aboutsummaryrefslogtreecommitdiff
path: root/documentation/research/paradigm/probabilistic_programming.md
blob: 42738b80e4d067fc674bc7418dbfca69e2d5f63e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# Ranked Programming

1. [Ranked Programming](https://github.com/tjitze/ranked-programming/blob/master/documentation/ranked_programming.pdf)
1. https://github.com/tjitze/ranked-programming

# Inference

1. [Gen: A general-purpose probabilistic programming system with programmable inference.](https://probcomp.github.io/Gen/)
1. [Probabilistic Programming with Programmable Inference](https://people.csail.mit.edu/rinard/paper/pldi18.pdf)
1. https://www.microsoft.com/en-us/research/blog/dowhy-a-library-for-causal-inference/

# Reference

1. [FACTORIE](http://factorie.cs.umass.edu/)
1. [End-User Probabilistic Programming (DRAFT)](https://www.cs.uoregon.edu/research/summerschool/summer19/lecture_notes/DRAFT___Probabilistic_Programming_for_End_Users.pdf)
1. http://willcrichton.net/notes/probabilistic-programming-under-the-hood/
1. [Ask HN: What companies are using probabilistic programming?](https://news.ycombinator.com/item?id=17220861)
1. https://www-forbes-com.cdn.ampproject.org/v/s/www.forbes.com/sites/quora/2018/05/18/even-the-most-advanced-computer-programmers-have-probably-never-heard-of-this-concept/amp/?amp_js_v=a1&amp_gsa=1#amp_tf=From%20%251%24s&ampshare=https%3A%2F%2Fwww.forbes.com%2Fsites%2Fquora%2F2018%2F05%2F18%2Feven-the-most-advanced-computer-programmers-have-probably-never-heard-of-this-concept%2Famp%2F%23amp_tf%3DFrom%2520%25251%2524s&ampshare=https%3A%2F%2Fwww.forbes.com%2Fsites%2Fquora%2F2018%2F05%2F18%2Feven-the-most-advanced-computer-programmers-have-probably-never-heard-of-this-concept%2F&ampshare=https%3A%2F%2Fwww.forbes.com%2Fsites%2Fquora%2F2018%2F05%2F18%2Feven-the-most-advanced-computer-programmers-have-probably-never-heard-of-this-concept%2F
1. [Deep Probabilistic Programming Languages: A Qualitative Study](https://arxiv.org/abs/1804.06458)
1. [A Provably Correct Sampler for Probabilistic Programs](https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/final.pdf)
1. [Practical Probabilistic Programming with Monads](http://mlg.eng.cam.ac.uk/pub/pdf/SciGhaGor15.pdf)
1. [Probabilistic Functional Programming in Haskell](https://web.engr.oregonstate.edu/~erwig/papers/PFP_JFP06.pdf)
1. [The Probability Monad](https://www.youtube.com/watch?v=qZ4O-1VYv4c)
1. https://www.chrisstucchio.com/blog/2016/probability_the_monad.html
1. http://dippl.org/
1. [Deep Probabilistic Programming](https://arxiv.org/abs/1701.03757v1)
1. [Symbolic Conditioning of Arrays in Probabilistic Programs](http://homes.soic.indiana.edu/pravnar/disintegrate-arrays.pdf)
1. http://probabilistic-programming.org/wiki/Home
1. http://underscore.io/blog/posts/2016/04/21/probabilistic-programming.html
1. https://moalquraishi.wordpress.com/2015/03/29/the-state-of-probabilistic-programming/
1. https://en.wikipedia.org/wiki/Probabilistic_programming_language
1. https://probmods.org/
1. http://adriansampson.net/doc/ppl.html
1. http://blog.fastforwardlabs.com/2017/10/02/pp-bibliography.html
1. http://blog.fastforwardlabs.com/2017/01/30/the-algorithms-behind-probabilistic-programming.html
1. https://arxiv.org/abs/1701.03757
1. [Typed functional probabilistic programming: ready for practical use?](https://www.youtube.com/watch?v=DGZXoi6ehwA)
1. [Generative probabilistic programming: applications and new ideas](https://www.youtube.com/watch?v=M_vG_6pq0XM)
1. [Probabilistic Programming for Programming Languages People](https://github.com/sampsyo/ppl-intro)
1. [Bayesian Methods for Hackers](https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers)
1. [An Introduction to Probabilistic Programming](https://arxiv.org/abs/1809.10756)
1. http://www.stormchecker.org/index.html
1. https://betanalpha.github.io/assets/case_studies/conditional_probability_theory.html
1. https://kaomorphism.com/2019/01/17/How-To-Predict-Any-Three-Events-More-Accurately.html
1. [Probabilistic Programming with Densities in SlicStan: Efficient, Flexible and Deterministic](https://www.youtube.com/watch?v=CXiCJ7M72Wc)

# DSL

1. [Embedded probabilistic domain-specific language Hakaru10 (discrete and continuous distributions, MCMC (MH) sampling)](http://okmij.org/ftp/kakuritu/Hakaru10/index.html)
1. https://github.com/p2t2/figaro
1. http://www.robots.ox.ac.uk/~fwood/anglican/
1. [Probabilistic programming and meta-programming in Clojure - Vikash Mansinghka](https://www.youtube.com/watch?v=KLGwLkmh8gI)

# Language

1. https://hakaru-dev.github.io/
1. http://probcomp.csail.mit.edu/venture/
1. https://github.com/tjitze/RankPL/
1. http://turing.guru/
1. https://eng.uber.com/pyro/