aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJosh Chen2018-06-27 16:11:20 +0200
committerJosh Chen2018-06-27 16:11:20 +0200
commitba0205cddb0205dcc5d9f7bba5702b11a791e6c7 (patch)
tree4109d95f3d98b0d49851b706486f475eeb3b29cd
parent0d66c233b6dba82ffa93d7c060bcacc756284b25 (diff)
Move projection function definitions out of Sum.thy
-rw-r--r--Proj.thy196
-rw-r--r--Sum.thy171
2 files changed, 197 insertions, 170 deletions
diff --git a/Proj.thy b/Proj.thy
new file mode 100644
index 0000000..9387ffb
--- /dev/null
+++ b/Proj.thy
@@ -0,0 +1,196 @@
+(* Title: HoTT/Proj.thy
+ Author: Josh Chen
+ Date: Jun 2018
+
+Projection functions \<open>fst\<close> and \<open>snd\<close> for the dependent sum type.
+*)
+
+theory Proj
+ imports
+ HoTT_Methods
+ Prod
+ Sum
+begin
+
+consts
+ fst :: "[Term, 'a] \<Rightarrow> Term" ("(1fst[/_,/ _])")
+ snd :: "[Term, 'a] \<Rightarrow> Term" ("(1snd[/_,/ _])")
+
+
+section \<open>Overloaded syntax for dependent and nondependent pairs\<close>
+
+overloading
+ fst_dep \<equiv> fst
+ fst_nondep \<equiv> fst
+begin
+ definition fst_dep :: "[Term, Typefam] \<Rightarrow> Term" where
+ "fst_dep A B \<equiv> \<^bold>\<lambda>p: (\<Sum>x:A. B x). indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) p"
+
+ definition fst_nondep :: "[Term, Term] \<Rightarrow> Term" where
+ "fst_nondep A B \<equiv> \<^bold>\<lambda>p: A \<times> B. indSum[A, \<lambda>_. B] (\<lambda>_. A) (\<lambda>x y. x) p"
+end
+
+overloading
+ snd_dep \<equiv> snd
+ snd_nondep \<equiv> snd
+begin
+ definition snd_dep :: "[Term, Typefam] \<Rightarrow> Term" where
+ "snd_dep A B \<equiv> \<^bold>\<lambda>p: (\<Sum>x:A. B x). indSum[A,B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) p"
+
+ definition snd_nondep :: "[Term, Term] \<Rightarrow> Term" where
+ "snd_nondep A B \<equiv> \<^bold>\<lambda>p: A \<times> B. indSum[A, \<lambda>_. B] (\<lambda>_. B) (\<lambda>x y. y) p"
+end
+
+
+section \<open>Properties\<close>
+
+text "Typing judgments and computation rules for the dependent and non-dependent projection functions."
+
+lemma fst_dep_type:
+ assumes "p : \<Sum>x:A. B x"
+ shows "fst[A,B]`p : A"
+
+proof \<comment> \<open>The standard reasoner knows to backchain with the product elimination rule here...\<close>
+ \<comment> \<open>Also write about this proof: compare the effect of letting the standard reasoner do simplifications, as opposed to using the minus switch and writing everything out explicitly from first principles.\<close>
+
+ have *: "\<Sum>x:A. B x : U" using assms ..
+
+ show "fst[A,B]: (\<Sum>x:A. B x) \<rightarrow> A"
+
+ proof (unfold fst_dep_def, standard) \<comment> \<open>...and with the product introduction rule here...\<close>
+ show "\<And>p. p : \<Sum>x:A. B x \<Longrightarrow> indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) p : A"
+
+ proof \<comment> \<open>...and with sum elimination here.\<close>
+ show "A : U" using * ..
+ qed
+
+ qed (rule *)
+
+qed (rule assms)
+
+
+lemma fst_dep_comp: (* Potential for automation *)
+ assumes "B: A \<rightarrow> U" and "a : A" and "b : B a"
+ shows "fst[A,B]`(a,b) \<equiv> a"
+
+proof -
+ \<comment> "Write about this proof: unfolding, how we set up the introduction rules (explain \<open>..\<close>), do a trace of the proof, explain the meaning of keywords, etc."
+
+ have *: "A : U" using assms(2) .. (* I keep thinking this should not have to be done explicitly, but rather automated. *)
+
+ have "fst[A,B]`(a,b) \<equiv> indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) (a,b)"
+ proof (unfold fst_dep_def, standard)
+ show "\<And>p. p : \<Sum>x:A. B x \<Longrightarrow> indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) p : A" using * ..
+ show "(a,b) : \<Sum>x:A. B x" using assms ..
+ qed
+
+ also have "indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) (a,b) \<equiv> a"
+ by (rule Sum_comp) (rule *, assumption, (rule assms)+)
+
+ finally show "fst[A,B]`(a,b) \<equiv> a" .
+qed
+
+
+text "In proving results about the second dependent projection function we often use the following two lemmas."
+
+lemma snd_dep_welltyped:
+ assumes "p : \<Sum>x:A. B x"
+ shows "B (fst[A,B]`p) : U"
+
+proof -
+ have "\<Sum>x:A. B x : U" using assms ..
+ then have *: "B: A \<rightarrow> U" ..
+
+ have "fst[A,B]`p : A" using assms by (rule fst_dep_type)
+ then show "B (fst[A,B]`p) : U" by (rule *)
+qed
+
+
+lemma snd_dep_const_type:
+ assumes "B: A \<rightarrow> U" and "x : A" and "y : B x"
+ shows "y : B (fst[A,B]`(x,y))"
+
+proof -
+ have "fst[A,B]`(x,y) \<equiv> x" using assms by (rule fst_dep_comp)
+ then show "y : B (fst[A,B]`(x,y))" using assms by simp
+qed
+
+
+lemma snd_dep_type:
+ assumes "p : \<Sum>x:A. B x"
+ shows "snd[A,B]`p : B (fst[A,B]`p)"
+
+proof
+ have *: "\<Sum>x:A. B x : U" using assms ..
+
+ show "snd[A, B] : \<Prod>p:(\<Sum>x:A. B x). B (fst[A,B]`p)"
+
+ proof (unfold snd_dep_def, standard)
+ show "\<And>p. p : \<Sum>x:A. B x \<Longrightarrow> indSum[A,B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) p : B (fst[A,B]`p)"
+
+ proof (standard, elim snd_dep_welltyped)
+ fix x y assume 1: "x : A" and 2: "y : B x"
+ show "y : B (fst[A,B]`(x,y))"
+ proof -
+ have "B: A \<rightarrow> U" using * ..
+ then show "y : B (fst[A,B]`(x,y))" using 1 2 by (rule snd_dep_const_type)
+ qed
+ qed
+
+ qed (rule *)
+
+qed (rule assms)
+
+
+lemma snd_dep_comp:
+ assumes "B: A \<rightarrow> U" and "a : A" and "b : B a"
+ shows "snd[A,B]`(a,b) \<equiv> b"
+
+proof -
+ have "snd[A,B]`(a,b) \<equiv> indSum[A, B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) (a,b)"
+ proof (unfold snd_dep_def, standard)
+ show "(a,b) : \<Sum>x:A. B x" using assms ..
+
+ fix p assume *: "p : \<Sum>x:A. B x"
+ show "indSum[A,B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) p : B (fst[A,B]`p)"
+ proof (standard, elim snd_dep_welltyped)
+ show "\<And>x y. \<lbrakk>x : A; y : B x\<rbrakk> \<Longrightarrow> y : B (fst[A,B]`(x,y))" using assms
+ by (elim snd_dep_const_type)
+ qed (rule *)
+ qed
+
+ also have "indSum[A, B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) (a,b) \<equiv> b"
+ proof (standard, elim snd_dep_welltyped)
+ show "\<And>x y. \<lbrakk>x : A; y : B x\<rbrakk> \<Longrightarrow> y : B (fst[A,B]`(x,y))" using assms
+ by (elim snd_dep_const_type)
+ qed (rule assms)+
+
+ finally show "snd[A,B]`(a,b) \<equiv> b" .
+qed
+
+
+text "For non-dependent projection functions:"
+
+print_statement fst_dep_type
+print_statement fst_dep_type[where ?p = p and ?A = A and ?B = "\<lambda>_. B"]
+
+
+lemma fst_nondep_type: "p : A \<times> B \<Longrightarrow> fst[A,B]`p : A"
+by (rule fst_dep_type[where ?B = "\<lambda>_. B"])
+
+
+lemma fst_nondep_comp:
+ assumes "a : A" and "b : B"
+ shows "fst[A,B]`(a,b) \<equiv> a"
+proof (unfold fst_nondep_def)
+ have "A : U" using assms(1) ..
+ then show "fst[A,B]`(a,b) \<equiv> a" unfolding fst_nondep_def
+qed
+
+lemma snd_nondep_comp: "\<lbrakk>a : A; b : B\<rbrakk> \<Longrightarrow> snd[A,B]`(a,b) \<equiv> b"
+proof -
+ assume "a : A" and "b : B"
+ then have "(a, b) : A \<times> B" ..
+ then show "snd[A,B]`(a,b) \<equiv> b" unfolding snd_nondep_def by simp
+qed
+
diff --git a/Sum.thy b/Sum.thy
index 08c0de0..d5704ba 100644
--- a/Sum.thy
+++ b/Sum.thy
@@ -6,7 +6,7 @@ Dependent sum type.
*)
theory Sum
- imports Prod
+ imports HoTT_Base
begin
axiomatization
@@ -58,173 +58,4 @@ abbreviation Pair :: "[Term, Term] \<Rightarrow> Term" (infixr "\<times>" 50)
where "A \<times> B \<equiv> \<Sum>_:A. B"
-section \<open>Projection functions\<close>
-
-consts
- fst :: "[Term, 'a] \<Rightarrow> Term" ("(1fst[/_,/ _])")
- snd :: "[Term, 'a] \<Rightarrow> Term" ("(1snd[/_,/ _])")
-
-overloading
- fst_dep \<equiv> fst
- fst_nondep \<equiv> fst
-begin
- definition fst_dep :: "[Term, Typefam] \<Rightarrow> Term" where
- "fst_dep A B \<equiv> \<^bold>\<lambda>p: (\<Sum>x:A. B x). indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) p"
-
- definition fst_nondep :: "[Term, Term] \<Rightarrow> Term" where
- "fst_nondep A B \<equiv> \<^bold>\<lambda>p: A \<times> B. indSum[A, \<lambda>_. B] (\<lambda>_. A) (\<lambda>x y. x) p"
-end
-
-overloading
- snd_dep \<equiv> snd
- snd_nondep \<equiv> snd
-begin
- definition snd_dep :: "[Term, Typefam] \<Rightarrow> Term" where
- "snd_dep A B \<equiv> \<^bold>\<lambda>p: (\<Sum>x:A. B x). indSum[A,B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) p"
-
- definition snd_nondep :: "[Term, Term] \<Rightarrow> Term" where
- "snd_nondep A B \<equiv> \<^bold>\<lambda>p: A \<times> B. indSum[A, \<lambda>_. B] (\<lambda>_. B) (\<lambda>x y. y) p"
-end
-
-text "Typing judgments and computation rules for the dependent and non-dependent projection functions."
-
-lemma fst_dep_type:
- assumes "p : \<Sum>x:A. B x"
- shows "fst[A,B]`p : A"
-
-proof \<comment> \<open>The standard reasoner knows to backchain with the product elimination rule here...\<close>
- \<comment> \<open>Also write about this proof: compare the effect of letting the standard reasoner do simplifications, as opposed to using the minus switch and writing everything out explicitly from first principles.\<close>
-
- have *: "\<Sum>x:A. B x : U" using assms ..
-
- show "fst[A,B]: (\<Sum>x:A. B x) \<rightarrow> A"
-
- proof (unfold fst_dep_def, standard) \<comment> \<open>...and with the product introduction rule here...\<close>
- show "\<And>p. p : \<Sum>x:A. B x \<Longrightarrow> indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) p : A"
-
- proof \<comment> \<open>...and with sum elimination here.\<close>
- show "A : U" using * ..
- qed
-
- qed (rule *)
-
-qed (rule assms)
-
-
-lemma fst_dep_comp: (* Potential for automation *)
- assumes "B: A \<rightarrow> U" and "a : A" and "b : B a"
- shows "fst[A,B]`(a,b) \<equiv> a"
-
-proof -
- \<comment> "Write about this proof: unfolding, how we set up the introduction rules (explain \<open>..\<close>), do a trace of the proof, explain the meaning of keywords, etc."
-
- have *: "A : U" using assms(2) .. (* I keep thinking this should not have to be done explicitly, but rather automated. *)
-
- have "fst[A,B]`(a,b) \<equiv> indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) (a,b)"
- proof (unfold fst_dep_def, standard)
- show "\<And>p. p : \<Sum>x:A. B x \<Longrightarrow> indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) p : A" using * ..
- show "(a,b) : \<Sum>x:A. B x" using assms ..
- qed
-
- also have "indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) (a,b) \<equiv> a"
- by (rule Sum_comp) (rule *, assumption, (rule assms)+)
-
- finally show "fst[A,B]`(a,b) \<equiv> a" .
-qed
-
-
-text "In proving results about the second dependent projection function we often use the following two lemmas."
-
-lemma snd_dep_welltyped:
- assumes "p : \<Sum>x:A. B x"
- shows "B (fst[A,B]`p) : U"
-proof -
- have "\<Sum>x:A. B x : U" using assms ..
- then have *: "B: A \<rightarrow> U" ..
-
- have "fst[A,B]`p : A" using assms by (rule fst_dep_type)
- then show "B (fst[A,B]`p) : U" by (rule *)
-qed
-
-lemma snd_dep_const_type:
- assumes "B: A \<rightarrow> U" and "x : A" and "y : B x"
- shows "y : B (fst[A,B]`(x,y))"
-proof -
- have "fst[A,B]`(x,y) \<equiv> x" using assms by (rule fst_dep_comp)
- then show "y : B (fst[A,B]`(x,y))" using assms by simp
-qed
-
-
-lemma snd_dep_type:
- assumes "p : \<Sum>x:A. B x"
- shows "snd[A,B]`p : B (fst[A,B]`p)"
-proof
- have *: "\<Sum>x:A. B x : U" using assms ..
-
- show "snd[A, B] : \<Prod>p:(\<Sum>x:A. B x). B (fst[A,B]`p)"
-
- proof (unfold snd_dep_def, standard)
- show "\<And>p. p : \<Sum>x:A. B x \<Longrightarrow> indSum[A,B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) p : B (fst[A,B]`p)"
-
- proof (standard, elim snd_dep_welltyped)
- fix x y assume 1: "x : A" and 2: "y : B x"
- show "y : B (fst[A,B]`(x,y))"
-
- proof -
- have "B: A \<rightarrow> U" using * ..
- then show "y : B (fst[A,B]`(x,y))" using 1 2 by (rule snd_dep_const_type)
- qed
-
- qed
-
- qed (rule *)
-
-qed (rule assms)
-
-
-lemma snd_dep_comp:
- assumes "B: A \<rightarrow> U" and "a : A" and "b : B a"
- shows "snd[A,B]`(a,b) \<equiv> b"
-proof -
- have "snd[A,B]`(a,b) \<equiv> indSum[A, B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) (a,b)"
- proof (unfold snd_dep_def, standard)
- show "(a,b) : \<Sum>x:A. B x" using assms ..
-
- fix p assume *: "p : \<Sum>x:A. B x"
- show "indSum[A,B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) p : B (fst[A,B]`p)"
- proof (standard, elim snd_dep_welltyped)
- show "\<And>x y. \<lbrakk>x : A; y : B x\<rbrakk> \<Longrightarrow> y : B (fst[A,B]`(x,y))" using assms
- by (elim snd_dep_const_type)
- qed (rule *)
- qed
-
- also have "indSum[A, B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) (a,b) \<equiv> b"
- proof (standard, elim snd_dep_welltyped)
- show "\<And>x y. \<lbrakk>x : A; y : B x\<rbrakk> \<Longrightarrow> y : B (fst[A,B]`(x,y))" using assms
- by (elim snd_dep_const_type)
- qed (rule assms)+
-
- finally show "snd[A,B]`(a,b) \<equiv> b" .
-qed
-
-
-text "For non-dependent projection functions:"
-
-lemma fst_nondep_comp:
- assumes "a : A" and "b : B"
- shows "fst[A,B]`(a,b) \<equiv> a"
-proof (unfold fst_nondep_def)
- have "A : U" using assms(1) ..
- then show "fst[A,B]`(a,b) \<equiv> a" unfolding fst_nondep_def
-qed
-
-lemma snd_nondep_comp: "\<lbrakk>a : A; b : B\<rbrakk> \<Longrightarrow> snd[A,B]`(a,b) \<equiv> b"
-proof -
- assume "a : A" and "b : B"
- then have "(a, b) : A \<times> B" ..
- then show "snd[A,B]`(a,b) \<equiv> b" unfolding snd_nondep_def by simp
-qed
-
-
-
end \ No newline at end of file