aboutsummaryrefslogtreecommitdiff
path: root/EqualProps.thy
diff options
context:
space:
mode:
authorJosh Chen2018-08-14 15:08:37 +0200
committerJosh Chen2018-08-14 15:08:37 +0200
commitf83534561085c224ab30343b945ee74d1ce547f4 (patch)
treeb5b6f78290547276a56d32f9a2a13c4b7782956b /EqualProps.thy
parent962fc96123039b53b9c6946796e909fb50ec9004 (diff)
Equality inverse and composition done. Cleaned up methods and method example theory.
Diffstat (limited to 'EqualProps.thy')
-rw-r--r--EqualProps.thy192
1 files changed, 152 insertions, 40 deletions
diff --git a/EqualProps.thy b/EqualProps.thy
index d645fb6..3d99456 100644
--- a/EqualProps.thy
+++ b/EqualProps.thy
@@ -1,6 +1,6 @@
(* Title: HoTT/EqualProps.thy
Author: Josh Chen
- Date: Jun 2018
+ Date: Aug 2018
Properties of equality.
*)
@@ -18,22 +18,28 @@ section \<open>Symmetry / Path inverse\<close>
axiomatization inv :: "Term \<Rightarrow> Term" ("_\<inverse>" [1000] 1000)
where inv_def: "inv \<equiv> \<lambda>p. ind\<^sub>= (\<lambda>x. refl(x)) p"
+text "
+ In the proof below we begin by using path induction on \<open>p\<close> with the application of \<open>rule Equal_elim\<close>, telling Isabelle the specific substitutions to use.
+ The proof is finished with a standard application of the relevant type rules.
+"
lemma inv_type:
assumes "A : U(i)" and "x : A" and "y : A" and "p: x =\<^sub>A y" shows "p\<inverse>: y =\<^sub>A x"
unfolding inv_def
-proof (rule Equal_elim[where ?x=x and ?y=y]) \<comment> \<open>Path induction\<close>
- show "\<And>x y. \<lbrakk>x: A; y: A\<rbrakk> \<Longrightarrow> y =\<^sub>A x: U(i)" using assms(1) ..
- show "\<And>x. x: A \<Longrightarrow> refl x: x =\<^sub>A x" ..
-qed (fact assms)+
+by (rule Equal_elim[where ?x=x and ?y=y]) (simple lem: assms)
+ \<comment> \<open>The type doesn't depend on \<open>p\<close> so we don't need to specify \<open>?p\<close> in the \<open>where\<close> clause above.\<close>
+text "
+ The next proof requires explicitly telling Isabelle what to substitute on the RHS of the typing judgment after the initial application of the type rules.
+ (If viewing this inside Isabelle, place the cursor after the \<open>proof\<close> statement and observe the second subgoal.)
+"
-lemma inv_comp: assumes "A : U(i)" and "a : A" shows "(refl a)\<inverse> \<equiv> refl(a)"
+lemma inv_comp:
+ assumes "A : U(i)" and "a : A" shows "(refl a)\<inverse> \<equiv> refl(a)"
unfolding inv_def
proof
show "\<And>x. x: A \<Longrightarrow> refl x: x =\<^sub>A x" ..
- show "\<And>x. x: A \<Longrightarrow> x =\<^sub>A x: U(i)" using assms(1) ..
-qed (fact assms)
+qed (simple lem: assms)
section \<open>Transitivity / Path composition\<close>
@@ -45,67 +51,173 @@ text "
axiomatization rcompose :: Term where
rcompose_def: "rcompose \<equiv> \<^bold>\<lambda>x y p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= (\<lambda>x. refl(x)) q) p"
+text "
+ More complicated proofs---the nested path inductions require more explicit step-by-step rule applications:
+"
lemma rcompose_type:
assumes "A: U(i)"
shows "rcompose: \<Prod>x:A. \<Prod>y:A. x =\<^sub>A y \<rightarrow> (\<Prod>z:A. y =\<^sub>A z \<rightarrow> x =\<^sub>A z)"
unfolding rcompose_def
proof
- show "\<And>x. x: A \<Longrightarrow>
- \<^bold>\<lambda>y p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z p. ind\<^sub>= refl p) p: \<Prod>y:A. x =\<^sub>A y \<rightarrow> (\<Prod>z:A. y =\<^sub>A z \<rightarrow> x =\<^sub>A z)"
+ fix x assume 1: "x: A"
+ show "\<^bold>\<lambda>y p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= refl q) p: \<Prod>y:A. x =\<^sub>A y \<rightarrow> (\<Prod>z:A. y =\<^sub>A z \<rightarrow> x =\<^sub>A z)"
proof
- show "\<And>x y. \<lbrakk>x: A ; y: A\<rbrakk> \<Longrightarrow>
- \<^bold>\<lambda>p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z p. ind\<^sub>= refl p) p: x =\<^sub>A y \<rightarrow> (\<Prod>z:A. y =\<^sub>A z \<rightarrow> x =\<^sub>A z)"
+ fix y assume 2: "y: A"
+ show "\<^bold>\<lambda>p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= refl q) p: x =\<^sub>A y \<rightarrow> (\<Prod>z:A. y =\<^sub>A z \<rightarrow> x =\<^sub>A z)"
proof
- { fix x y p assume asm: "x: A" "y: A" "p: x =\<^sub>A y"
- show "ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z p. ind\<^sub>= refl p) p: \<Prod>z:A. y =[A] z \<rightarrow> x =[A] z"
+ fix p assume 3: "p: x =\<^sub>A y"
+ show "ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= refl q) p: \<Prod>z:A. y =\<^sub>A z \<rightarrow> x =\<^sub>A z"
proof (rule Equal_elim[where ?x=x and ?y=y])
- show "\<And>x y. \<lbrakk>x: A; y: A\<rbrakk> \<Longrightarrow> \<Prod>z:A. y =\<^sub>A z \<rightarrow> x =\<^sub>A z: U(i)"
+ show "\<And>u. u: A \<Longrightarrow> \<^bold>\<lambda>z q. ind\<^sub>= refl q: \<Prod>z:A. u =\<^sub>A z \<rightarrow> u =\<^sub>A z"
proof
- show "\<And>x y z. \<lbrakk>x: A; y: A; z: A\<rbrakk> \<Longrightarrow> y =\<^sub>A z \<rightarrow> x =\<^sub>A z: U(i)"
- by (rule Prod_form Equal_form assms | assumption)+
- qed (rule assms)
-
- show "\<And>x. x: A \<Longrightarrow> \<^bold>\<lambda>z p. ind\<^sub>= refl p: \<Prod>z:A. x =\<^sub>A z \<rightarrow> x =\<^sub>A z"
- proof
- show "\<And>x z. \<lbrakk>x: A; z: A\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>p. ind\<^sub>= refl p: x =\<^sub>A z \<rightarrow> x =\<^sub>A z"
+ show "\<And>u z. \<lbrakk>u: A; z: A\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>q. ind\<^sub>= refl q: u =\<^sub>A z \<rightarrow> u =\<^sub>A z"
proof
- { fix x z p assume asm: "x: A" "z: A" "p: x =\<^sub>A z"
- show "ind\<^sub>= refl p: x =[A] z"
- proof (rule Equal_elim[where ?x=x and ?y=z])
- show "\<And>x y. \<lbrakk>x: A; y: A\<rbrakk> \<Longrightarrow> x =\<^sub>A y: U(i)" by standard (rule assms)
- show "\<And>x. x: A \<Longrightarrow> refl x: x =\<^sub>A x" ..
- qed (fact asm)+ }
- show "\<And>x z. \<lbrakk>x: A; z: A\<rbrakk> \<Longrightarrow> x =\<^sub>A z: U(i)" by standard (rule assms)
- qed
+ fix u z q assume asm: "u: A" "z: A" "q: u =\<^sub>A z"
+ show "ind\<^sub>= refl q: u =\<^sub>A z"
+ by (rule Equal_elim[where ?x=u and ?y=z]) (simple lem: assms asm)
+ qed (simple lem: assms)
qed (rule assms)
- qed (rule asm)+ }
- show "\<And>x y. \<lbrakk>x: A; y: A\<rbrakk> \<Longrightarrow> x =\<^sub>A y: U(i)" by standard (rule assms)
- qed
+ qed (simple lem: assms 1 2 3)
+ qed (simple lem: assms 1 2)
qed (rule assms)
-qed (fact assms)
+qed fact
corollary
assumes "A: U(i)" "x: A" "y: A" "z: A" "p: x =\<^sub>A y" "q: y =\<^sub>A z"
shows "rcompose`x`y`p`z`q: x =\<^sub>A z"
- by standard+ (rule rcompose_type assms)+
+ by (simple lem: assms rcompose_type)
+text "
+ The following proof is very long, chiefly because for every application of \<open>`\<close> we have to show the wellformedness of the type family appearing in the equality computation rule.
+"
+
+lemma rcompose_comp:
+ assumes "A: U(i)" and "a: A"
+ shows "rcompose`a`a`refl(a)`a`refl(a) \<equiv> refl(a)"
+unfolding rcompose_def
+proof (subst comp)
+ { fix x assume 1: "x: A"
+ show "\<^bold>\<lambda>y p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= refl q) p: \<Prod>y:A. x =\<^sub>A y \<rightarrow> (\<Prod>z:A. y =\<^sub>A z \<rightarrow> x =\<^sub>A z)"
+ proof
+ fix y assume 2: "y: A"
+ show "\<^bold>\<lambda>p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= refl q) p: x =\<^sub>A y \<rightarrow> (\<Prod>z:A. y =\<^sub>A z \<rightarrow> x =\<^sub>A z)"
+ proof
+ fix p assume 3: "p: x =\<^sub>A y"
+ show "ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= refl q) p: \<Prod>z:A. y =\<^sub>A z \<rightarrow> x =\<^sub>A z"
+ proof (rule Equal_elim[where ?x=x and ?y=y])
+ show "\<And>u. u: A \<Longrightarrow> \<^bold>\<lambda>z q. ind\<^sub>= refl q: \<Prod>z:A. u =\<^sub>A z \<rightarrow> u =\<^sub>A z"
+ proof
+ show "\<And>u z. \<lbrakk>u: A; z: A\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>q. ind\<^sub>= refl q: u =\<^sub>A z \<rightarrow> u =\<^sub>A z"
+ proof
+ fix u z assume asm: "u: A" "z: A"
+ show "\<And>q. q: u =\<^sub>A z \<Longrightarrow> ind\<^sub>= refl q: u =\<^sub>A z"
+ by (rule Equal_elim[where ?x=u and ?y=z]) (simple lem: assms asm)
+ qed (simple lem: assms)
+ qed (rule assms)
+ qed (simple lem: assms 1 2 3)
+ qed (simple lem: assms 1 2)
+ qed (rule assms) }
+
+ show "(\<^bold>\<lambda>y p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= refl q) p)`a`refl(a)`a`refl(a) \<equiv> refl(a)"
+ proof (subst comp)
+ { fix y assume 1: "y: A"
+ show "\<^bold>\<lambda>p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= refl q) p: a =\<^sub>A y \<rightarrow> (\<Prod>z:A. y =\<^sub>A z \<rightarrow> a =\<^sub>A z)"
+ proof
+ fix p assume 2: "p: a =\<^sub>A y"
+ show "ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= refl q) p: \<Prod>z:A. y =\<^sub>A z \<rightarrow> a =\<^sub>A z"
+ proof (rule Equal_elim[where ?x=a and ?y=y])
+ fix u assume 3: "u: A"
+ show "\<^bold>\<lambda>z q. ind\<^sub>= refl q: \<Prod>z:A. u =[A] z \<rightarrow> u =[A] z"
+ proof
+ fix z assume 4: "z: A"
+ show "\<^bold>\<lambda>q. ind\<^sub>= refl q: u =\<^sub>A z \<rightarrow> u =\<^sub>A z"
+ proof
+ show "\<And>q. q: u =\<^sub>A z \<Longrightarrow> ind\<^sub>= refl q: u =\<^sub>A z"
+ by (rule Equal_elim[where ?x=u and ?y=z]) (simple lem: assms 3 4)
+ qed (simple lem: assms 3 4)
+ qed fact
+ qed (simple lem: assms 1 2)
+ qed (simple lem: assms 1) }
+
+ show "(\<^bold>\<lambda>p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z. \<^bold>\<lambda>q. ind\<^sub>= refl q) p)`refl(a)`a`refl(a) \<equiv> refl(a)"
+ proof (subst comp)
+ { fix p assume 1: "p: a =\<^sub>A a"
+ show "ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z. \<^bold>\<lambda>q. ind\<^sub>= refl q) p: \<Prod>z:A. a =\<^sub>A a \<rightarrow> a =\<^sub>A z"
+ proof (rule Equal_elim[where ?x=a and ?y=a])
+ fix u assume 2: "u: A"
+ show "\<^bold>\<lambda>z q. ind\<^sub>= refl q: \<Prod>z:A. u =\<^sub>A u\<rightarrow> u =\<^sub>A z"
+ proof
+ fix z assume 3: "z: A"
+ show "\<^bold>\<lambda>q. ind\<^sub>= refl q: u =\<^sub>A u \<rightarrow> u =\<^sub>A z"
+ proof
+ show "\<And>q. q: u =\<^sub>A u \<Longrightarrow> ind\<^sub>= refl q: u =\<^sub>A z"
+ by (rule Equal_elim[where ?x=u and ?y=z]) (simple lem: assms 2 3)
+ qed (simple lem: assms 2)
+ qed fact
+ qed (simple lem: assms 1) }
+
+ show "(ind\<^sub>=(\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= refl q)(refl(a)))`a`refl(a) \<equiv> refl(a)"
+ proof (subst comp)
+ { fix u assume 1: "u: A"
+ show "\<^bold>\<lambda>z q. ind\<^sub>= refl q: \<Prod>z:A. u =\<^sub>A u\<rightarrow> u =\<^sub>A z"
+ proof
+ fix z assume 2: "z: A"
+ show "\<^bold>\<lambda>q. ind\<^sub>= refl q: u =\<^sub>A u \<rightarrow> u =\<^sub>A z"
+ proof
+ show "\<And>q. q: u =\<^sub>A u \<Longrightarrow> ind\<^sub>= refl q: u =\<^sub>A z"
+ by (rule Equal_elim[where ?x=u and ?y=z]) (simple lem: assms 1 2)
+ qed (simple lem: assms 1)
+ qed fact }
+
+ show "(\<^bold>\<lambda>z q. ind\<^sub>= refl q)`a`refl(a) \<equiv> refl(a)"
+ proof (subst comp)
+ { fix a assume 1: "a: A"
+ show "\<^bold>\<lambda>q. ind\<^sub>= refl q: a =\<^sub>A a \<rightarrow> a =\<^sub>A a"
+ proof
+ show "\<And>q. q: a =\<^sub>A a \<Longrightarrow> ind\<^sub>= refl q: a =\<^sub>A a"
+ by (rule Equal_elim[where ?x=a and ?y=a]) (simple lem: assms 1)
+ qed (simple lem: assms 1) }
+
+ show "(\<^bold>\<lambda>q. ind\<^sub>= refl q)`refl(a) \<equiv> refl(a)"
+ proof (subst comp)
+ show "\<And>p. p: a =\<^sub>A a \<Longrightarrow> ind\<^sub>= refl p: a =\<^sub>A a"
+ by (rule Equal_elim[where ?x=a and ?y=a]) (simple lem: assms)
+ show "ind\<^sub>= refl (refl(a)) \<equiv> refl(a)"
+ proof
+ show "\<And>x. x: A \<Longrightarrow> refl(x): x =\<^sub>A x" ..
+ qed (simple lem: assms)
+ qed (simple lem: assms)
+ qed fact
+ qed (simple lem: assms)
+ qed (simple lem: assms)
+ qed fact
+qed fact
+
+
+text "The raw object lambda term is cumbersome to use, so we define a simpler constant instead."
axiomatization compose :: "[Term, Term] \<Rightarrow> Term" (infixl "\<bullet>" 60) where
- compose_comp: "\<lbrakk>
+ compose_def: "\<lbrakk>
A: U(i);
x: A; y: A; z: A;
p: x =\<^sub>A y; q: y =\<^sub>A z
\<rbrakk> \<Longrightarrow> p \<bullet> q \<equiv> rcompose`x`y`p`z`q"
+lemma compose_type:
+ assumes "A: U(i)" "x: A" "y: A" "z: A" "p: x =\<^sub>A y" "q: y =\<^sub>A z"
+ shows "p \<bullet> q: x =\<^sub>A z"
+proof (subst compose_def)
+ show "A: U(i)" "x: A" "y: A" "z: A" "p: x =\<^sub>A y" "q: y =\<^sub>A z" by fact+
+qed (simple lem: assms rcompose_type)
+
lemma compose_comp:
- assumes "A : U(i)" and "a : A" shows "compose[A,a,a,a]`refl(a)`refl(a) \<equiv> refl(a)"
- unfolding rcompose_def
- by (simplify lems: assms)
+ assumes "A : U(i)" and "a : A" shows "refl(a) \<bullet> refl(a) \<equiv> refl(a)"
+by (subst compose_def) (simple lem: assms rcompose_comp)
-lemmas EqualProps_rules [intro] = inv_type inv_comp compose_type compose_comp
+lemmas EqualProps_rules [intro] = inv_type compose_type
lemmas EqualProps_comps [comp] = inv_comp compose_comp