aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJosh Chen2018-09-20 14:03:33 +0200
committerJosh Chen2018-09-20 14:03:33 +0200
commit19eb191526ed6071ce4dbd44804122d53eea83c9 (patch)
tree78dfb2ccf8f6d5d32482632bc5cc42fed3f16ae0
parent24a0d9c9f72b54151f87332334f8ac488658351c (diff)
Rename properties of equality + more properties. Output formatting for `
-rw-r--r--Equality.thy215
-rw-r--r--Prod.thy2
2 files changed, 216 insertions, 1 deletions
diff --git a/Equality.thy b/Equality.thy
new file mode 100644
index 0000000..f639734
--- /dev/null
+++ b/Equality.thy
@@ -0,0 +1,215 @@
+(*
+Title: Equality.thy
+Author: Joshua Chen
+Date: 2018
+
+Properties of equality
+*)
+
+theory Equality
+imports HoTT_Methods Equal Prod
+
+begin
+
+
+section \<open>Symmetry of equality/Path inverse\<close>
+
+definition inv :: "t \<Rightarrow> t" ("_\<inverse>" [1000] 1000) where "p\<inverse> \<equiv> ind\<^sub>= (\<lambda>x. refl x) p"
+
+lemma inv_type: "\<lbrakk>A: U i; x: A; y: A; p: x =\<^sub>A y\<rbrakk> \<Longrightarrow> p\<inverse>: y =\<^sub>A x"
+unfolding inv_def by (elim Equal_elim) routine
+
+lemma inv_comp: "\<lbrakk>A: U i; a: A\<rbrakk> \<Longrightarrow> (refl a)\<inverse> \<equiv> refl a"
+unfolding inv_def by compute routine
+
+declare
+ inv_type [intro]
+ inv_comp [comp]
+
+
+section \<open>Transitivity of equality/Path composition\<close>
+
+text \<open>
+Composition function, of type @{term "x =\<^sub>A y \<rightarrow> (y =\<^sub>A z) \<rightarrow> (x =\<^sub>A z)"} polymorphic over @{term A}, @{term x}, @{term y}, and @{term z}.
+\<close>
+
+definition pathcomp :: t where "pathcomp \<equiv> \<^bold>\<lambda>p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>q. ind\<^sub>= (\<lambda>x. (refl x)) q) p"
+
+syntax "_pathcomp" :: "[t, t] \<Rightarrow> t" (infixl "\<bullet>" 120)
+translations "p \<bullet> q" \<rightleftharpoons> "CONST pathcomp`p`q"
+
+lemma pathcomp_type:
+ assumes "A: U i" "x: A" "y: A" "z: A"
+ shows "pathcomp: x =\<^sub>A y \<rightarrow> (y =\<^sub>A z) \<rightarrow> (x =\<^sub>A z)"
+unfolding pathcomp_def by rule (elim Equal_elim, routine add: assms)
+
+corollary pathcomp_trans:
+ assumes "A: U i" and "x: A" "y: A" "z: A" and "p: x =\<^sub>A y" "q: y =\<^sub>A z"
+ shows "p \<bullet> q: x =\<^sub>A z"
+by (routine add: assms pathcomp_type)
+
+lemma pathcomp_comp:
+ assumes "A: U i" and "a: A"
+ shows "(refl a) \<bullet> (refl a) \<equiv> refl a"
+unfolding pathcomp_def proof compute
+ show "(ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>q. ind\<^sub>= (\<lambda>x. refl x) q) (refl a))`(refl a) \<equiv> refl a"
+ proof compute
+ show "\<^bold>\<lambda>q. (ind\<^sub>= (\<lambda>x. refl x) q): a =\<^sub>A a \<rightarrow> a =\<^sub>A a"
+ by (routine add: assms)
+
+ show "(\<^bold>\<lambda>q. (ind\<^sub>= (\<lambda>x. refl x) q))`(refl a) \<equiv> refl a"
+ proof compute
+ show "\<And>q. q: a =\<^sub>A a \<Longrightarrow> ind\<^sub>= (\<lambda>x. refl x) q: a =\<^sub>A a" by (routine add: assms)
+ qed (derive lems: assms)
+ qed (routine add: assms)
+
+ show "\<And>p. p: a =\<^sub>A a \<Longrightarrow> ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>q. ind\<^sub>= (\<lambda>x. refl x) q) p: a =\<^sub>A a \<rightarrow> a =\<^sub>A a"
+ by (routine add: assms)
+qed (routine add: assms)
+
+declare
+ pathcomp_type [intro]
+ pathcomp_trans [intro]
+ pathcomp_comp [comp]
+
+
+section \<open>Higher groupoid structure of types\<close>
+
+schematic_goal pathcomp_right_id:
+ assumes "A: U(i)" "x: A" "y: A" "p: x =\<^sub>A y"
+ shows "?a: p \<bullet> (refl y) =[x =\<^sub>A y] p"
+proof (rule Equal_elim[where ?x=x and ?y=y and ?p=p]) \<comment> \<open>@{method elim} does not seem to work with schematic goals.\<close>
+ show "\<And>x. x: A \<Longrightarrow> refl(refl x): (refl x) \<bullet> (refl x) =[x =\<^sub>A x] (refl x)"
+ by (derive lems: assms)
+qed (routine add: assms)
+
+schematic_goal pathcomp_left_id:
+ assumes "A: U(i)" "x: A" "y: A" "p: x =\<^sub>A y"
+ shows "?a: (refl x) \<bullet> p =[x =\<^sub>A y] p"
+proof (rule Equal_elim[where ?x=x and ?y=y and ?p=p])
+ show "\<And>x. x: A \<Longrightarrow> refl(refl x): (refl x) \<bullet> (refl x) =[x =\<^sub>A x] (refl x)"
+ by (derive lems: assms)
+qed (routine add: assms)
+
+schematic_goal pathcomp_left_inv:
+ assumes "A: U(i)" "x: A" "y: A" "p: x =\<^sub>A y"
+ shows "?a: (p\<inverse> \<bullet> p) =[y =\<^sub>A y] refl(y)"
+proof (rule Equal_elim[where ?x=x and ?y=y and ?p=p])
+ show "\<And>x. x: A \<Longrightarrow> refl(refl x): (refl x)\<inverse> \<bullet> (refl x) =[x =\<^sub>A x] (refl x)"
+ by (derive lems: assms)
+qed (routine add: assms)
+
+schematic_goal pathcomp_right_inv:
+ assumes "A: U(i)" "x: A" "y: A" "p: x =\<^sub>A y"
+ shows "?a: (p \<bullet> p\<inverse>) =[x =\<^sub>A x] refl(x)"
+proof (rule Equal_elim[where ?x=x and ?y=y and ?p=p])
+ show "\<And>x. x: A \<Longrightarrow> refl(refl x): (refl x) \<bullet> (refl x)\<inverse> =[x =\<^sub>A x] (refl x)"
+ by (derive lems: assms)
+qed (routine add: assms)
+
+schematic_goal inv_involutive:
+ assumes "A: U(i)" "x: A" "y: A" "p: x =\<^sub>A y"
+ shows "?a: p\<inverse>\<inverse> =[x =\<^sub>A y] p"
+proof (rule Equal_elim[where ?x=x and ?y=y and ?p=p])
+ show "\<And>x. x: A \<Longrightarrow> refl(refl x): (refl x)\<inverse>\<inverse> =[x =\<^sub>A x] (refl x)"
+ by (derive lems: assms)
+qed (routine add: assms)
+
+text \<open>All of the propositions above have the same proof term, which we abbreviate here.\<close>
+abbreviation \<iota> :: "t \<Rightarrow> t" where "\<iota> p \<equiv> ind\<^sub>= (\<lambda>x. refl (refl x)) p"
+
+text \<open>The next proof has a triply-nested path induction.\<close>
+
+lemma pathcomp_assoc:
+ assumes "A: U i" "x: A" "y: A" "z: A" "w: A"
+ shows "\<^bold>\<lambda>p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>q. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>r. \<iota> r) q) p:
+ \<Prod>p: x =\<^sub>A y. \<Prod>q: y =\<^sub>A z. \<Prod>r: z =\<^sub>A w. p \<bullet> (q \<bullet> r) =[x =\<^sub>A w] (p \<bullet> q) \<bullet> r"
+proof
+ show "\<And>p. p: x =\<^sub>A y \<Longrightarrow> ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>q. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>r. \<iota> r) q) p:
+ \<Prod>q: y =\<^sub>A z. \<Prod>r: z =\<^sub>A w. p \<bullet> (q \<bullet> r) =[x =\<^sub>A w] p \<bullet> q \<bullet> r"
+ proof (elim Equal_elim)
+ fix x assume 1: "x: A"
+ show "\<^bold>\<lambda>q. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>r. \<iota> r) q:
+ \<Prod>q: x =\<^sub>A z. \<Prod>r: z =\<^sub>A w. refl x \<bullet> (q \<bullet> r) =[x =\<^sub>A w] refl x \<bullet> q \<bullet> r"
+ proof
+ show "\<And>q. q: x =\<^sub>A z \<Longrightarrow> ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>r. \<iota> r) q:
+ \<Prod>r: z =\<^sub>A w. refl x \<bullet> (q \<bullet> r) =[x =\<^sub>A w] refl x \<bullet> q \<bullet> r"
+ proof (elim Equal_elim)
+ fix x assume *: "x: A"
+ show "\<^bold>\<lambda>r. \<iota> r: \<Prod>r: x =\<^sub>A w. refl x \<bullet> (refl x \<bullet> r) =[x =\<^sub>A w] refl x \<bullet> refl x \<bullet> r"
+ proof
+ show "\<And>r. r: x =[A] w \<Longrightarrow> \<iota> r: refl x \<bullet> (refl x \<bullet> r) =[x =[A] w] refl x \<bullet> refl x \<bullet> r"
+ by (elim Equal_elim, derive lems: * assms)
+ qed (routine add: * assms)
+ qed (routine add: 1 assms)
+ qed (routine add: 1 assms)
+
+ text \<open>
+ In the following part @{method derive} fails to obtain the correct subgoals, so we have to prove the statement manually.
+ \<close>
+ fix y p assume 2: "y: A" "p: x =\<^sub>A y"
+ show "\<Prod>q: y =\<^sub>A z. \<Prod>r: z =\<^sub>A w. p \<bullet> (q \<bullet> r) =[x =\<^sub>A w] p \<bullet> q \<bullet> r: U i"
+ proof (routine add: assms)
+ fix q assume 3: "q: y =\<^sub>A z"
+ show "\<Prod>r: z =\<^sub>A w. p \<bullet> (q \<bullet> r) =[x =\<^sub>A w] p \<bullet> q \<bullet> r: U i"
+ proof (routine add: assms)
+ show "\<And>r. r: z =[A] w \<Longrightarrow> p \<bullet> (q \<bullet> r): x =[A] w" and "\<And>r. r: z =[A] w \<Longrightarrow> p \<bullet> q \<bullet> r: x =[A] w"
+ by (routine add: 1 2 3 assms)
+ qed (routine add: 1 assms)
+ qed fact+
+ qed fact+
+qed (routine add: assms)
+
+
+section \<open>Functoriality of functions on types\<close>
+
+schematic_goal transfer_lemma:
+ assumes
+ "f: A \<rightarrow> B" "A: U i" "B: U i"
+ "p: x =\<^sub>A y" "x: A" "y: A"
+ shows "?a: (f`x =\<^sub>B f`y)"
+proof (rule Equal_elim[where ?C="\<lambda>x y _. f`x =\<^sub>B f`y"])
+ show "\<And>x. x: A \<Longrightarrow> refl (f`x): f`x =\<^sub>B f`x" by (routine add: assms)
+qed (routine add: assms)
+
+definition ap :: "t \<Rightarrow> t" ("(ap\<^sub>_)") where "ap f \<equiv> \<^bold>\<lambda>p. ind\<^sub>= (\<lambda>x. refl (f`x)) p"
+
+syntax "_ap_ascii" :: "t \<Rightarrow> t" ("(ap[_])")
+translations "ap[f]" \<rightleftharpoons> "CONST ap f"
+
+corollary ap_type:
+ assumes "f: A \<rightarrow> B" "A: U i" "B: U i"
+ shows "\<lbrakk>x: A; y: A\<rbrakk> \<Longrightarrow> ap f: x =\<^sub>A y \<rightarrow> f`x =\<^sub>B f`y"
+unfolding ap_def by (derive lems: assms transfer_lemma)
+
+schematic_goal functions_are_functorial:
+ assumes
+ "f: A \<rightarrow> B" "g: B \<rightarrow> C"
+ "A: U i" "B: U i" "C: U i"
+ "x: A" "y: A" "z: A"
+ "p: x =\<^sub>A y" "q: y =\<^sub>A z"
+ shows
+ 1: "?a: ap\<^sub>f`(p \<bullet> q) =[?A] (ap\<^sub>f`p) \<bullet> (ap\<^sub>f`q)" and
+ 2: "?b: ap\<^sub>f`(p\<inverse>) =[?B] (ap\<^sub>f`p)\<inverse>" and
+ 3: "?c: ap\<^sub>g`(ap\<^sub>f`p) =[?C] ap[g \<circ> f]`p" and
+ 4: "?d: ap[id]`p =[?D] p"
+oops
+
+
+section \<open>Transport\<close>
+
+definition transport :: "t \<Rightarrow> t" where "transport p \<equiv> ind\<^sub>= (\<lambda>_. (\<^bold>\<lambda>x. x)) p"
+
+text \<open>Note that @{term transport} is a polymorphic function in our formulation.\<close>
+
+lemma transport_type: "\<lbrakk>p: x =\<^sub>A y; x: A; y: A; A: U i; P: A \<longrightarrow> U i\<rbrakk> \<Longrightarrow> transport p: P x \<rightarrow> P y"
+unfolding transport_def by (elim Equal_elim) routine
+
+corollary transport_elim: "\<lbrakk>x: P a; P: A \<longrightarrow> U i; p: a =\<^sub>A b; a: A; b: A; A: U i\<rbrakk> \<Longrightarrow> (transport p)`x: P b"
+by (routine add: transport_type)
+
+lemma transport_comp: "\<lbrakk>A: U i; x: A\<rbrakk> \<Longrightarrow> transport (refl x) \<equiv> id"
+unfolding transport_def by derive
+
+
+end
diff --git a/Prod.thy b/Prod.thy
index 0bbe4ca..a37fdd6 100644
--- a/Prod.thy
+++ b/Prod.thy
@@ -17,7 +17,7 @@ section \<open>Basic definitions\<close>
axiomatization
Prod :: "[t, tf] \<Rightarrow> t" and
lambda :: "(t \<Rightarrow> t) \<Rightarrow> t" (binder "\<^bold>\<lambda>" 30) and
- appl :: "[t, t] \<Rightarrow> t" ("(1_`/_)" [105, 106] 105) \<comment> \<open>Application binds tighter than abstraction.\<close>
+ appl :: "[t, t] \<Rightarrow> t" (infixl "`" 105) \<comment> \<open>Application binds tighter than abstraction.\<close>
syntax
"_prod" :: "[idt, t, t] \<Rightarrow> t" ("(3\<Prod>_: _./ _)" 30)