aboutsummaryrefslogtreecommitdiff
path: root/new-luxc/source/luxc/lang/analysis/inference.lux
blob: cd484a6231a81356d08ce23844e76b093d33ed8c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
(;module:
  lux
  (lux (control [monad #+ do]
                ["ex" exception #+ exception:])
       (data [maybe]
             [text]
             text/format
             (coll [list "list/" Functor<List>]))
       [meta #+ Monad<Meta>]
       (meta [type]
             (type ["tc" check])))
  (luxc ["&" base]
        (lang ["la" analysis #+ Analysis]
              (analysis ["&;" common]))))

(exception: #export Cannot-Infer)
(exception: #export Cannot-Infer-Argument)
(exception: #export Smaller-Variant-Than-Expected)

## When doing inference, type-variables often need to be created in
## order to figure out which types are present in the expression being
## inferred.
## If a type-variable never gets bound/resolved to a type, then that
## means the expression can be generalized through universal
## quantification.
## When that happens, the type-variable must be replaced by an
## argument to the universally-quantified type.
(def: #export (replace-var var-id bound-idx type)
  (-> Nat Nat Type Type)
  (case type
    (#;Primitive name params)
    (#;Primitive name (list/map (replace-var var-id bound-idx) params))

    (^template [<tag>]
      (<tag> left right)
      (<tag> (replace-var var-id bound-idx left)
             (replace-var var-id bound-idx right)))
    ([#;Sum]
     [#;Product]
     [#;Function]
     [#;Apply])
    
    (#;Var id)
    (if (n.= var-id id)
      (#;Bound bound-idx)
      type)

    (^template [<tag>]
      (<tag> env quantified)
      (<tag> (list/map (replace-var var-id bound-idx) env)
             (replace-var var-id (n.+ +2 bound-idx) quantified)))
    ([#;UnivQ]
     [#;ExQ])
    
    _
    type))

(def: (replace-bound bound-idx replacementT type)
  (-> Nat Type Type Type)
  (case type
    (#;Primitive name params)
    (#;Primitive name (list/map (replace-bound bound-idx replacementT) params))

    (^template [<tag>]
      (<tag> left right)
      (<tag> (replace-bound bound-idx replacementT left)
             (replace-bound bound-idx replacementT right)))
    ([#;Sum]
     [#;Product]
     [#;Function]
     [#;Apply])
    
    (#;Bound idx)
    (if (n.= bound-idx idx)
      replacementT
      type)

    (^template [<tag>]
      (<tag> env quantified)
      (<tag> (list/map (replace-bound bound-idx replacementT) env)
             (replace-bound (n.+ +2 bound-idx) replacementT quantified)))
    ([#;UnivQ]
     [#;ExQ])
    
    _
    type))

## Type-inference works by applying some (potentially quantified) type
## to a sequence of values.
## Function types are used for this, although inference is not always
## done for function application (alternative uses may be records and
## tagged variants).
## But, so long as the type being used for the inference can be trated
## as a function type, this method of inference should work.
(def: #export (apply-function analyse funcT args)
  (-> &;Analyser Type (List Code) (Meta [Type (List Analysis)]))
  (case args
    #;Nil
    (:: Monad<Meta> wrap [funcT (list)])
    
    (#;Cons argC args')
    (case funcT
      (#;Named name unnamedT)
      (apply-function analyse unnamedT args)

      (#;UnivQ _)
      (&common;with-var
        (function [[var-id varT]]
          (do Monad<Meta>
            [[outputT argsA] (apply-function analyse (maybe;assume (type;apply (list varT) funcT)) args)]
            (do @
              [? (&;with-type-env
                   (tc;bound? var-id))
               ## Quantify over the type if genericity/parametricity
               ## is discovered.
               outputT' (if ?
                          (&;with-type-env
                            (tc;clean var-id outputT))
                          (wrap (type;univ-q +1 (replace-var var-id +1 outputT))))]
              (wrap [outputT' argsA])))))

      (#;ExQ _)
      (do Monad<Meta>
        [[ex-id exT] (&;with-type-env
                       tc;existential)]
        (apply-function analyse (maybe;assume (type;apply (list exT) funcT)) args))

      ## Arguments are inferred back-to-front because, by convention,
      ## Lux functions take the most important arguments *last*, which
      ## means that the most information for doing proper inference is
      ## located in the last arguments to a function call.
      ## By inferring back-to-front, a lot of type-annotations can be
      ## avoided in Lux code, since the inference algorithm can piece
      ## things together more easily.
      (#;Function inputT outputT)
      (do Monad<Meta>
        [[outputT' args'A] (apply-function analyse outputT args')
         argA (&;with-stacked-errors
                (function [_] (Cannot-Infer-Argument
                               (format "Inferred Type: " (%type inputT) "\n"
                                       "     Argument: " (%code argC))))
                (&;with-expected-type inputT
                  (analyse argC)))]
        (wrap [outputT' (list& argA args'A)]))

      _
      (&;throw Cannot-Infer (format "Inference Type: " (%type funcT)
                                    "     Arguments: " (|> args (list/map %code) (text;join-with " ")))))
    ))

## Turns a record type into the kind of function type suitable for inference.
(def: #export (record type)
  (-> Type (Meta Type))
  (case type
    (#;Named name unnamedT)
    (do Monad<Meta>
      [unnamedT+ (record unnamedT)]
      (wrap unnamedT+))

    (^template [<tag>]
      (<tag> env bodyT)
      (do Monad<Meta>
        [bodyT+ (record bodyT)]
        (wrap (<tag> env bodyT+))))
    ([#;UnivQ]
     [#;ExQ])

    (#;Product _)
    (:: Monad<Meta> wrap (type;function (type;flatten-tuple type) type))

    _
    (&;fail (format "Not a record type: " (%type type)))))

## Turns a variant type into the kind of function type suitable for inference.
(def: #export (variant tag expected-size type)
  (-> Nat Nat Type (Meta Type))
  (loop [depth +0
         currentT type]
    (case currentT
      (#;Named name unnamedT)
      (do Monad<Meta>
        [unnamedT+ (recur depth unnamedT)]
        (wrap unnamedT+))

      (^template [<tag>]
        (<tag> env bodyT)
        (do Monad<Meta>
          [bodyT+ (recur (n.inc depth) bodyT)]
          (wrap (<tag> env bodyT+))))
      ([#;UnivQ]
       [#;ExQ])

      (#;Sum _)
      (let [cases (type;flatten-variant currentT)
            actual-size (list;size cases)
            boundary (n.dec expected-size)]
        (cond (or (n.= expected-size actual-size)
                  (and (n.> expected-size actual-size)
                       (n.< boundary tag)))
              (case (list;nth tag cases)
                (#;Some caseT)
                (:: Monad<Meta> wrap (if (n.= +0 depth)
                                       (type;function (list caseT) currentT)
                                       (let [replace! (replace-bound (|> depth n.dec (n.* +2)) type)]
                                         (type;function (list (replace! caseT))
                                           (replace! currentT)))))

                #;None
                (&common;variant-out-of-bounds-error type expected-size tag))
              
              (n.< expected-size actual-size)
              (&;throw Smaller-Variant-Than-Expected
                       (format "Expected: " (%i (nat-to-int expected-size)) "\n"
                               "  Actual: " (%i (nat-to-int actual-size))))

              (n.= boundary tag)
              (let [caseT (type;variant (list;drop boundary cases))]
                (:: Monad<Meta> wrap (if (n.= +0 depth)
                                       (type;function (list caseT) currentT)
                                       (let [replace! (replace-bound (|> depth n.dec (n.* +2)) type)]
                                         (type;function (list (replace! caseT))
                                           (replace! currentT))))))
              
              ## else
              (&common;variant-out-of-bounds-error type expected-size tag)))

      _
      (&;fail (format "Not a variant type: " (%type type))))))