aboutsummaryrefslogtreecommitdiff
path: root/stdlib/source/lux/math.lux
blob: eea41c0401e12382b45b523e35795db4b7512de4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
(.module: {#.doc "Common mathematical constants and functions."}
  lux
  (lux (control monad
                ["p" parser "p/" Functor<Parser>])
       (data [product]
             [number]
             (coll [list "L/" Fold<List>]))
       [macro]
       (macro ["s" syntax #+ syntax: Syntax]
              [code])))

## [Values]
(do-template [<name> <value> <doc>]
  [(def: #export <name>
     {#.doc <doc>}
     Frac
     <value>)]

  [e   2.7182818284590452354  "The base of the natural logarithm."]
  [pi  3.14159265358979323846 "The ratio of a circle's circumference to its diameter."]
  [tau 6.28318530717958647692 "The ratio of a circle's circumference to its radius."]
  )

(do-template [<name> <method>]
  [(def: #export (<name> input)
     (-> Frac Frac)
     (<method> input))]

  [cos   "lux math cos"]
  [sin   "lux math sin"]
  [tan   "lux math tan"]

  [acos  "lux math acos"]
  [asin  "lux math asin"]
  [atan  "lux math atan"]
  
  [exp   "lux math exp"]
  [log   "lux math log"]
  
  [ceil  "lux math ceil"]
  [floor "lux math floor"]
  )

(def: #export (round input)
  (-> Frac Frac)
  (let [floored (floor input)
        diff (f/- floored input)]
    (cond (f/> 0.5 diff)
          (f/+ 1.0 floored)
          
          (f/< -0.5 diff)
          (f/+ -1.0 floored)
          
          ## else
          floored)))

(def: #export (pow param subject)
  (-> Frac Frac Frac)
  ("lux math pow" subject param))

(def: #export (atan2 param subject)
  (-> Frac Frac Frac)
  (cond (f/> 0.0 param)
        (atan (f// param subject))

        (f/< 0.0 param)
        (if (f/>= 0.0 subject)
          (|> subject (f// param) atan (f/+ pi))
          (|> subject (f// param) atan (f/- pi)))

        ## (f/= 0.0 param)
        (cond (f/> 0.0 subject)
              (|> pi (f// 2.0))
              
              (f/< 0.0 subject)
              (|> pi (f// -2.0))
              
              ## (f/= 0.0 subject)
              number.not-a-number)))

(def: #export (log' base input)
  (-> Frac Frac Frac)
  (f// (log base)
       (log input)))

(def: #export (factorial n)
  (-> Nat Nat)
  (loop [acc +1
         n n]
    (if (n/<= +1 n)
      acc
      (recur (n/* n acc) (n/dec n)))))

(def: #export (hypotenuse catA catB)
  (-> Frac Frac Frac)
  (pow 0.5 (f/+ (pow 2.0 catA)
                (pow 2.0 catB))))

(do-template [<type> <mod> <gcd> <lcm> <zero> <*> </> <->]
  [(def: #export (<gcd> a b)
     {#.doc "Greatest Common Divisor."}
     (-> <type> <type> <type>)
     (case b
       <zero> a
       _ (<gcd> b (<mod> b a))))

   (def: #export (<lcm> a b)
     {#.doc "Least Common Multiple."}
     (-> <type> <type> <type>)
     (case [a b]
       (^or [_ <zero>] [<zero> _])
       <zero>

       _
       (|> a (</> (<gcd> a b)) (<*> b))
       ))]

  [Nat n/mod n/gcd n/lcm +0 n/* n// n/-]
  [Int i/mod i/gcd i/lcm  0 i/* i// i/-]
  )

## Hyperbolic functions
## https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions
(do-template [<name> <comp> <inverse>]
  [(def: #export (<name> x)
     (-> Frac Frac)
     (|> (exp x) (<comp> (exp (f/* -1.0 x))) (f// 2.0)))

   (def: #export (<inverse> x)
     (-> Frac Frac)
     (|> 2.0 (f// (|> (exp x) (<comp> (exp (f/* -1.0 x)))))))]

  [sinh f/- csch]
  [cosh f/+ sech]
  )

(do-template [<name> <top> <bottom>]
  [(def: #export (<name> x)
     (-> Frac Frac)
     (let [e+ (exp x)
           e- (exp (f/* -1.0 x))
           sinh' (|> e+ (f/- e-))
           cosh' (|> e+ (f/+ e-))]
       (|> <top> (f// <bottom>))))]

  [tanh sinh' cosh']
  [coth cosh' sinh']
  )

## https://en.wikipedia.org/wiki/Inverse_hyperbolic_functions#Definitions_in_terms_of_logarithms
(do-template [<name> <comp>]
  [(def: #export (<name> x)
     (-> Frac Frac)
     (|> x (pow 2.0) (<comp> 1.0) (pow 0.5) (f/+ x) log))]

  [asinh f/+]
  [acosh f/-]
  )

(do-template [<name> <base> <diff>]
  [(def: #export (<name> x)
     (-> Frac Frac)
     (let [x+ (|> <base> (f/+ <diff>))
           x- (|> <base> (f/- <diff>))]
       (|> x+ (f// x-) log (f// 2.0))))]

  [atanh 1.0 x]
  [acoth x 1.0]
  )

(do-template [<name> <op>]
  [(def: #export (<name> x)
     (-> Frac Frac)
     (let [x^2 (|> x (pow 2.0))]
       (|> 1.0 (<op> x^2) (pow 0.5) (f/+ 1.0) (f// x) log)))]

  [asech f/-]
  [acsch f/+]
  )

## [Syntax]
(type: #rec Infix
  (#Const Code)
  (#Call (List Code))
  (#Unary Code Infix)
  (#Binary Infix Code Infix))

(def: infix^
  (Syntax Infix)
  (<| p.rec (function (_ infix^))
      ($_ p.alt
          ($_ p.either
              (p/map code.bool s.bool)
              (p/map code.nat s.nat)
              (p/map code.int s.int)
              (p/map code.deg s.deg)
              (p/map code.frac s.frac)
              (p/map code.text s.text)
              (p/map code.symbol s.symbol)
              (p/map code.tag s.tag))
          (s.form (p.many s.any))
          (s.tuple (p.seq s.any infix^))
          (s.tuple ($_ p.either
                       (do p.Monad<Parser>
                         [_ (s.this (' #and))
                          init-subject infix^
                          init-op s.any
                          init-param infix^
                          steps (p.some (p.seq s.any infix^))]
                         (wrap (product.right (L/fold (function (_ [op param] [subject [_subject _op _param]])
                                                        [param [(#Binary _subject _op _param)
                                                                (` and)
                                                                (#Binary subject op param)]])
                                                      [init-param [init-subject init-op init-param]]
                                                      steps))))
                       (do p.Monad<Parser>
                         [init-subject infix^
                          init-op s.any
                          init-param infix^
                          steps (p.some (p.seq s.any infix^))]
                         (wrap (L/fold (function (_ [op param] [_subject _op _param])
                                         [(#Binary _subject _op _param) op param])
                                       [init-subject init-op init-param]
                                       steps)))
                       ))
          )))

(def: (infix-to-prefix infix)
  (-> Infix Code)
  (case infix
    (#Const value)
    value
    
    (#Call parts)
    (code.form parts)

    (#Unary op subject)
    (` ((~ op) (~ (infix-to-prefix subject))))
    
    (#Binary left op right)
    (` ((~ op) (~ (infix-to-prefix right)) (~ (infix-to-prefix left))))
    ))

(syntax: #export (infix [expr infix^])
  {#.doc (doc "Infix math syntax."
              (infix [x i/* 10])
              (infix [[x i/+ y] i/* [x i/- y]])
              (infix [sin [x i/+ y]])
              (infix [[x n/< y] and [y n/< z]])
              (infix [#and x n/< y n/< z])
              (infix [(n/* +3 +9) gcd +450])

              "The rules for infix syntax are simple."
              "If you want your binary function to work well with it."
              "Then take the argument to the right (y) as your first argument,"
              "and take the argument to the left (x) as your second argument.")}
  (wrap (list (infix-to-prefix expr))))