aboutsummaryrefslogtreecommitdiff
path: root/Equality.thy
blob: f639734f9b3a2255602781560655375c57a8ab01 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
(*
Title:  Equality.thy
Author: Joshua Chen
Date:   2018

Properties of equality
*)

theory Equality
imports HoTT_Methods Equal Prod

begin


section \<open>Symmetry of equality/Path inverse\<close>

definition inv :: "t \<Rightarrow> t"  ("_\<inverse>" [1000] 1000) where "p\<inverse> \<equiv> ind\<^sub>= (\<lambda>x. refl x) p"

lemma inv_type: "\<lbrakk>A: U i; x: A; y: A; p: x =\<^sub>A y\<rbrakk> \<Longrightarrow> p\<inverse>: y =\<^sub>A x"
unfolding inv_def by (elim Equal_elim) routine

lemma inv_comp: "\<lbrakk>A: U i; a: A\<rbrakk> \<Longrightarrow> (refl a)\<inverse> \<equiv> refl a"
unfolding inv_def by compute routine

declare
  inv_type [intro]
  inv_comp [comp]


section \<open>Transitivity of equality/Path composition\<close>

text \<open>
Composition function, of type @{term "x =\<^sub>A y \<rightarrow> (y =\<^sub>A z) \<rightarrow> (x =\<^sub>A z)"} polymorphic over @{term A}, @{term x}, @{term y}, and @{term z}.
\<close>

definition pathcomp :: t where "pathcomp \<equiv> \<^bold>\<lambda>p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>q. ind\<^sub>= (\<lambda>x. (refl x)) q) p"

syntax "_pathcomp" :: "[t, t] \<Rightarrow> t"  (infixl "\<bullet>" 120)
translations "p \<bullet> q" \<rightleftharpoons> "CONST pathcomp`p`q"

lemma pathcomp_type:
  assumes "A: U i" "x: A" "y: A" "z: A"
  shows "pathcomp: x =\<^sub>A y \<rightarrow> (y =\<^sub>A z) \<rightarrow> (x =\<^sub>A z)"
unfolding pathcomp_def by rule (elim Equal_elim, routine add: assms)

corollary pathcomp_trans:
  assumes "A: U i" and "x: A" "y: A" "z: A" and "p: x =\<^sub>A y" "q: y =\<^sub>A z"
  shows "p \<bullet> q: x =\<^sub>A z"
by (routine add: assms pathcomp_type)

lemma pathcomp_comp:
  assumes "A: U i" and "a: A"
  shows "(refl a) \<bullet> (refl a) \<equiv> refl a"
unfolding pathcomp_def proof compute
  show "(ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>q. ind\<^sub>= (\<lambda>x. refl x) q) (refl a))`(refl a) \<equiv> refl a"
  proof compute
    show "\<^bold>\<lambda>q. (ind\<^sub>= (\<lambda>x. refl x) q): a =\<^sub>A a \<rightarrow> a =\<^sub>A a"
    by (routine add: assms)

    show "(\<^bold>\<lambda>q. (ind\<^sub>= (\<lambda>x. refl x) q))`(refl a) \<equiv> refl a"
    proof compute
      show "\<And>q. q: a =\<^sub>A a \<Longrightarrow> ind\<^sub>= (\<lambda>x. refl x) q: a =\<^sub>A a" by (routine add: assms)
    qed (derive lems: assms)
  qed (routine add: assms)

  show "\<And>p. p: a =\<^sub>A a \<Longrightarrow> ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>q. ind\<^sub>= (\<lambda>x. refl x) q) p: a =\<^sub>A a \<rightarrow> a =\<^sub>A a"
  by (routine add: assms)
qed (routine add: assms)

declare
  pathcomp_type [intro]
  pathcomp_trans [intro]
  pathcomp_comp [comp]


section \<open>Higher groupoid structure of types\<close>

schematic_goal pathcomp_right_id:
  assumes "A: U(i)" "x: A" "y: A" "p: x =\<^sub>A y"
  shows "?a: p \<bullet> (refl y) =[x =\<^sub>A y] p"
proof (rule Equal_elim[where ?x=x and ?y=y and ?p=p])  \<comment> \<open>@{method elim} does not seem to work with schematic goals.\<close>
  show "\<And>x. x: A \<Longrightarrow> refl(refl x): (refl x) \<bullet> (refl x) =[x =\<^sub>A x] (refl x)"
  by (derive lems: assms)
qed (routine add: assms)

schematic_goal pathcomp_left_id:
  assumes "A: U(i)" "x: A" "y: A" "p: x =\<^sub>A y"
  shows "?a: (refl x) \<bullet> p =[x =\<^sub>A y] p"
proof (rule Equal_elim[where ?x=x and ?y=y and ?p=p])
  show "\<And>x. x: A \<Longrightarrow> refl(refl x): (refl x) \<bullet> (refl x) =[x =\<^sub>A x] (refl x)"
  by (derive lems: assms)
qed (routine add: assms)

schematic_goal pathcomp_left_inv:
  assumes "A: U(i)" "x: A" "y: A" "p: x =\<^sub>A y"
  shows "?a: (p\<inverse> \<bullet> p) =[y =\<^sub>A y] refl(y)"
proof (rule Equal_elim[where ?x=x and ?y=y and ?p=p])
  show "\<And>x. x: A \<Longrightarrow> refl(refl x): (refl x)\<inverse> \<bullet> (refl x) =[x =\<^sub>A x] (refl x)"
  by (derive lems: assms)
qed (routine add: assms)

schematic_goal pathcomp_right_inv:
  assumes "A: U(i)" "x: A" "y: A" "p: x =\<^sub>A y"
  shows "?a: (p \<bullet> p\<inverse>) =[x =\<^sub>A x] refl(x)"
proof (rule Equal_elim[where ?x=x and ?y=y and ?p=p])
  show "\<And>x. x: A \<Longrightarrow> refl(refl x): (refl x) \<bullet> (refl x)\<inverse> =[x =\<^sub>A x] (refl x)"
  by (derive lems: assms)
qed (routine add: assms)

schematic_goal inv_involutive:
  assumes "A: U(i)" "x: A" "y: A" "p: x =\<^sub>A y"
  shows "?a: p\<inverse>\<inverse> =[x =\<^sub>A y] p"
proof (rule Equal_elim[where ?x=x and ?y=y and ?p=p])
  show "\<And>x. x: A \<Longrightarrow> refl(refl x): (refl x)\<inverse>\<inverse> =[x =\<^sub>A x] (refl x)"
  by (derive lems: assms)
qed (routine add: assms)

text \<open>All of the propositions above have the same proof term, which we abbreviate here.\<close>
abbreviation \<iota> :: "t \<Rightarrow> t" where "\<iota> p \<equiv> ind\<^sub>= (\<lambda>x. refl (refl x)) p"

text \<open>The next proof has a triply-nested path induction.\<close>

lemma pathcomp_assoc:
  assumes "A: U i" "x: A" "y: A" "z: A" "w: A"
  shows "\<^bold>\<lambda>p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>q. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>r. \<iota> r) q) p:
           \<Prod>p: x =\<^sub>A y. \<Prod>q: y =\<^sub>A z. \<Prod>r: z =\<^sub>A w. p \<bullet> (q \<bullet> r) =[x =\<^sub>A w] (p \<bullet> q) \<bullet> r"
proof
  show "\<And>p. p: x =\<^sub>A y \<Longrightarrow> ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>q. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>r. \<iota> r) q) p:
          \<Prod>q: y =\<^sub>A z. \<Prod>r: z =\<^sub>A w. p \<bullet> (q \<bullet> r) =[x =\<^sub>A w] p \<bullet> q \<bullet> r"
  proof (elim Equal_elim)
    fix x assume 1: "x: A"
    show "\<^bold>\<lambda>q. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>r. \<iota> r) q:
            \<Prod>q: x =\<^sub>A z. \<Prod>r: z =\<^sub>A w. refl x \<bullet> (q \<bullet> r) =[x =\<^sub>A w] refl x \<bullet> q \<bullet> r"
    proof
      show "\<And>q. q: x =\<^sub>A z \<Longrightarrow> ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>r. \<iota> r) q:
              \<Prod>r: z =\<^sub>A w. refl x \<bullet> (q \<bullet> r) =[x =\<^sub>A w] refl x \<bullet> q \<bullet> r"
      proof (elim Equal_elim)
        fix x assume *: "x: A"
        show "\<^bold>\<lambda>r. \<iota> r: \<Prod>r: x =\<^sub>A w. refl x \<bullet> (refl x \<bullet> r) =[x =\<^sub>A w] refl x \<bullet> refl x \<bullet> r"
        proof
          show "\<And>r. r: x =[A] w \<Longrightarrow> \<iota> r: refl x \<bullet> (refl x \<bullet> r) =[x =[A] w] refl x \<bullet> refl x \<bullet> r"
          by (elim Equal_elim, derive lems: * assms)
        qed (routine add: * assms)
      qed (routine add: 1 assms)
    qed (routine add: 1 assms)
    
    text \<open>
    In the following part @{method derive} fails to obtain the correct subgoals, so we have to prove the statement manually.
    \<close>
    fix y p assume 2: "y: A" "p: x =\<^sub>A y"
    show "\<Prod>q: y =\<^sub>A z. \<Prod>r: z =\<^sub>A w. p \<bullet> (q \<bullet> r) =[x =\<^sub>A w] p \<bullet> q \<bullet> r: U i"
    proof (routine add: assms)
      fix q assume 3: "q: y =\<^sub>A z"
      show "\<Prod>r: z =\<^sub>A w. p \<bullet> (q \<bullet> r) =[x =\<^sub>A w] p \<bullet> q \<bullet> r: U i"
      proof (routine add: assms)
        show "\<And>r. r: z =[A] w \<Longrightarrow> p \<bullet> (q \<bullet> r): x =[A] w" and "\<And>r. r: z =[A] w \<Longrightarrow> p \<bullet> q \<bullet> r: x =[A] w"
        by (routine add: 1 2 3 assms)
      qed (routine add: 1 assms)
    qed fact+
  qed fact+
qed (routine add: assms)


section \<open>Functoriality of functions on types\<close>

schematic_goal transfer_lemma:
  assumes
    "f: A \<rightarrow> B" "A: U i" "B: U i"
    "p: x =\<^sub>A y" "x: A" "y: A"
  shows "?a: (f`x =\<^sub>B f`y)"
proof (rule Equal_elim[where ?C="\<lambda>x y _. f`x =\<^sub>B f`y"])
  show "\<And>x. x: A \<Longrightarrow> refl (f`x): f`x =\<^sub>B f`x" by (routine add: assms)
qed (routine add: assms)

definition ap :: "t \<Rightarrow> t"  ("(ap\<^sub>_)") where "ap f \<equiv> \<^bold>\<lambda>p. ind\<^sub>= (\<lambda>x. refl (f`x)) p"

syntax "_ap_ascii" :: "t \<Rightarrow> t"  ("(ap[_])")
translations "ap[f]" \<rightleftharpoons> "CONST ap f"

corollary ap_type:
  assumes "f: A \<rightarrow> B" "A: U i" "B: U i"
  shows "\<lbrakk>x: A; y: A\<rbrakk> \<Longrightarrow> ap f: x =\<^sub>A y \<rightarrow> f`x =\<^sub>B f`y"
unfolding ap_def by (derive lems: assms transfer_lemma)

schematic_goal functions_are_functorial:
  assumes
    "f: A \<rightarrow> B" "g: B \<rightarrow> C"
    "A: U i" "B: U i" "C: U i"
    "x: A" "y: A" "z: A"
    "p: x =\<^sub>A y" "q: y =\<^sub>A z"
  shows
    1: "?a: ap\<^sub>f`(p \<bullet> q) =[?A] (ap\<^sub>f`p) \<bullet> (ap\<^sub>f`q)" and
    2: "?b: ap\<^sub>f`(p\<inverse>) =[?B] (ap\<^sub>f`p)\<inverse>" and
    3: "?c: ap\<^sub>g`(ap\<^sub>f`p) =[?C] ap[g \<circ> f]`p" and
    4: "?d: ap[id]`p =[?D] p"
oops  


section \<open>Transport\<close>

definition transport :: "t \<Rightarrow> t" where "transport p \<equiv> ind\<^sub>= (\<lambda>_. (\<^bold>\<lambda>x. x)) p"

text \<open>Note that @{term transport} is a polymorphic function in our formulation.\<close>

lemma transport_type: "\<lbrakk>p: x =\<^sub>A y; x: A; y: A; A: U i; P: A \<longrightarrow> U i\<rbrakk> \<Longrightarrow> transport p: P x \<rightarrow> P y"
unfolding transport_def by (elim Equal_elim) routine

corollary transport_elim: "\<lbrakk>x: P a; P: A \<longrightarrow> U i; p: a =\<^sub>A b; a: A; b: A; A: U i\<rbrakk> \<Longrightarrow> (transport p)`x: P b"
by (routine add: transport_type)

lemma transport_comp: "\<lbrakk>A: U i; x: A\<rbrakk> \<Longrightarrow> transport (refl x) \<equiv> id"
unfolding transport_def by derive


end