aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJosh Chen2018-07-09 11:17:50 +0200
committerJosh Chen2018-07-09 11:17:50 +0200
commit6389f18fd17e4333aba3fcdcc9ed2810d4cb1da5 (patch)
tree33665cf1631895d723a031536dfcf8cc15ecf932
parentdecb363a30a30c1875bf4b93bc544c28edf3149e (diff)
Pre-universe implementation commit
-rw-r--r--EqualProps.thy25
-rw-r--r--HoTT.thy2
-rw-r--r--HoTT_Base.thy25
-rw-r--r--HoTT_Methods.thy10
-rw-r--r--Proj.thy41
-rw-r--r--scratch.thy71
6 files changed, 104 insertions, 70 deletions
diff --git a/EqualProps.thy b/EqualProps.thy
index cb267c6..43b4eb5 100644
--- a/EqualProps.thy
+++ b/EqualProps.thy
@@ -19,16 +19,14 @@ definition inv :: "[Term, Term, Term] \<Rightarrow> Term" ("(1inv[_,/ _,/ _])")
where "inv[A,x,y] \<equiv> \<^bold>\<lambda>p:x =\<^sub>A y. indEqual[A] (\<lambda>x y _. y =\<^sub>A x) (\<lambda>x. refl(x)) x y p"
-lemma inv_type:
- assumes "p : x =\<^sub>A y"
- shows "inv[A,x,y]`p : y =\<^sub>A x"
+lemma inv_type: assumes "x : A" and "y : A" shows "inv[A,x,y] : x =\<^sub>A y \<rightarrow> y =\<^sub>A x"
unfolding inv_def
by (derive lems: assms)
-
-lemma inv_comp:
- assumes "a : A"
- shows "inv[A,a,a]`refl(a) \<equiv> refl(a)"
+corollary assumes "p : x =\<^sub>A y" shows "inv[A,x,y]`p : y =\<^sub>A x"
+ by (derive lems: inv_type assms)
+
+lemma inv_comp: assumes "a : A" shows "inv[A,a,a]`refl(a) \<equiv> refl(a)"
unfolding inv_def by (simplify lems: assms)
@@ -43,27 +41,24 @@ definition rcompose :: "Term \<Rightarrow> Term" ("(1rcompose[_])")
x y p"
-text "``Natural'' composition function abbreviation, effectively equivalent to a function of type \<open>\<Prod>x,y,z:A. x =\<^sub>A y \<rightarrow> y =\<^sub>A z \<rightarrow> x =\<^sub>A z\<close>."
+text "``Natural'' composition function, of type \<open>\<Prod>x,y,z:A. x =\<^sub>A y \<rightarrow> y =\<^sub>A z \<rightarrow> x =\<^sub>A z\<close>."
abbreviation compose :: "[Term, Term, Term, Term] \<Rightarrow> Term" ("(1compose[_,/ _,/ _,/ _])")
where "compose[A,x,y,z] \<equiv> \<^bold>\<lambda>p:(x =\<^sub>A y). \<^bold>\<lambda>q:(y =\<^sub>A z). rcompose[A]`x`y`p`z`q"
lemma compose_type:
- assumes "p : x =\<^sub>A y" and "q : y =\<^sub>A z"
- shows "compose[A,x,y,z]`p`q : x =\<^sub>A z"
+assumes "x : A" and "y : A" and "z : A" shows "compose[A,x,y,z] : x =\<^sub>A y \<rightarrow> y =\<^sub>A z \<rightarrow> x =\<^sub>A z"
unfolding rcompose_def
by (derive lems: assms)
-
-lemma compose_comp:
- assumes "a : A"
- shows "compose[A,a,a,a]`refl(a)`refl(a) \<equiv> refl(a)"
+lemma compose_comp: assumes "a : A" shows "compose[A,a,a,a]`refl(a)`refl(a) \<equiv> refl(a)"
unfolding rcompose_def
by (simplify lems: assms)
-lemmas Equal_simps [intro] = inv_comp compose_comp
+lemmas EqualProps_rules [intro] = inv_type inv_comp compose_type compose_comp
+lemmas EqualProps_comps [comp] = inv_comp compose_comp
end \ No newline at end of file
diff --git a/HoTT.thy b/HoTT.thy
index 948dd14..fa50f61 100644
--- a/HoTT.thy
+++ b/HoTT.thy
@@ -21,4 +21,4 @@ EqualProps
Proj
begin
-end
+end \ No newline at end of file
diff --git a/HoTT_Base.thy b/HoTT_Base.thy
index 60e5167..d119c1f 100644
--- a/HoTT_Base.thy
+++ b/HoTT_Base.thy
@@ -10,7 +10,7 @@ theory HoTT_Base
begin
-section \<open>Setup\<close>
+section \<open>Named theorems\<close>
text "Named theorems to be used by proof methods later (see HoTT_Methods.thy).
@@ -21,7 +21,7 @@ named_theorems wellform
named_theorems comp
-section \<open>Metalogical definitions\<close>
+section \<open>Foundational definitions\<close>
text "A single meta-type \<open>Term\<close> suffices to implement the object-logic types and terms.
We do not implement universes, and simply use \<open>a : U\<close> as a convenient shorthand to mean ``\<open>a\<close> is a type''."
@@ -29,6 +29,27 @@ We do not implement universes, and simply use \<open>a : U\<close> as a convenie
typedecl Term
+section \<open>Universes\<close>
+
+ML \<open>
+(* Produces universe terms and judgments on-the-fly *)
+fun Ui_type_oracle (x: int) =
+ let
+ val f = Sign.declare_const @{context} ((Binding.name ("U" ^ Int.toString x), @{typ Term}), NoSyn);
+ val (trm, thy) = f @{theory};
+ in
+ Theory.setup (fn thy => #2 (f thy));
+ Thm.cterm_of (Proof_Context.init_global thy) (trm)
+ end
+\<close>
+
+(*
+Sign.add_consts: (binding * typ * mixfix) list -> theory -> theory
+Thm.cterm_of: Proof.context -> term -> cterm
+Thm.add_oracle: binding * (’a -> cterm) -> theory -> (string * (’a -> thm)) * theory
+*)
+
+
section \<open>Judgments\<close>
text "We formalize the judgments \<open>a : A\<close> and \<open>A : U\<close> separately, in contrast to the HoTT book where the latter is considered an instance of the former.
diff --git a/HoTT_Methods.thy b/HoTT_Methods.thy
index 1f11230..9a101e5 100644
--- a/HoTT_Methods.thy
+++ b/HoTT_Methods.thy
@@ -13,11 +13,6 @@ theory HoTT_Methods
begin
-text "The methods \<open>simple\<close>, \<open>wellformed\<close>, \<open>derive\<close>, and \<open>simplify\<close> should together should suffice to automatically prove most HoTT theorems.
-We also provide a method
-"
-
-
section \<open>Setup\<close>
text "Import the \<open>subst\<close> method, used by \<open>simplify\<close>."
@@ -67,9 +62,10 @@ method derive uses lems unfolds = (
subsection \<open>Simplification\<close>
-text "The methods \<open>rsimplify\<close> and \<open>simplify\<close> simplify lambda applications and attempt to solve definitional equations.
+text "The methods \<open>rsimplify\<close> and \<open>simplify\<close> attempt to solve definitional equations by simplifying lambda applications.
-\<open>rsimplify\<close> can also be used to search for lambda expressions inhabiting given types.
+\<open>simplify\<close> is allowed to use the Pure Simplifier and is hence unsuitable for simplifying lambda expressions using only the type rules.
+In this case use \<open>rsimplify\<close> instead.
Since these methods use \<open>derive\<close>, it is often (but not always) the case that theorems provable with \<open>derive\<close> are also provable with them.
(Whether this is the case depends on whether the call to \<open>subst (0) comp\<close> fails.)"
diff --git a/Proj.thy b/Proj.thy
index 805a624..31deaf9 100644
--- a/Proj.thy
+++ b/Proj.thy
@@ -47,16 +47,12 @@ section \<open>Properties\<close>
text "Typing judgments and computation rules for the dependent and non-dependent projection functions."
-lemma fst_dep_type:
- assumes "p : \<Sum>x:A. B x"
- shows "fst[A,B]`p : A"
+lemma fst_dep_type: assumes "p : \<Sum>x:A. B x" shows "fst[A,B]`p : A"
unfolding fst_dep_def
by (derive lems: assms)
-lemma fst_dep_comp:
- assumes "B: A \<rightarrow> U" and "a : A" and "b : B a"
- shows "fst[A,B]`(a,b) \<equiv> a"
+lemma fst_dep_comp: assumes "B: A \<rightarrow> U" and "a : A" and "b : B a" shows "fst[A,B]`(a,b) \<equiv> a"
unfolding fst_dep_def
by (simplify lems: assms)
@@ -86,9 +82,7 @@ qed
\<close>
-lemma snd_dep_type:
- assumes "p : \<Sum>x:A. B x"
- shows "snd[A,B]`p : B (fst[A,B]`p)"
+lemma snd_dep_type: assumes "p : \<Sum>x:A. B x" shows "snd[A,B]`p : B (fst[A,B]`p)"
unfolding fst_dep_def snd_dep_def
by (simplify lems: assms)
@@ -103,9 +97,7 @@ qed (assumption | rule assms)+
\<close>
-lemma snd_dep_comp:
- assumes "B: A \<rightarrow> U" and "a : A" and "b : B a"
- shows "snd[A,B]`(a,b) \<equiv> b"
+lemma snd_dep_comp: assumes "B: A \<rightarrow> U" and "a : A" and "b : B a" shows "snd[A,B]`(a,b) \<equiv> b"
unfolding snd_dep_def fst_dep_def
by (simplify lems: assms)
@@ -132,18 +124,14 @@ qed
\<close>
-text "For non-dependent projection functions:"
+text "Nondependent projections:"
-lemma fst_nondep_type:
- assumes "p : A \<times> B"
- shows "fst[A,B]`p : A"
+lemma fst_nondep_type: assumes "p : A \<times> B" shows "fst[A,B]`p : A"
unfolding fst_nondep_def
by (derive lems: assms)
-lemma fst_nondep_comp:
- assumes "a : A" and "b : B"
- shows "fst[A,B]`(a,b) \<equiv> a"
+lemma fst_nondep_comp: assumes "a : A" and "b : B" shows "fst[A,B]`(a,b) \<equiv> a"
unfolding fst_nondep_def
by (simplify lems: assms)
@@ -160,9 +148,7 @@ qed
\<close>
-lemma snd_nondep_type:
- assumes "p : A \<times> B"
- shows "snd[A,B]`p : B"
+lemma snd_nondep_type: assumes "p : A \<times> B" shows "snd[A,B]`p : B"
unfolding snd_nondep_def
by (derive lems: assms)
@@ -177,9 +163,7 @@ qed (rule assms)
\<close>
-lemma snd_nondep_comp:
- assumes "a : A" and "b : B"
- shows "snd[A,B]`(a,b) \<equiv> b"
+lemma snd_nondep_comp: assumes "a : A" and "b : B" shows "snd[A,B]`(a,b) \<equiv> b"
unfolding snd_nondep_def
by (simplify lems: assms)
@@ -196,4 +180,11 @@ qed
\<close>
+lemmas Proj_rules [intro] =
+ fst_dep_type snd_dep_type fst_nondep_type snd_nondep_type
+ fst_dep_comp snd_dep_comp fst_nondep_comp snd_nondep_comp
+
+lemmas Proj_comps [comp] = fst_dep_comp snd_dep_comp fst_nondep_comp snd_nondep_comp
+
+
end \ No newline at end of file
diff --git a/scratch.thy b/scratch.thy
index 1c921bd..3f66083 100644
--- a/scratch.thy
+++ b/scratch.thy
@@ -3,8 +3,11 @@ theory scratch
begin
+term "UN"
+
(* Typechecking *)
-schematic_goal "\<lbrakk>a : A; b : B\<rbrakk> \<Longrightarrow> (a,b) : ?A" by simple
+schematic_goal "\<lbrakk>a : A; b : B\<rbrakk> \<Longrightarrow> (a,b) : ?A"
+ by derive
(* Simplification *)
@@ -17,45 +20,73 @@ assume asm:
"c : A"
"d : B"
-have "f`a`b`c \<equiv> d" by (simp add: asm | rule comp | derive lems: asm)+
+have "f`a`b`c \<equiv> d" by (simplify lems: asm)
end
lemma "a : A \<Longrightarrow> indEqual[A] (\<lambda>x y _. y =\<^sub>A x) (\<lambda>x. refl(x)) a a refl(a) \<equiv> refl(a)"
- by verify_simp
+ by simplify
lemma "\<lbrakk>a : A; \<And>x. x : A \<Longrightarrow> b x : X\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x:A. b x)`a \<equiv> b a"
- by verify_simp
+ by simplify
+
+schematic_goal "\<lbrakk>a : A; \<And>x. x : A \<Longrightarrow> b x : X\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x:A. b x)`a \<equiv> ?x"
+ by rsimplify
lemma
assumes "a : A" and "\<And>x. x : A \<Longrightarrow> b x : B x"
shows "(\<^bold>\<lambda>x:A. b x)`a \<equiv> b a"
- by (verify_simp lems: assms)
+ by (simplify lems: assms)
-lemma "\<lbrakk>a : A; b : B a; B: A \<rightarrow> U\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B x. c x y)`a`b \<equiv> c a b"
-oops
+lemma "\<lbrakk>a : A; b : B a; B: A \<rightarrow> U; \<And>x y. \<lbrakk>x : A; y : B x\<rbrakk> \<Longrightarrow> c x y : D x y\<rbrakk>
+ \<Longrightarrow> (\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B x. c x y)`a`b \<equiv> c a b"
+ by (simplify)
lemma
assumes
"(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B x. c x y)`a \<equiv> \<^bold>\<lambda>y:B a. c a y"
"(\<^bold>\<lambda>y:B a. c a y)`b \<equiv> c a b"
shows "(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B x. c x y)`a`b \<equiv> c a b"
-apply (simp add: assms)
-done
-
-lemmas lems =
- Prod_comp[where ?A = "B a" and ?b = "\<lambda>b. c a b" and ?a = b]
- Prod_comp[where ?A = A and ?b = "\<lambda>x. \<^bold>\<lambda>y:B x. c x y" and ?a = a]
+by (simplify lems: assms)
lemma
- assumes
- "a : A"
- "b : B a"
- "B: A \<rightarrow> U"
- "\<And>x y. \<lbrakk>x : A; y : B x\<rbrakk> \<Longrightarrow> c x y : D x y"
- shows "(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B x. c x y)`a`b \<equiv> c a b"
-apply (verify_simp lems: assms)
+assumes
+ "a : A"
+ "b : B a"
+ "B: A \<rightarrow> U"
+ "\<And>x y. \<lbrakk>x : A; y : B x\<rbrakk> \<Longrightarrow> c x y : D x y"
+shows "(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B x. c x y)`a`b \<equiv> c a b"
+by (simplify lems: assms)
+lemma
+assumes
+ "a : A"
+ "b : B a"
+ "c : C a b"
+ "B: A \<rightarrow> U"
+ "\<And>x. x : A\<Longrightarrow> C x: B x \<rightarrow> U"
+ "\<And>x y z. \<lbrakk>x : A; y : B x; z : C x y\<rbrakk> \<Longrightarrow> d x y z : D x y z"
+shows "(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B x. \<^bold>\<lambda>z:C x y. d x y z)`a`b`c \<equiv> d a b c"
+by (simplify lems: assms)
+
+
+(* HERE IS HOW WE ATTEMPT TO DO PATH INDUCTION --- VERY GOOD CANDIDATE FOR THESIS SECTION *)
+
+schematic_goal "\<lbrakk>A : U; x : A; y : A\<rbrakk> \<Longrightarrow> ?x : x =\<^sub>A y \<rightarrow> y =\<^sub>A x"
+ apply (rule Prod_intro)
+ apply (rule Equal_form)
+ apply assumption+
+ apply (rule Equal_elim)
+ back
+ back
+ back
+ back
+ back
+ back
+ back
+ back back back back back back
+
+thm comp
end \ No newline at end of file