p : A" by (rule fst_dep_type)
- then show "B (fst[A,B]`p) : U" by (rule assms(1))
- qed
+ proof (standard, elim snd_dep_welltyped)
+ fix x y assume 1: "x : A" and 2: "y : B x"
+ show "y : B (fst[A,B]`(x,y))"
- have lemma2: "\<And>x y. \<lbrakk>x : A; y : B x\<rbrakk> \<Longrightarrow> y : B (fst[A,B]`(x, y))"
- proof -
- fix x y assume "x : A" and "y : B x"
- moreover with assms(1) have "fst[A,B]`(x,y) \<equiv> x" by (rule fst_dep_comp)
- ultimately show "y : B (fst[A,B]`(x,y))" by simp
- qed
+ proof -
+ have "B: A \<rightarrow> U" using * ..
+ then show "y : B (fst[A,B]`(x,y))" using 1 2 by (rule snd_dep_const_type)
+ qed
+
+ qed
+
+ qed (rule *)
+
+qed (rule assms)
- \<comment> \<open>And now the proof.\<close>
+lemma snd_dep_comp:
+ assumes "B: A \<rightarrow> U" and "a : A" and "b : B a"
+ shows "snd[A,B]`(a,b) \<equiv> b"
+proof -
have "snd[A,B]`(a,b) \<equiv> indSum[A, B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) (a,b)"
proof (unfold snd_dep_def, standard)
show "(a,b) : \<Sum>x:A. B x" using assms ..
fix p assume *: "p : \<Sum>x:A. B x"
show "indSum[A,B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) p : B (fst[A,B]`p)"
- by (standard, elim lemma1, elim lemma2) (assumption, rule *)
+ proof (standard, elim snd_dep_welltyped)
+ show "\<And>x y. \<lbrakk>x : A; y : B x\<rbrakk> \<Longrightarrow> y : B (fst[A,B]`(x,y))" using assms
+ by (elim snd_dep_const_type)
+ qed (rule *)
qed
also have "indSum[A, B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) (a,b) \<equiv> b"
- by (standard, elim lemma1, elim lemma2) (assumption, (rule assms)+)
+ proof (standard, elim snd_dep_welltyped)
+ show "\<And>x y. \<lbrakk>x : A; y : B x\<rbrakk> \<Longrightarrow> y : B (fst[A,B]`(x,y))" using assms
+ by (elim snd_dep_const_type)
+ qed (rule assms)+
finally show "snd[A,B]`(a,b) \<equiv> b" .
qed
+text "For non-dependent projection functions:"
+
lemma fst_nondep_comp:
assumes "a : A" and "b : B"
shows "fst[A,B]`(a,b) \<equiv> a"
-proof -
+proof (unfold fst_nondep_def)
have "A : U" using assms(1) ..
- then show "fst[A,B]`(a,b) \<equiv> a" unfolding fst_nondep_def by simp
+ then show "fst[A,B]`(a,b) \<equiv> a" unfolding fst_nondep_def
qed
lemma snd_nondep_comp: "\<lbrakk>a : A; b : B\<rbrakk> \<Longrightarrow> snd[A,B]`(a,b) \<equiv> b"
@@ -193,7 +225,6 @@ proof -
then show "snd[A,B]`(a,b) \<equiv> b" unfolding snd_nondep_def by simp
qed
-lemmas proj_simps [simp] = fst_dep_comp snd_dep_comp fst_nondep_comp snd_nondep_comp
end \ No newline at end of file