aboutsummaryrefslogtreecommitdiff
path: root/Sum.thy
blob: 0a062cf483a682f4d675d2ee82c8cb1d88d5eef9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
(*  Title:  HoTT/Sum.thy
    Author: Josh Chen
    Date:   Jun 2018

Dependent sum type.
*)

theory Sum
  imports Prod
begin

axiomatization
  Sum :: "[Term, Typefam] \<Rightarrow> Term" and
  pair :: "[Term, Term] \<Rightarrow> Term"  ("(1'(_,/ _'))") and
  indSum :: "[Term, Typefam, Typefam, [Term, Term] \<Rightarrow> Term, Term] \<Rightarrow> Term"  ("(1indSum[_,/ _])")


section \<open>Syntax\<close>

syntax
  "_SUM" :: "[idt, Term, Term] \<Rightarrow> Term"        ("(3\<Sum>_:_./ _)" 20)
  "_SUM_ASCII" :: "[idt, Term, Term] \<Rightarrow> Term"  ("(3SUM _:_./ _)" 20)

translations
  "\<Sum>x:A. B" \<rightleftharpoons> "CONST Sum A (\<lambda>x. B)"
  "SUM x:A. B" \<rightharpoonup> "CONST Sum A (\<lambda>x. B)"


section \<open>Type rules\<close>

axiomatization where
  Sum_form: "\<And>A B. \<lbrakk>A : U; B: A \<rightarrow> U\<rbrakk> \<Longrightarrow> \<Sum>x:A. B x : U"
and
  Sum_form_cond1: "\<And>A B. (\<Sum>x:A. B x : U) \<Longrightarrow> A : U"
and
  Sum_form_cond2: "\<And>A B. (\<Sum>x:A. B x : U) \<Longrightarrow> B: A \<rightarrow> U"
and
  Sum_intro: "\<And>A B a b. \<lbrakk>B: A \<rightarrow> U; a : A; b : B a\<rbrakk> \<Longrightarrow> (a,b) : \<Sum>x:A. B x"
and
  Sum_elim: "\<And>A B C f p. \<lbrakk>
    C: \<Sum>x:A. B x \<rightarrow> U;
    \<And>x y. \<lbrakk>x : A; y : B x\<rbrakk> \<Longrightarrow> f x y : C (x,y);
    p : \<Sum>x:A. B x
    \<rbrakk> \<Longrightarrow> indSum[A,B] C f p : C p"
and
  Sum_comp: "\<And>A B C f a b. \<lbrakk>
    C: \<Sum>x:A. B x \<rightarrow> U;
    \<And>x y. \<lbrakk>x : A; y : B x\<rbrakk> \<Longrightarrow> f x y : C (x,y);
    a : A;
    b : B a
    \<rbrakk> \<Longrightarrow> indSum[A,B] C f (a,b) \<equiv> f a b"

lemmas Sum_rules [intro] = Sum_form Sum_intro Sum_elim Sum_comp
lemmas Sum_form_conds [elim] = Sum_form_cond1 Sum_form_cond2

\<comment> \<open>Nondependent pair\<close>
abbreviation Pair :: "[Term, Term] \<Rightarrow> Term"  (infixr "\<times>" 50)
  where "A \<times> B \<equiv> \<Sum>_:A. B"


section \<open>Projection functions\<close>

consts
  fst :: "[Term, 'a] \<Rightarrow> Term"  ("(1fst[/_,/ _])")
  snd :: "[Term, 'a] \<Rightarrow> Term"  ("(1snd[/_,/ _])")

overloading
  fst_dep \<equiv> fst
  fst_nondep \<equiv> fst
begin
  definition fst_dep :: "[Term, Typefam] \<Rightarrow> Term" where
    "fst_dep A B \<equiv> \<^bold>\<lambda>p: (\<Sum>x:A. B x). indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) p"
  
  definition fst_nondep :: "[Term, Term] \<Rightarrow> Term" where
    "fst_nondep A B \<equiv> \<^bold>\<lambda>p: A \<times> B. indSum[A, \<lambda>_. B] (\<lambda>_. A) (\<lambda>x y. x) p"
end

overloading
  snd_dep \<equiv> snd
  snd_nondep \<equiv> snd
begin
  definition snd_dep :: "[Term, Typefam] \<Rightarrow> Term" where
    "snd_dep A B \<equiv> \<^bold>\<lambda>p: (\<Sum>x:A. B x). indSum[A,B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) p"
  
  definition snd_nondep :: "[Term, Term] \<Rightarrow> Term" where
    "snd_nondep A B \<equiv> \<^bold>\<lambda>p: A \<times> B. indSum[A, \<lambda>_. B] (\<lambda>_. B) (\<lambda>x y. y) p"
end

text "Results about projections:"

lemma fst_dep_type:
  assumes "p : \<Sum>x:A. B x"
  shows "fst[A,B]`p : A"

proof \<comment> \<open>The standard reasoner knows to backchain with the product elimination rule here...\<close>
  \<comment> \<open>Also write about this proof: compare the effect of letting the standard reasoner do simplifications, as opposed to using the minus switch and writing everything out explicitly from first principles.\<close>

  have *: "\<Sum>x:A. B x : U" using assms ..
  
  show "fst[A,B]: (\<Sum>x:A. B x) \<rightarrow> A"

  proof (unfold fst_dep_def, standard) \<comment> \<open>...and with the product introduction rule here...\<close>
    show "\<And>p. p : \<Sum>x:A. B x \<Longrightarrow> indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) p : A"
    
    proof \<comment> \<open>...and with sum elimination here.\<close>
      show "A : U" using * ..
    qed
  
  qed (rule *)

qed (rule assms)


lemma fst_dep_comp:  (* Potential for automation *)
  assumes "B: A \<rightarrow> U" and "a : A" and "b : B a"
  shows "fst[A,B]`(a,b) \<equiv> a"

proof -
  \<comment> "Write about this proof: unfolding, how we set up the introduction rules (explain \<open>..\<close>), do a trace of the proof, explain the meaning of keywords, etc."

  have *: "A : U" using assms(2) ..  (* I keep thinking this should not have to be done explicitly, but rather automated. *)

  have "fst[A,B]`(a,b) \<equiv> indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) (a,b)"
  proof (unfold fst_dep_def, standard)
    show "\<And>p. p : \<Sum>x:A. B x \<Longrightarrow> indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) p : A" using * ..
    show "(a,b) : \<Sum>x:A. B x" using assms ..
  qed
  
  also have "indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) (a,b) \<equiv> a"
    by (rule Sum_comp) (rule *, assumption, (rule assms)+)
  
  finally show "fst[A,B]`(a,b) \<equiv> a" .
qed


lemma snd_dep_type:
  assumes "p : \<Sum>x:A. B x"
  shows "snd[A,B]`p : B (fst[A,B]`p)"
oops
\<comment> \<open>Do we need this for the following lemma?\<close>


lemma snd_dep_comp:
  assumes "B: A \<rightarrow> U" and "a : A" and "b : B a"
  shows "snd[A,B]`(a,b) \<equiv> b"
proof -
  \<comment> \<open>We use the following two lemmas:\<close>

  have lemma1: "\<And>p. p : \<Sum>x:A. B x \<Longrightarrow> B (fst[A,B]`p) : U"
  proof -
      fix p assume "p : \<Sum>x:A. B x"
      then have "fst[A,B]`p : A" by (rule fst_dep_type)
      then show "B (fst[A,B]`p) : U" by (rule assms(1))
  qed

  have lemma2: "\<And>x y. \<lbrakk>x : A; y : B x\<rbrakk> \<Longrightarrow> y : B (fst[A,B]`(x, y))"
  proof -
    fix x y assume "x : A" and "y : B x"
    moreover with assms(1) have "fst[A,B]`(x,y) \<equiv> x" by (rule fst_dep_comp)
    ultimately show "y : B (fst[A,B]`(x,y))" by simp
  qed

  \<comment> \<open>And now the proof.\<close>

  have "snd[A,B]`(a,b) \<equiv> indSum[A, B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) (a,b)"
  proof (unfold snd_dep_def, standard)
    show "(a,b) : \<Sum>x:A. B x" using assms ..

    fix p assume *: "p : \<Sum>x:A. B x"
    show "indSum[A,B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) p : B (fst[A,B]`p)"
      by (standard, elim lemma1, elim lemma2) (assumption, rule *)
  qed

  also have "indSum[A, B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) (a,b) \<equiv> b"
    by (standard, elim lemma1, elim lemma2) (assumption, (rule assms)+)

  finally show "snd[A,B]`(a,b) \<equiv> b" .
qed


lemma fst_nondep_comp:
  assumes "a : A" and "b : B"
  shows "fst[A,B]`(a,b) \<equiv> a"
proof -
  have "A : U" using assms(1) ..
  then show "fst[A,B]`(a,b) \<equiv> a" unfolding fst_nondep_def by simp
qed

lemma snd_nondep_comp: "\<lbrakk>a : A; b : B\<rbrakk> \<Longrightarrow> snd[A,B]`(a,b) \<equiv> b"
proof -
  assume "a : A" and "b : B"
  then have "(a, b) : A \<times> B" ..
  then show "snd[A,B]`(a,b) \<equiv> b" unfolding snd_nondep_def by simp
qed

lemmas proj_simps [simp] = fst_dep_comp snd_dep_comp fst_nondep_comp snd_nondep_comp


end