blob: 306618caf7c5224aeb06ad233b1e94ff4050a330 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
|
(;module:
lux
(lux (control monad
eq)
(data [bool "B/" Eq<Bool>]
[number]
[char]
[text]
text/format
[product]
["R" result "R/" Monad<Result>]
(coll [list "L/" Fold<List> Monoid<List> Monad<List>]
["D" dict]))
[macro #+ Monad<Lux>]
(macro [code])
[type]
(type ["TC" check]))
(../.. ["&" base]
(lang ["la" analysis])
["&;" env])
(.. ["&;" common]
["&;" structure])
(. ["&&;" coverage]))
(def: (pattern-error type pattern)
(-> Type Code Text)
(format "Cannot match this type: " (%type type) "\n"
" With this pattern: " (%code pattern)))
## Type-checking on the input value is done during the analysis of a
## "case" expression, to ensure that the patterns being used make
## sense for the type of the input value.
## Sometimes, that input value is complex, by depending on
## type-variables or quantifications.
## This function makes it easier for "case" analysis to properly
## type-check the input with respect to the patterns.
(def: (simplify-case-type type)
(-> Type (Lux Type))
(case type
(#;Var id)
(do Monad<Lux>
[? (&;within-type-env
(TC;bound? id))]
(if ?
(do @
[type' (&;within-type-env
(TC;read-var id))]
(simplify-case-type type'))
(&;fail (format "Cannot simplify type for pattern-matching: " (%type type)))))
(#;Named name unnamedT)
(simplify-case-type unnamedT)
(^or (#;UnivQ _) (#;ExQ _))
(do Monad<Lux>
[[ex-id exT] (&;within-type-env
TC;existential)]
(simplify-case-type (assume (type;apply-type type exT))))
_
(:: Monad<Lux> wrap type)))
## This function handles several concerns at once, but it must be that
## way because those concerns are interleaved when doing
## pattern-matching and they cannot be separated.
## The pattern is analysed in order to get a general feel for what is
## expected of the input value. This, in turn, informs the
## type-checking of the input.
## A kind of "continuation" value is passed around which signifies
## what needs to be done _after_ analysing a pattern.
## In general, this is done to analyse the "body" expression
## associated to a particular pattern _in the context of_ said
## pattern.
## The reason why *context* is important is because patterns may bind
## values to local variables, which may in turn be referenced in the
## body expressions.
## That is why the body must be analysed in the context of the
## pattern, and not separately.
(def: (analyse-pattern num-tags inputT pattern next)
(All [a] (-> (Maybe Nat) Type Code (Lux a) (Lux [la;Pattern a])))
(case pattern
[cursor (#;Symbol ["" name])]
(&;with-cursor cursor
(do Monad<Lux>
[outputA (&env;with-local [name inputT]
next)
idx &env;next-local]
(wrap [(#la;BindP idx) outputA])))
[cursor (#;Symbol ident)]
(&;with-cursor cursor
(&;fail (format "Symbols must be unqualified inside patterns: " (%ident ident))))
(^template [<type> <code-tag> <pattern-tag>]
[cursor (<code-tag> test)]
(&;with-cursor cursor
(do Monad<Lux>
[_ (&;within-type-env
(TC;check inputT <type>))
outputA next]
(wrap [(<pattern-tag> test) outputA]))))
([Bool #;Bool #la;BoolP]
[Nat #;Nat #la;NatP]
[Int #;Int #la;IntP]
[Deg #;Deg #la;DegP]
[Real #;Real #la;RealP]
[Char #;Char #la;CharP]
[Text #;Text #la;TextP])
(^ [cursor (#;Tuple (list))])
(&;with-cursor cursor
(do Monad<Lux>
[_ (&;within-type-env
(TC;check inputT Unit))
outputA next]
(wrap [(#la;TupleP (list)) outputA])))
(^ [cursor (#;Tuple (list singleton))])
(analyse-pattern #;None inputT singleton next)
[cursor (#;Tuple sub-patterns)]
(&;with-cursor cursor
(do Monad<Lux>
[inputT' (simplify-case-type inputT)]
(case inputT'
(#;Product _)
(let [sub-types (type;flatten-tuple inputT)
num-sub-types (default (list;size sub-types)
num-tags)
num-sub-patterns (list;size sub-patterns)
matches (cond (n.< num-sub-types num-sub-patterns)
(let [[prefix suffix] (list;split (n.dec num-sub-patterns) sub-types)]
(list;zip2 (L/append prefix (list (type;tuple suffix))) sub-patterns))
(n.> num-sub-types num-sub-patterns)
(let [[prefix suffix] (list;split (n.dec num-sub-types) sub-patterns)]
(list;zip2 sub-types (L/append prefix (list (code;tuple suffix)))))
## (n.= num-sub-types num-sub-patterns)
(list;zip2 sub-types sub-patterns)
)]
(do @
[[memberP+ thenA] (L/fold (: (All [a]
(-> [Type Code] (Lux [(List la;Pattern) a])
(Lux [(List la;Pattern) a])))
(function [[memberT memberC] then]
(do @
[[memberP [memberP+ thenA]] ((:! (All [a] (-> (Maybe Nat) Type Code (Lux a) (Lux [la;Pattern a])))
analyse-pattern)
#;None memberT memberC then)]
(wrap [(list& memberP memberP+) thenA]))))
(do @
[nextA next]
(wrap [(list) nextA]))
matches)]
(wrap [(#la;TupleP memberP+) thenA])))
_
(&;fail (pattern-error inputT pattern))
)))
[cursor (#;Record record)]
(do Monad<Lux>
[record (&structure;normalize record)
[members recordT] (&structure;order record)
_ (&;within-type-env
(TC;check inputT recordT))]
(analyse-pattern (#;Some (list;size members)) inputT [cursor (#;Tuple members)] next))
[cursor (#;Tag tag)]
(&;with-cursor cursor
(analyse-pattern #;None inputT (` ((~ pattern))) next))
(^ [cursor (#;Form (list& [_ (#;Nat idx)] values))])
(&;with-cursor cursor
(do Monad<Lux>
[inputT' (simplify-case-type inputT)]
(case inputT'
(#;Sum _)
(let [flat-sum (type;flatten-variant inputT)
size-sum (list;size flat-sum)
num-cases (default size-sum num-tags)]
(case (list;nth idx flat-sum)
(^multi (#;Some case-type)
(n.< num-cases idx))
(if (and (n.> num-cases size-sum)
(n.= (n.dec num-cases) idx))
(do Monad<Lux>
[[testP nextA] (analyse-pattern #;None
(type;variant (list;drop (n.dec num-cases) flat-sum))
(` [(~@ values)])
next)]
(wrap [(#la;VariantP idx num-cases testP)
nextA]))
(do Monad<Lux>
[[testP nextA] (analyse-pattern #;None case-type (` [(~@ values)]) next)]
(wrap [(#la;VariantP idx num-cases testP)
nextA])))
_
(&;fail (format "Cannot match index " (%n idx) " against type: " (%type inputT)))))
_
(&;fail (pattern-error inputT pattern)))))
(^ [cursor (#;Form (list& [_ (#;Tag tag)] values))])
(&;with-cursor cursor
(do Monad<Lux>
[tag (macro;normalize tag)
[idx group variantT] (macro;resolve-tag tag)
_ (&;within-type-env
(TC;check inputT variantT))]
(analyse-pattern (#;Some (list;size group)) inputT (` ((~ (code;nat idx)) (~@ values))) next)))
_
(&;fail (format "Unrecognized pattern syntax: " (%code pattern)))
))
(def: #export (analyse-case analyse input branches)
(-> &;Analyser Code (List [Code Code]) (Lux la;Analysis))
(case branches
#;Nil
(&;fail "Cannot have empty branches in pattern-matching expression.")
(#;Cons [patternH bodyH] branchesT)
(do Monad<Lux>
[[inputT inputA] (&common;with-unknown-type
(analyse input))
outputH (analyse-pattern #;None inputT patternH (analyse bodyH))
outputT (mapM @
(function [[patternT bodyT]]
(analyse-pattern #;None inputT patternT (analyse bodyT)))
branchesT)
_ (case (foldM R;Monad<Result>
&&coverage;merge
(|> outputH product;left &&coverage;determine)
(L/map (|>. product;left &&coverage;determine) outputT))
(#R;Success coverage)
(if (&&coverage;total? coverage)
(wrap [])
(&;fail "Pattern-matching is not total."))
(#R;Error error)
(&;fail error))]
(wrap (#la;Case inputA (#;Cons outputH outputT))))))
|