blob: 9bc668050e2fac835cf6f24da56dcaba290c8bec (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
|
(.module:
lux
(lux (control [monad #+ do]
["ex" exception #+ exception:])
(data [maybe]
[text]
text/format
(coll [list "list/" Functor<List>]))
[macro "macro/" Monad<Meta>]
(lang [type]
(type ["tc" check])))
(luxc ["&" lang]
(lang ["la" analysis #+ Analysis]
(analysis ["&." common]))))
(do-template [<name>]
[(exception: #export (<name> {message Text})
message)]
[Cannot-Infer]
[Cannot-Infer-Argument]
[Smaller-Variant-Than-Expected]
[Invalid-Type-Application]
[Not-A-Record-Type]
[Not-A-Variant-Type]
)
(def: (cannot-infer type args)
(-> Type (List Code) Text)
(format " Type: " (%type type) "\n"
"Arguments:"
(|> args
list.enumerate
(list/map (function (_ [idx argC])
(format "\n " (%n idx) " " (%code argC))))
(text.join-with ""))))
(def: (replace-bound bound-idx replacementT type)
(-> Nat Type Type Type)
(case type
(#.Primitive name params)
(#.Primitive name (list/map (replace-bound bound-idx replacementT) params))
(^template [<tag>]
(<tag> left right)
(<tag> (replace-bound bound-idx replacementT left)
(replace-bound bound-idx replacementT right)))
([#.Sum]
[#.Product]
[#.Function]
[#.Apply])
(#.Bound idx)
(if (n/= bound-idx idx)
replacementT
type)
(^template [<tag>]
(<tag> env quantified)
(<tag> (list/map (replace-bound bound-idx replacementT) env)
(replace-bound (n/+ +2 bound-idx) replacementT quantified)))
([#.UnivQ]
[#.ExQ])
_
type))
(def: new-named-type
(Meta Type)
(do macro.Monad<Meta>
[[_module _line _column] macro.cursor
[ex-id exT] (&.with-type-env tc.existential)]
(wrap (#.Primitive (format "{New Type @ " (%t _module)
"," (%n _line)
"," (%n _column)
"} " (%n ex-id))
(list)))))
## Type-inference works by applying some (potentially quantified) type
## to a sequence of values.
## Function types are used for this, although inference is not always
## done for function application (alternative uses may be records and
## tagged variants).
## But, so long as the type being used for the inference can be treated
## as a function type, this method of inference should work.
(def: #export (general analyse inferT args)
(-> &.Analyser Type (List Code) (Meta [Type (List Analysis)]))
(case args
#.Nil
(do macro.Monad<Meta>
[_ (&.infer inferT)]
(wrap [inferT (list)]))
(#.Cons argC args')
(case inferT
(#.Named name unnamedT)
(general analyse unnamedT args)
(#.UnivQ _)
(do macro.Monad<Meta>
[[var-id varT] (&.with-type-env tc.var)]
(general analyse (maybe.assume (type.apply (list varT) inferT)) args))
(#.ExQ _)
(do macro.Monad<Meta>
[[var-id varT] (&.with-type-env tc.var)
output (general analyse
(maybe.assume (type.apply (list varT) inferT))
args)
bound? (&.with-type-env
(tc.bound? var-id))
_ (if bound?
(wrap [])
(do @
[newT new-named-type]
(&.with-type-env
(tc.check varT newT))))]
(wrap output))
(#.Apply inputT transT)
(case (type.apply (list inputT) transT)
(#.Some outputT)
(general analyse outputT args)
#.None
(&.throw Invalid-Type-Application (%type inferT)))
## Arguments are inferred back-to-front because, by convention,
## Lux functions take the most important arguments *last*, which
## means that the most information for doing proper inference is
## located in the last arguments to a function call.
## By inferring back-to-front, a lot of type-annotations can be
## avoided in Lux code, since the inference algorithm can piece
## things together more easily.
(#.Function inputT outputT)
(do macro.Monad<Meta>
[[outputT' args'A] (general analyse outputT args')
argA (&.with-stacked-errors
(function (_ _)
(ex.construct Cannot-Infer-Argument
(format "Inferred Type: " (%type inputT) "\n"
" Argument: " (%code argC))))
(&.with-type inputT
(analyse argC)))]
(wrap [outputT' (list& argA args'A)]))
(#.Var infer-id)
(do macro.Monad<Meta>
[?inferT' (&.with-type-env (tc.read infer-id))]
(case ?inferT'
(#.Some inferT')
(general analyse inferT' args)
_
(&.throw Cannot-Infer (cannot-infer inferT args))))
_
(&.throw Cannot-Infer (cannot-infer inferT args)))
))
## Turns a record type into the kind of function type suitable for inference.
(def: #export (record inferT)
(-> Type (Meta Type))
(case inferT
(#.Named name unnamedT)
(record unnamedT)
(^template [<tag>]
(<tag> env bodyT)
(do macro.Monad<Meta>
[bodyT+ (record bodyT)]
(wrap (<tag> env bodyT+))))
([#.UnivQ]
[#.ExQ])
(#.Apply inputT funcT)
(case (type.apply (list inputT) funcT)
(#.Some outputT)
(record outputT)
#.None
(&.throw Invalid-Type-Application (%type inferT)))
(#.Product _)
(macro/wrap (type.function (type.flatten-tuple inferT) inferT))
_
(&.throw Not-A-Record-Type (%type inferT))))
## Turns a variant type into the kind of function type suitable for inference.
(def: #export (variant tag expected-size inferT)
(-> Nat Nat Type (Meta Type))
(loop [depth +0
currentT inferT]
(case currentT
(#.Named name unnamedT)
(do macro.Monad<Meta>
[unnamedT+ (recur depth unnamedT)]
(wrap unnamedT+))
(^template [<tag>]
(<tag> env bodyT)
(do macro.Monad<Meta>
[bodyT+ (recur (n/inc depth) bodyT)]
(wrap (<tag> env bodyT+))))
([#.UnivQ]
[#.ExQ])
(#.Sum _)
(let [cases (type.flatten-variant currentT)
actual-size (list.size cases)
boundary (n/dec expected-size)]
(cond (or (n/= expected-size actual-size)
(and (n/> expected-size actual-size)
(n/< boundary tag)))
(case (list.nth tag cases)
(#.Some caseT)
(macro/wrap (if (n/= +0 depth)
(type.function (list caseT) currentT)
(let [replace! (replace-bound (|> depth n/dec (n/* +2)) inferT)]
(type.function (list (replace! caseT))
(replace! currentT)))))
#.None
(&common.variant-out-of-bounds-error inferT expected-size tag))
(n/< expected-size actual-size)
(&.throw Smaller-Variant-Than-Expected
(format "Expected: " (%i (nat-to-int expected-size)) "\n"
" Actual: " (%i (nat-to-int actual-size))))
(n/= boundary tag)
(let [caseT (type.variant (list.drop boundary cases))]
(macro/wrap (if (n/= +0 depth)
(type.function (list caseT) currentT)
(let [replace! (replace-bound (|> depth n/dec (n/* +2)) inferT)]
(type.function (list (replace! caseT))
(replace! currentT))))))
## else
(&common.variant-out-of-bounds-error inferT expected-size tag)))
(#.Apply inputT funcT)
(case (type.apply (list inputT) funcT)
(#.Some outputT)
(variant tag expected-size outputT)
#.None
(&.throw Invalid-Type-Application (%type inferT)))
_
(&.throw Not-A-Variant-Type (%type inferT)))))
|