1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
|
## This is the LuxC's parser.
## It takes the source code of a Lux file in raw text form and
## extracts the syntactic structure of the code from it.
## It only produces Lux AST nodes, and thus removes any white-space
## and comments while processing its inputs.
## Another important aspect of the parser is that it keeps track of
## its position within the input data.
## That is, the parser takes into account the line and column
## information in the input text (it doesn't really touch the
## file-name aspect of the cursor, leaving it intact in whatever
## base-line cursor it is given).
## This particular piece of functionality is not located in one
## function, but it is instead scattered throughout several parsers,
## since the logic for how to update the cursor varies, depending on
## what is being parsed, and the rules involved.
## You will notice that several parsers have a "where" parameter, that
## tells them the cursor position prior to the parser being run.
## They are supposed to produce some parsed output, alongside an
## updated cursor pointing to the end position, after the parser was run.
## Lux AST nodes/tokens are annotated with cursor meta-data
## (file-name, line, column) to keep track of their provenance and
## location, which is helpful for documentation and debugging.
(;module:
lux
(lux (control monad)
(data [bool]
[char]
[text]
["E" error #*]
[number]
(text ["l" lexer #+ Lexer Monad<Lexer> "l/" Monad<Lexer>]
format)
[product]
(coll [list "L/" Functor<List> Fold<List>]
["V" vector]))))
(def: white-space Text "\t\v \r\f")
(def: new-line "\n")
## This is the parser for white-space.
## Whenever a new-line is encountered, the column gets reset to 0, and
## the line gets incremented.
## It operates recursively in order to produce the longest continuous
## chunk of white-space.
(def: (space^ where)
(-> Cursor (Lexer [Cursor Text]))
(do Monad<Lexer>
[head (l;some' (l;one-of white-space))]
## New-lines must be handled as a separate case to ensure line
## information is handled properly.
(l;either (l;after (l;one-of new-line)
(do @
[[end tail] (space^ (|> where
(update@ #;line n.inc)
(set@ #;column +0)))]
(wrap [end
(format head tail)])))
(wrap [(update@ #;column (n.+ (text;size head)) where)
head]))))
## Single-line comments can start anywhere, but only go up to the
## next new-line.
(def: (single-line-comment^ where)
(-> Cursor (Lexer [Cursor Text]))
(do Monad<Lexer>
[_ (l;text "##")
comment (l;some' (l;none-of new-line))
_ (l;text new-line)]
(wrap [(|> where
(update@ #;line n.inc)
(set@ #;column +0))
comment])))
## This is just a helper parser to find text which doesn't run into
## any special character sequences for multi-line comments.
(def: comment-bound^
(Lexer Text)
($_ l;either
(l;text new-line)
(l;text ")#")
(l;text "#(")))
## Multi-line comments are bounded by #( these delimiters, #(and, they may
## also be nested)# )#.
## Multi-line comment syntax must be balanced.
## That is, any nested comment must have matched delimiters.
## Unbalanced comments ought to be rejected as invalid code.
(def: (multi-line-comment^ where)
(-> Cursor (Lexer [Cursor Text]))
(do Monad<Lexer>
[_ (l;text "#(")]
(loop [comment ""
where (update@ #;column (n.+ +2) where)]
($_ l;either
## These are normal chunks of commented text.
(do @
[chunk (l;many' (l;not comment-bound^))]
(recur (format comment chunk)
(|> where
(update@ #;column (n.+ (text;size chunk))))))
## This is a special rule to handle new-lines within
## comments properly.
(do @
[_ (l;text new-line)]
(recur (format comment new-line)
(|> where
(update@ #;line n.inc)
(set@ #;column +0))))
## This is the rule for handling nested sub-comments.
## Ultimately, the whole comment is just treated as text
## (the comment must respect the syntax structure, but the
## output produced is just a block of text).
## That is why the sub-comment is covered in delimiters
## and then appended to the rest of the comment text.
(do @
[[sub-where sub-comment] (multi-line-comment^ where)]
(recur (format comment "#(" sub-comment ")#")
sub-where))
## Finally, this is the rule for closing the comment.
(do @
[_ (l;text ")#")]
(wrap [(update@ #;column (n.+ +2) where)
comment]))
))))
## This is the only parser that should be used directly by other
## parsers, since all comments must be treated as either being
## single-line or multi-line.
## That is, there is no syntactic rule prohibiting one type of comment
## from being used in any situation (alternatively, forcing one type
## of comment to be the only usable one).
(def: (comment^ where)
(-> Cursor (Lexer [Cursor Text]))
(l;either (single-line-comment^ where)
(multi-line-comment^ where)))
## To simplify parsing, I remove any left-padding that an AST token
## may have prior to parsing the token itself.
## Left-padding is assumed to be either white-space or a comment.
## The cursor gets updated, but the padding gets ignored.
(def: (left-padding^ where)
(-> Cursor (Lexer Cursor))
(l;either (do Monad<Lexer>
[[where comment] (comment^ where)]
(left-padding^ where))
(do Monad<Lexer>
[[where white-space] (space^ where)]
(wrap where))
))
## Escaped character sequences follow the usual syntax of
## back-slash followed by a letter (e.g. \n).
## Unicode escapes are possible, with hexadecimal sequences between 1
## and 4 characters long (e.g. \u12aB).
## Escaped characters may show up in Char and Text literals.
(def: escaped-char^
(Lexer [Text Char])
(l;after (l;char #"\\")
(do Monad<Lexer>
[code l;any]
(case code
## Handle special cases.
#"t" (wrap ["\\t" #"\t"])
#"v" (wrap ["\\v" #"\v"])
#"b" (wrap ["\\b" #"\b"])
#"n" (wrap ["\\n" #"\n"])
#"r" (wrap ["\\r" #"\r"])
#"f" (wrap ["\\f" #"\f"])
#"\"" (wrap ["\\\"" #"\""])
#"\\" (wrap ["\\\\" #"\\"])
## Handle unicode escapes.
#"u"
(do Monad<Lexer>
[code (l;between' +1 +4 l;hex-digit)]
(wrap (case (:: number;Hex@Codec<Text,Nat> decode
(format "+" code))
(#;Right value)
[(format "\\u" code) (char;char value)]
_
(undefined))))
_
(l;fail (format "Invalid escaping syntax: " (%c code)))))))
## A character can be either a normal glyph, or a escaped character.
## The reason why this parser returns both the Char and it's textual
## representation in the source-code, is for the sake of updating the
## cursor after parsing the char.
## A character only represents one glyph, but it's source-code
## representation may be multi-glyph (e.g. \u1234, \n), in which case,
## the text that was parsed needs to be counted to update the cursor.
(def: raw-char^
(Lexer [Text Char])
(l;either (do Monad<Lexer>
[char (l;none-of "\\\"\n")]
(wrap [(char;as-text char) char]))
escaped-char^))
## These are very simple parsers that just cut chunks of text in
## specific shapes and then use decoders already present in the
## standard library to actually produce the values from the literals.
(do-template [<name> <tag> <lexer> <codec>]
[(def: #export (<name> where)
(-> Cursor (Lexer [Cursor AST]))
(do Monad<Lexer>
[chunk <lexer>]
(case (:: <codec> decode chunk)
(#;Left error)
(l;fail error)
(#;Right value)
(wrap [(update@ #;column (n.+ (text;size chunk)) where)
[where (<tag> value)]]))))]
[parse-bool #;Bool
(l;either (l;text "true") (l;text "false"))
bool;Codec<Text,Bool>]
[parse-nat #;Nat
(l;seq' (l;text "+") (l;many' l;digit))
number;Codec<Text,Nat>]
[parse-int #;Int
(l;seq' (l;default "" (l;text "-"))
(l;many' l;digit))
number;Codec<Text,Int>]
[parse-real #;Real
($_ l;seq'
(l;default "" (l;text "-"))
(l;many' l;digit)
(l;text ".")
(l;many' l;digit))
number;Codec<Text,Real>]
[parse-deg #;Deg
(l;seq' (l;text ".")
(l;many' l;digit))
number;Codec<Text,Deg>]
)
## This parser doesn't delegate the work of producing the value to a
## codec, since the raw-char^ parser already takes care of that magic.
(def: #export (parse-char where)
(-> Cursor (Lexer [Cursor AST]))
(do Monad<Lexer>
[[chunk value] (l;enclosed ["#\"" "\""]
raw-char^)]
(wrap [(update@ #;column (|>. ($_ n.+ +3 (text;size chunk))) where)
[where (#;Char value)]])))
## This parser looks so complex because text in Lux can be multi-line
## and there are rules regarding how this is handled.
(def: #export (parse-text where)
(-> Cursor (Lexer [Cursor AST]))
(do Monad<Lexer>
[## Lux text "is delimited by double-quotes", as usual in most
## programming languages.
_ (l;text "\"")
## I must know what column the text body starts at (which is
## always 1 column after the left-delimiting quote).
## This is important because, when procesing subsequent lines,
## they must all start at the same column, being left-padded with
## as many spaces as necessary to be column-aligned.
## This helps ensure that the formatting on the text in the
## source-code matches the formatting of the Text value.
#let [offset-column (n.inc (get@ #;column where))]
[where' text-read] (: (Lexer [Cursor Text])
## I must keep track of how much of the
## text body has been read, how far the
## cursor has progressed, and whether I'm
## processing a subsequent line, or just
## processing normal text body.
(loop [text-read ""
where (|> where
(update@ #;column n.inc))
must-have-offset? false]
(l;either (if must-have-offset?
## If I'm at the start of a
## new line, I must ensure the
## space-offset is at least
## as great as the column of
## the text's body's column,
## to ensure they are aligned.
(do @
[offset (l;many' (l;char #" "))
#let [offset-size (text;size offset)]]
(if (n.>= offset-column offset-size)
## Any extra offset
## becomes part of the
## text's body.
(recur (|> offset
(text;split offset-column)
(default (undefined))
product;right
(format text-read))
(|> where
(update@ #;column (n.+ offset-size)))
false)
(l;fail (format "Each line of a multi-line text must have an appropriate offset!\n"
"Expected: " (%i (nat-to-int offset-column)) " columns.\n"
" Actual: " (%i (nat-to-int offset-size)) " columns.\n"))))
($_ l;either
## Normal text characters.
(do @
[normal (l;many' (l;none-of "\\\"\n"))]
(recur (format text-read normal)
(|> where
(update@ #;column (n.+ (text;size normal))))
false))
## Must handle escaped
## chars separately.
(do @
[[chunk char] escaped-char^]
(recur (format text-read (char;as-text char))
(|> where
(update@ #;column (n.+ (text;size chunk))))
false))
## The text ends when it
## reaches the right-delimiter.
(do @
[_ (l;text "\"")]
(wrap [(update@ #;column n.inc where)
text-read]))))
## If a new-line is
## encountered, it gets
## appended to the value and
## the loop is alerted that the
## next line must have an offset.
(do @
[_ (l;text new-line)]
(recur (format text-read new-line)
(|> where
(update@ #;line n.inc)
(set@ #;column +0))
true)))))]
(wrap [where'
[where (#;Text text-read)]])))
## Form and tuple syntax is mostly the same, differing only in the
## delimiters involved.
## They may have an arbitrary number of arbitrary AST nodes as elements.
(do-template [<name> <tag> <open> <close>]
[(def: (<name> where parse-ast)
(-> Cursor
(-> Cursor (Lexer [Cursor AST]))
(Lexer [Cursor AST]))
(do Monad<Lexer>
[_ (l;text <open>)
[where' elems] (loop [elems (: (V;Vector AST)
V;empty)
where where]
(l;either (do @
[## Must update the cursor as I
## go along, to keep things accurate.
[where' elem] (parse-ast where)]
(recur (V;add elem elems)
where'))
(do @
[## Must take into account any
## padding present before the
## end-delimiter.
where' (left-padding^ where)
_ (l;text <close>)]
(wrap [(update@ #;column n.inc where')
(V;to-list elems)]))))]
(wrap [where'
[where (<tag> elems)]])))]
[parse-form #;Form "(" ")"]
[parse-tuple #;Tuple "[" "]"]
)
## Records are almost (syntactically) the same as forms and tuples,
## with the exception that their elements must come in pairs (as in
## key-value pairs).
## Semantically, though, records and tuples are just 2 different
## representations for the same thing (a tuple).
## In normal Lux syntax, the key position in the pair will be a tag
## AST node, however, record AST nodes allow any AST node to occupy
## this position, since it may be useful when processing AST syntax in
## macros.
(def: (parse-record where parse-ast)
(-> Cursor
(-> Cursor (Lexer [Cursor AST]))
(Lexer [Cursor AST]))
(do Monad<Lexer>
[_ (l;text "{")
[where' elems] (loop [elems (: (V;Vector [AST AST])
V;empty)
where where]
(l;either (do @
[[where' key] (parse-ast where)
[where' val] (parse-ast where')]
(recur (V;add [key val] elems)
where'))
(do @
[where' (left-padding^ where)
_ (l;text "}")]
(wrap [(update@ #;column n.inc where')
(V;to-list elems)]))))]
(wrap [where'
[where (#;Record elems)]])))
## The parts of an identifier are separated by a single mark.
## E.g. module;name.
## Only one such mark may be used in an identifier, since there
## can only be 2 parts to an identifier (the module [before the
## mark], and the name [after the mark]).
## There are also some extra rules regarding identifier syntax,
## encoded on the parser.
(def: identifier-separator Text ";")
## A Lux identifier is a pair of chunks of text, where the first-part
## refers to the module that gives context to the identifier, and the
## second part corresponds to the name of the identifier itself.
## The module part may be absent (by being the empty text ""), but the
## name part must always be present.
## The rules for which characters you may use are specified in terms
## of which characters you must avoid (to keep things as open-ended as
## possible).
## In particular, no white-space can be used, and neither can other
## characters which are already used by Lux as delimiters for other
## AST nodes (thereby reducing ambiguity while parsing).
## Additionally, the first character in an identifier's part cannot be
## a digit, to avoid confusion with regards to numbers.
(def: ident-part^
(Lexer Text)
(do Monad<Lexer>
[#let [digits "0123456789"
delimiters (format "()[]{}#\"" identifier-separator)
space (format white-space new-line)
head-lexer (l;none-of (format digits delimiters space))
tail-lexer (l;some' (l;none-of (format delimiters space)))]
head head-lexer
tail tail-lexer]
(wrap (format (char;as-text head)
tail))))
(def: ident^
(Lexer [Ident Nat])
($_ l;either
## When an identifier starts with 2 marks, it's module is
## taken to be the current-module being compiled at the moment.
## This can be useful when mentioning identifiers and tags
## inside quoted/templated code in macros.
(do Monad<Lexer>
[#let [current-module-mark (format identifier-separator identifier-separator)]
_ (l;text current-module-mark)
def-name ident-part^]
(l;fail (format "Cannot handle " current-module-mark " syntax for identifiers.")))
## If the identifier is prefixed by the mark, but no module
## part, the module is assumed to be "lux" (otherwise known as
## the 'prelude').
## This makes it easy to refer to definitions in that module,
## since it is the most fundamental module in the entire
## standard library.
(do Monad<Lexer>
[_ (l;text identifier-separator)
def-name ident-part^]
(wrap [["lux" def-name]
(n.inc (text;size def-name))]))
## Not all identifiers must be specified with a module part.
## If that part is not provided, the identifier will be created
## with the empty "" text as the module.
## During program analysis, such identifiers tend to be treated
## as if their context is the current-module, but this only
## applies to identifiers for tags and module definitions.
## Function arguments and local-variables may not be referred-to
## using identifiers with module parts, so being able to specify
## identifiers with empty modules helps with those use-cases.
(do Monad<Lexer>
[first-part ident-part^]
(l;either (do @
[_ (l;text identifier-separator)
second-part ident-part^]
(wrap [[first-part second-part]
($_ n.+
(text;size first-part)
+1
(text;size second-part))]))
(wrap [["" first-part]
(text;size first-part)])))))
## The only (syntactic) difference between a symbol and a tag (both
## being identifiers), is that tags must be prefixed with a hash-sign
## (i.e. #).
## Semantically, though, they are very different, with symbols being
## used to refer to module definitions and local variables, while tags
## provide the compiler with information related to data-structure
## construction and de-structuring (during pattern-matching).
(do-template [<name> <tag> <lexer> <extra>]
[(def: #export (<name> where)
(-> Cursor (Lexer [Cursor AST]))
(do Monad<Lexer>
[[value length] <lexer>]
(wrap [(update@ #;column (|>. ($_ n.+ <extra> length)) where)
[where (<tag> value)]])))]
[parse-symbol #;Symbol ident^ +0]
[parse-tag #;Tag (l;after (l;char #"#") ident^) +1]
)
(def: (parse-ast where)
(-> Cursor (Lexer [Cursor AST]))
(do Monad<Lexer>
[where (left-padding^ where)]
($_ l;either
(parse-form where parse-ast)
(parse-tuple where parse-ast)
(parse-record where parse-ast)
(parse-bool where)
(parse-nat where)
(parse-real where)
(parse-int where)
(parse-deg where)
(parse-symbol where)
(parse-tag where)
(parse-char where)
(parse-text where)
)))
(def: #export (parse [where code])
(-> [Cursor Text] (Error [[Cursor Text] AST]))
(case (l;run' code (parse-ast where))
(#E;Error error)
(#E;Error error)
(#E;Success [remaining [where' output]])
(#E;Success [[where' remaining] output])))
|