aboutsummaryrefslogtreecommitdiff
path: root/EqualProps.thy
diff options
context:
space:
mode:
authorJosh Chen2018-08-13 10:37:20 +0200
committerJosh Chen2018-08-13 10:37:20 +0200
commit962fc96123039b53b9c6946796e909fb50ec9004 (patch)
tree16f7d456fef26b6eb549200515a274e8ed3fc388 /EqualProps.thy
parent7a89ec1e72f61179767c6488177c6d12e69388c5 (diff)
rcompose done
Diffstat (limited to 'EqualProps.thy')
-rw-r--r--EqualProps.thy78
1 files changed, 60 insertions, 18 deletions
diff --git a/EqualProps.thy b/EqualProps.thy
index 9d23a99..d645fb6 100644
--- a/EqualProps.thy
+++ b/EqualProps.thy
@@ -15,20 +15,20 @@ begin
section \<open>Symmetry / Path inverse\<close>
-definition inv :: "[Term, Term] \<Rightarrow> (Term \<Rightarrow> Term)" ("(1inv[_,/ _])")
- where "inv[x,y] \<equiv> \<lambda>p. ind\<^sub>= (\<lambda>x. refl(x)) x y p"
+axiomatization inv :: "Term \<Rightarrow> Term" ("_\<inverse>" [1000] 1000)
+ where inv_def: "inv \<equiv> \<lambda>p. ind\<^sub>= (\<lambda>x. refl(x)) p"
lemma inv_type:
- assumes "A : U(i)" and "x : A" and "y : A" and "p: x =\<^sub>A y" shows "inv[x,y](p): y =\<^sub>A x"
+ assumes "A : U(i)" and "x : A" and "y : A" and "p: x =\<^sub>A y" shows "p\<inverse>: y =\<^sub>A x"
unfolding inv_def
-proof
+proof (rule Equal_elim[where ?x=x and ?y=y]) \<comment> \<open>Path induction\<close>
show "\<And>x y. \<lbrakk>x: A; y: A\<rbrakk> \<Longrightarrow> y =\<^sub>A x: U(i)" using assms(1) ..
show "\<And>x. x: A \<Longrightarrow> refl x: x =\<^sub>A x" ..
qed (fact assms)+
-lemma inv_comp: assumes "A : U(i)" and "a : A" shows "inv[a,a](refl(a)) \<equiv> refl(a)"
+lemma inv_comp: assumes "A : U(i)" and "a : A" shows "(refl a)\<inverse> \<equiv> refl(a)"
unfolding inv_def
proof
show "\<And>x. x: A \<Longrightarrow> refl x: x =\<^sub>A x" ..
@@ -38,24 +38,66 @@ qed (fact assms)
section \<open>Transitivity / Path composition\<close>
-text "``Raw'' composition function, of type \<open>\<Prod>x,y:A. x =\<^sub>A y \<rightarrow> (\<Prod>z:A. y =\<^sub>A z \<rightarrow> x =\<^sub>A z)\<close>."
+text "
+ Raw composition function, of type \<open>\<Prod>x:A. \<Prod>y:A. x =\<^sub>A y \<rightarrow> (\<Prod>z:A. y =\<^sub>A z \<rightarrow> x =\<^sub>A z)\<close> polymorphic over the type \<open>A\<close>.
+"
+
+axiomatization rcompose :: Term where
+ rcompose_def: "rcompose \<equiv> \<^bold>\<lambda>x y p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= (\<lambda>x. refl(x)) q) p"
+
-definition rcompose :: "Term \<Rightarrow> Term" ("(1rcompose[_])")
- where "rcompose[A] \<equiv> \<^bold>\<lambda>x:A. \<^bold>\<lambda>y:A. \<^bold>\<lambda>p:(x =\<^sub>A y). indEqual[A]
- (\<lambda>x y _. \<Prod>z:A. y =\<^sub>A z \<rightarrow> x =\<^sub>A z)
- (\<lambda>x. \<^bold>\<lambda>z:A. \<^bold>\<lambda>p:(x =\<^sub>A z). indEqual[A](\<lambda>x z _. x =\<^sub>A z) (\<lambda>x. refl(x)) x z p)
- x y p"
+lemma rcompose_type:
+ assumes "A: U(i)"
+ shows "rcompose: \<Prod>x:A. \<Prod>y:A. x =\<^sub>A y \<rightarrow> (\<Prod>z:A. y =\<^sub>A z \<rightarrow> x =\<^sub>A z)"
+unfolding rcompose_def
+proof
+ show "\<And>x. x: A \<Longrightarrow>
+ \<^bold>\<lambda>y p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z p. ind\<^sub>= refl p) p: \<Prod>y:A. x =\<^sub>A y \<rightarrow> (\<Prod>z:A. y =\<^sub>A z \<rightarrow> x =\<^sub>A z)"
+ proof
+ show "\<And>x y. \<lbrakk>x: A ; y: A\<rbrakk> \<Longrightarrow>
+ \<^bold>\<lambda>p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z p. ind\<^sub>= refl p) p: x =\<^sub>A y \<rightarrow> (\<Prod>z:A. y =\<^sub>A z \<rightarrow> x =\<^sub>A z)"
+ proof
+ { fix x y p assume asm: "x: A" "y: A" "p: x =\<^sub>A y"
+ show "ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z p. ind\<^sub>= refl p) p: \<Prod>z:A. y =[A] z \<rightarrow> x =[A] z"
+ proof (rule Equal_elim[where ?x=x and ?y=y])
+ show "\<And>x y. \<lbrakk>x: A; y: A\<rbrakk> \<Longrightarrow> \<Prod>z:A. y =\<^sub>A z \<rightarrow> x =\<^sub>A z: U(i)"
+ proof
+ show "\<And>x y z. \<lbrakk>x: A; y: A; z: A\<rbrakk> \<Longrightarrow> y =\<^sub>A z \<rightarrow> x =\<^sub>A z: U(i)"
+ by (rule Prod_form Equal_form assms | assumption)+
+ qed (rule assms)
+
+ show "\<And>x. x: A \<Longrightarrow> \<^bold>\<lambda>z p. ind\<^sub>= refl p: \<Prod>z:A. x =\<^sub>A z \<rightarrow> x =\<^sub>A z"
+ proof
+ show "\<And>x z. \<lbrakk>x: A; z: A\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>p. ind\<^sub>= refl p: x =\<^sub>A z \<rightarrow> x =\<^sub>A z"
+ proof
+ { fix x z p assume asm: "x: A" "z: A" "p: x =\<^sub>A z"
+ show "ind\<^sub>= refl p: x =[A] z"
+ proof (rule Equal_elim[where ?x=x and ?y=z])
+ show "\<And>x y. \<lbrakk>x: A; y: A\<rbrakk> \<Longrightarrow> x =\<^sub>A y: U(i)" by standard (rule assms)
+ show "\<And>x. x: A \<Longrightarrow> refl x: x =\<^sub>A x" ..
+ qed (fact asm)+ }
+ show "\<And>x z. \<lbrakk>x: A; z: A\<rbrakk> \<Longrightarrow> x =\<^sub>A z: U(i)" by standard (rule assms)
+ qed
+ qed (rule assms)
+ qed (rule asm)+ }
+ show "\<And>x y. \<lbrakk>x: A; y: A\<rbrakk> \<Longrightarrow> x =\<^sub>A y: U(i)" by standard (rule assms)
+ qed
+ qed (rule assms)
+qed (fact assms)
+corollary
+ assumes "A: U(i)" "x: A" "y: A" "z: A" "p: x =\<^sub>A y" "q: y =\<^sub>A z"
+ shows "rcompose`x`y`p`z`q: x =\<^sub>A z"
+ by standard+ (rule rcompose_type assms)+
-definition compose :: "[Term, Term, Term] \<Rightarrow> [Term, Term] \<Rightarrow> Term" ("(1compose[ _,/ _,/ _])")
- where "compose[x,y,z] \<equiv> \<lambda>p."
+axiomatization compose :: "[Term, Term] \<Rightarrow> Term" (infixl "\<bullet>" 60) where
+ compose_comp: "\<lbrakk>
+ A: U(i);
+ x: A; y: A; z: A;
+ p: x =\<^sub>A y; q: y =\<^sub>A z
+ \<rbrakk> \<Longrightarrow> p \<bullet> q \<equiv> rcompose`x`y`p`z`q"
-lemma compose_type:
- assumes "A : U(i)" and "x : A" and "y : A" and "z : A"
- shows "compose[A,x,y,z] : x =\<^sub>A y \<rightarrow> y =\<^sub>A z \<rightarrow> x =\<^sub>A z"
- unfolding rcompose_def
- by (derive lems: assms)
lemma compose_comp:
assumes "A : U(i)" and "a : A" shows "compose[A,a,a,a]`refl(a)`refl(a) \<equiv> refl(a)"