aboutsummaryrefslogtreecommitdiff
path: root/Proj.thy
blob: 805a6248fea0e71c4ab492b6156bbfecd2519877 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
(*  Title:  HoTT/Proj.thy
    Author: Josh Chen
    Date:   Jun 2018

Projection functions \<open>fst\<close> and \<open>snd\<close> for the dependent sum type.
*)

theory Proj
  imports
    HoTT_Methods
    Prod
    Sum
begin


consts
  fst :: "[Term, 'a] \<Rightarrow> Term"  ("(1fst[/_,/ _])")
  snd :: "[Term, 'a] \<Rightarrow> Term"  ("(1snd[/_,/ _])")


section \<open>Overloaded syntax for dependent and nondependent pairs\<close>

overloading
  fst_dep \<equiv> fst
  fst_nondep \<equiv> fst
begin
  definition fst_dep :: "[Term, Typefam] \<Rightarrow> Term" where
    "fst_dep A B \<equiv> \<^bold>\<lambda>p: (\<Sum>x:A. B x). indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) p"
  
  definition fst_nondep :: "[Term, Term] \<Rightarrow> Term" where
    "fst_nondep A B \<equiv> \<^bold>\<lambda>p: A \<times> B. indSum[A, \<lambda>_. B] (\<lambda>_. A) (\<lambda>x y. x) p"
end

overloading
  snd_dep \<equiv> snd
  snd_nondep \<equiv> snd
begin
  definition snd_dep :: "[Term, Typefam] \<Rightarrow> Term" where
    "snd_dep A B \<equiv> \<^bold>\<lambda>p: (\<Sum>x:A. B x). indSum[A,B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) p"
  
  definition snd_nondep :: "[Term, Term] \<Rightarrow> Term" where
    "snd_nondep A B \<equiv> \<^bold>\<lambda>p: A \<times> B. indSum[A, \<lambda>_. B] (\<lambda>_. B) (\<lambda>x y. y) p"
end


section \<open>Properties\<close>

text "Typing judgments and computation rules for the dependent and non-dependent projection functions."

lemma fst_dep_type:
  assumes "p : \<Sum>x:A. B x"
  shows "fst[A,B]`p : A"
  unfolding fst_dep_def
  by (derive lems: assms)


lemma fst_dep_comp:
  assumes "B: A \<rightarrow> U" and "a : A" and "b : B a"
  shows "fst[A,B]`(a,b) \<equiv> a"
  unfolding fst_dep_def
  by (simplify lems: assms)

\<comment> \<open> (* Old proof *)
proof -
  have "fst[A,B]`(a,b) \<equiv> indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) (a,b)"
    by (derive lems: assms unfolds: fst_dep_def)
  
  also have "indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) (a,b) \<equiv> a"
    by (derive lems: assms)
  
  finally show "fst[A,B]`(a,b) \<equiv> a" .
qed
\<close>

\<comment> \<open> (* Old lemma *)
text "In proving results about the second dependent projection function we often use the following lemma."

lemma lem:
  assumes "B: A \<rightarrow> U" and "x : A" and "y : B x"
  shows "y : B (fst[A,B]`(x,y))"

proof -
  have "fst[A,B]`(x,y) \<equiv> x" using assms by (rule fst_dep_comp)
  then show "y : B (fst[A,B]`(x,y))" using assms by simp
qed
\<close>


lemma snd_dep_type:
  assumes "p : \<Sum>x:A. B x"
  shows "snd[A,B]`p : B (fst[A,B]`p)"
  unfolding fst_dep_def snd_dep_def
  by (simplify lems: assms)

\<comment> \<open> (* Old proof *)
proof (derive lems: assms unfolds: snd_dep_def)
  show "fst[A, B] : (\<Sum>x:A. B x) \<rightarrow> A" by (derive lems: assms unfolds: fst_dep_def)
  
  fix x y assume asm: "x : A" "y : B x"
  have "B: A \<rightarrow> U" by (wellformed jdgmt: assms)
  then show "y : B (fst[A, B]`(x,y))" using asm by (rule lem)
qed (assumption | rule assms)+
\<close>


lemma snd_dep_comp:
  assumes "B: A \<rightarrow> U" and "a : A" and "b : B a"
  shows "snd[A,B]`(a,b) \<equiv> b"
  unfolding snd_dep_def fst_dep_def
  by (simplify lems: assms)

\<comment> \<open> (* Old proof *)
proof -
  have "snd[A,B]`(a,b) \<equiv> indSum[A, B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) (a,b)"
  proof (derive lems: assms unfolds: snd_dep_def)
    show "fst[A, B] : (\<Sum>x:A. B x) \<rightarrow> A" by (derive lems: assms unfolds: fst_dep_def)

    fix x y assume asm: "x : A" "y : B x"
    with assms(1) show "y : B (fst[A, B]`(x,y))" by (rule lem)
  qed (assumption | derive lems: assms)+

  also have "indSum[A, B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) (a,b) \<equiv> b"
  proof (simple lems: assms)
    show "fst[A, B] : (\<Sum>x:A. B x) \<rightarrow> A" by (derive lems: assms unfolds: fst_dep_def)

    fix x y assume "x : A" and "y : B x"
    with assms(1) show "y : B (fst[A,B]`(x,y))" by (rule lem)
  qed (assumption | rule assms)+

  finally show "snd[A,B]`(a,b) \<equiv> b" .
qed
\<close>


text "For non-dependent projection functions:"

lemma fst_nondep_type:
  assumes "p : A \<times> B"
  shows "fst[A,B]`p : A"
  unfolding fst_nondep_def 
  by (derive lems: assms)


lemma fst_nondep_comp:
  assumes "a : A" and "b : B"
  shows "fst[A,B]`(a,b) \<equiv> a"
  unfolding fst_nondep_def
  by (simplify lems: assms)

\<comment> \<open> (* Old proof *)
proof -
  have "fst[A,B]`(a,b) \<equiv> indSum[A, \<lambda>_. B] (\<lambda>_. A) (\<lambda>x y. x) (a,b)"
    by (derive lems: assms unfolds: fst_nondep_def)

  also have "indSum[A, \<lambda>_. B] (\<lambda>_. A) (\<lambda>x y. x) (a,b) \<equiv> a"
    by (derive lems: assms)

  finally show "fst[A,B]`(a,b) \<equiv> a" .
qed
\<close>


lemma snd_nondep_type:
  assumes "p : A \<times> B"
  shows "snd[A,B]`p : B"
  unfolding snd_nondep_def
  by (derive lems: assms)

\<comment> \<open> (* Old proof *)
proof
  show "snd[A,B] : A \<times> B \<rightarrow> B"
  proof (derive unfolds: snd_nondep_def)
    fix q assume asm: "q : A \<times> B"
    show "indSum[A, \<lambda>_. B] (\<lambda>_. B) (\<lambda>x y. y) q : B" by (derive lems: asm)
  qed (wellformed jdgmt: assms)+
qed (rule assms)
\<close>


lemma snd_nondep_comp:
  assumes "a : A" and "b : B"
  shows "snd[A,B]`(a,b) \<equiv> b"
  unfolding snd_nondep_def
  by (simplify lems: assms)

\<comment> \<open> (* Old proof *)
proof -
  have "snd[A,B]`(a,b) \<equiv> indSum[A, \<lambda>_. B] (\<lambda>_. B) (\<lambda>x y. y) (a,b)"
    by (derive lems: assms unfolds: snd_nondep_def)

  also have "indSum[A, \<lambda>_. B] (\<lambda>_. B) (\<lambda>x y. y) (a,b) \<equiv> b"
    by (derive lems: assms)

  finally show "snd[A,B]`(a,b) \<equiv> b" .
qed
\<close>


end