aboutsummaryrefslogtreecommitdiff
path: root/Proj.thy
blob: 9387ffb49ebe75f3ef7f3f0b3a7aec9f5a223d42 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
(*  Title:  HoTT/Proj.thy
    Author: Josh Chen
    Date:   Jun 2018

Projection functions \<open>fst\<close> and \<open>snd\<close> for the dependent sum type.
*)

theory Proj
  imports
    HoTT_Methods
    Prod
    Sum
begin

consts
  fst :: "[Term, 'a] \<Rightarrow> Term"  ("(1fst[/_,/ _])")
  snd :: "[Term, 'a] \<Rightarrow> Term"  ("(1snd[/_,/ _])")


section \<open>Overloaded syntax for dependent and nondependent pairs\<close>

overloading
  fst_dep \<equiv> fst
  fst_nondep \<equiv> fst
begin
  definition fst_dep :: "[Term, Typefam] \<Rightarrow> Term" where
    "fst_dep A B \<equiv> \<^bold>\<lambda>p: (\<Sum>x:A. B x). indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) p"
  
  definition fst_nondep :: "[Term, Term] \<Rightarrow> Term" where
    "fst_nondep A B \<equiv> \<^bold>\<lambda>p: A \<times> B. indSum[A, \<lambda>_. B] (\<lambda>_. A) (\<lambda>x y. x) p"
end

overloading
  snd_dep \<equiv> snd
  snd_nondep \<equiv> snd
begin
  definition snd_dep :: "[Term, Typefam] \<Rightarrow> Term" where
    "snd_dep A B \<equiv> \<^bold>\<lambda>p: (\<Sum>x:A. B x). indSum[A,B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) p"
  
  definition snd_nondep :: "[Term, Term] \<Rightarrow> Term" where
    "snd_nondep A B \<equiv> \<^bold>\<lambda>p: A \<times> B. indSum[A, \<lambda>_. B] (\<lambda>_. B) (\<lambda>x y. y) p"
end


section \<open>Properties\<close>

text "Typing judgments and computation rules for the dependent and non-dependent projection functions."

lemma fst_dep_type:
  assumes "p : \<Sum>x:A. B x"
  shows "fst[A,B]`p : A"

proof \<comment> \<open>The standard reasoner knows to backchain with the product elimination rule here...\<close>
  \<comment> \<open>Also write about this proof: compare the effect of letting the standard reasoner do simplifications, as opposed to using the minus switch and writing everything out explicitly from first principles.\<close>

  have *: "\<Sum>x:A. B x : U" using assms ..
  
  show "fst[A,B]: (\<Sum>x:A. B x) \<rightarrow> A"

  proof (unfold fst_dep_def, standard) \<comment> \<open>...and with the product introduction rule here...\<close>
    show "\<And>p. p : \<Sum>x:A. B x \<Longrightarrow> indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) p : A"
    
    proof \<comment> \<open>...and with sum elimination here.\<close>
      show "A : U" using * ..
    qed

  qed (rule *)

qed (rule assms)


lemma fst_dep_comp:  (* Potential for automation *)
  assumes "B: A \<rightarrow> U" and "a : A" and "b : B a"
  shows "fst[A,B]`(a,b) \<equiv> a"

proof -
  \<comment> "Write about this proof: unfolding, how we set up the introduction rules (explain \<open>..\<close>), do a trace of the proof, explain the meaning of keywords, etc."

  have *: "A : U" using assms(2) .. (* I keep thinking this should not have to be done explicitly, but rather automated. *)

  have "fst[A,B]`(a,b) \<equiv> indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) (a,b)"
  proof (unfold fst_dep_def, standard)
    show "\<And>p. p : \<Sum>x:A. B x \<Longrightarrow> indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) p : A" using * ..
    show "(a,b) : \<Sum>x:A. B x" using assms ..
  qed
  
  also have "indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) (a,b) \<equiv> a"
    by (rule Sum_comp) (rule *, assumption, (rule assms)+)
  
  finally show "fst[A,B]`(a,b) \<equiv> a" .
qed


text "In proving results about the second dependent projection function we often use the following two lemmas."

lemma snd_dep_welltyped:
  assumes "p : \<Sum>x:A. B x"
  shows "B (fst[A,B]`p) : U"

proof -
  have "\<Sum>x:A. B x : U" using assms ..
  then have *: "B: A \<rightarrow> U" ..

  have "fst[A,B]`p : A" using assms by (rule fst_dep_type)
  then show "B (fst[A,B]`p) : U" by (rule *)
qed


lemma snd_dep_const_type:
  assumes "B: A \<rightarrow> U" and "x : A" and "y : B x"
  shows "y : B (fst[A,B]`(x,y))"

proof -
  have "fst[A,B]`(x,y) \<equiv> x" using assms by (rule fst_dep_comp)
  then show "y : B (fst[A,B]`(x,y))" using assms by simp
qed


lemma snd_dep_type:
  assumes "p : \<Sum>x:A. B x"
  shows "snd[A,B]`p : B (fst[A,B]`p)"

proof
  have *: "\<Sum>x:A. B x : U" using assms ..

  show "snd[A, B] : \<Prod>p:(\<Sum>x:A. B x). B (fst[A,B]`p)"

  proof (unfold snd_dep_def, standard)
    show "\<And>p. p : \<Sum>x:A. B x \<Longrightarrow> indSum[A,B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) p : B (fst[A,B]`p)"

    proof (standard, elim snd_dep_welltyped)
      fix x y assume 1: "x : A" and 2: "y : B x"
      show "y : B (fst[A,B]`(x,y))"
      proof -
        have "B: A \<rightarrow> U" using * ..
        then show "y : B (fst[A,B]`(x,y))" using 1 2 by (rule snd_dep_const_type)
      qed
    qed

  qed (rule *)

qed (rule assms)


lemma snd_dep_comp:
  assumes "B: A \<rightarrow> U" and "a : A" and "b : B a"
  shows "snd[A,B]`(a,b) \<equiv> b"

proof -
  have "snd[A,B]`(a,b) \<equiv> indSum[A, B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) (a,b)"
  proof (unfold snd_dep_def, standard)
    show "(a,b) : \<Sum>x:A. B x" using assms ..

    fix p assume *: "p : \<Sum>x:A. B x"
    show "indSum[A,B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) p : B (fst[A,B]`p)"
    proof (standard, elim snd_dep_welltyped)
      show "\<And>x y. \<lbrakk>x : A; y : B x\<rbrakk> \<Longrightarrow> y : B (fst[A,B]`(x,y))" using assms
        by (elim snd_dep_const_type)
    qed (rule *)
  qed

  also have "indSum[A, B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) (a,b) \<equiv> b"
  proof (standard, elim snd_dep_welltyped)
    show "\<And>x y. \<lbrakk>x : A; y : B x\<rbrakk> \<Longrightarrow> y : B (fst[A,B]`(x,y))" using assms
      by (elim snd_dep_const_type)
  qed (rule assms)+

  finally show "snd[A,B]`(a,b) \<equiv> b" .
qed


text "For non-dependent projection functions:"

print_statement fst_dep_type
print_statement fst_dep_type[where ?p = p and ?A = A and ?B = "\<lambda>_. B"]


lemma fst_nondep_type: "p : A \<times> B \<Longrightarrow> fst[A,B]`p : A"
by (rule fst_dep_type[where ?B = "\<lambda>_. B"])
  

lemma fst_nondep_comp:
  assumes "a : A" and "b : B"
  shows "fst[A,B]`(a,b) \<equiv> a"
proof (unfold fst_nondep_def)
  have "A : U" using assms(1) ..
  then show "fst[A,B]`(a,b) \<equiv> a" unfolding fst_nondep_def 
qed

lemma snd_nondep_comp: "\<lbrakk>a : A; b : B\<rbrakk> \<Longrightarrow> snd[A,B]`(a,b) \<equiv> b"
proof -
  assume "a : A" and "b : B"
  then have "(a, b) : A \<times> B" ..
  then show "snd[A,B]`(a,b) \<equiv> b" unfolding snd_nondep_def by simp
qed