aboutsummaryrefslogtreecommitdiff
path: root/stdlib
diff options
context:
space:
mode:
authorEduardo Julian2017-01-27 06:54:08 -0400
committerEduardo Julian2017-01-27 06:54:08 -0400
commit9e87e07dc32e2c8acc5d95d2e56babded93fc7ac (patch)
tree4024ee25d0bdfdf91cbd5f1304275dfac0116deb /stdlib
parent3f76b52f46b58ab0d1dd8846edb43db95c391219 (diff)
- Added Number implementation for Complex.
Diffstat (limited to 'stdlib')
-rw-r--r--stdlib/source/lux/math/complex.lux60
-rw-r--r--stdlib/test/test/lux/math/complex.lux35
2 files changed, 66 insertions, 29 deletions
diff --git a/stdlib/source/lux/math/complex.lux b/stdlib/source/lux/math/complex.lux
index 69e9f71f9..252e31d51 100644
--- a/stdlib/source/lux/math/complex.lux
+++ b/stdlib/source/lux/math/complex.lux
@@ -116,6 +116,15 @@
{#real (r./ param real)
#imaginary (r./ param imaginary)}))
+(def: #export (c.% param input)
+ (-> Complex Complex Complex)
+ (let [scaled (c./ param input)
+ quotient (|> scaled
+ (update@ #real math;floor)
+ (update@ #imaginary math;floor))]
+ (c.- (c.* quotient param)
+ input)))
+
(def: #export (cos subject)
(-> Complex Complex)
(let [(^slots [#real #imaginary]) subject]
@@ -167,21 +176,37 @@
#imaginary (r./ d (math;sin i2))}))
(def: #export (c.abs subject)
- (-> Complex Real)
+ (-> Complex Complex)
(let [(^slots [#real #imaginary]) subject]
- (if (r.< (r/abs imaginary)
- (r/abs real))
- (if (r.= 0.0 imaginary)
- (r/abs real)
- (let [q (r./ imaginary real)]
- (r.* (math;sqrt (r.+ 1.0 (r.* q q)))
- (r/abs imaginary))))
- (if (r.= 0.0 real)
- (r/abs imaginary)
- (let [q (r./ real imaginary)]
- (r.* (math;sqrt (r.+ 1.0 (r.* q q)))
- (r/abs real))))
- )))
+ (complex (if (r.< (r/abs imaginary)
+ (r/abs real))
+ (if (r.= 0.0 imaginary)
+ (r/abs real)
+ (let [q (r./ imaginary real)]
+ (r.* (math;sqrt (r.+ 1.0 (r.* q q)))
+ (r/abs imaginary))))
+ (if (r.= 0.0 real)
+ (r/abs imaginary)
+ (let [q (r./ real imaginary)]
+ (r.* (math;sqrt (r.+ 1.0 (r.* q q)))
+ (r/abs real))))
+ ))))
+
+(struct: #export _ (Number Complex)
+ (def: + c.+)
+ (def: - c.-)
+ (def: * c.*)
+ (def: / c./)
+ (def: % c.%)
+ (def: (negate x)
+ (|> x
+ (update@ #real r/negate)
+ (update@ #imaginary r/negate)))
+ (def: abs c.abs)
+ (def: (signum x)
+ (|> x
+ (update@ #real r/signum)
+ (update@ #imaginary r/signum))))
(def: #export (exp subject)
(-> Complex Complex)
@@ -193,7 +218,7 @@
(def: #export (log subject)
(-> Complex Complex)
(let [(^slots [#real #imaginary]) subject]
- {#real (math;log (c.abs subject))
+ {#real (|> subject c.abs (get@ #real) math;log)
#imaginary (math;atan2 real imaginary)}))
(do-template [<name> <type> <op>]
@@ -211,7 +236,7 @@
(def: #export (sqrt (^@ input (^slots [#real #imaginary])))
(-> Complex Complex)
- (let [t (|> input c.abs (r.+ (r/abs real)) (r./ 2.0) math;sqrt)]
+ (let [t (|> input c.abs (get@ #real) (r.+ (r/abs real)) (r./ 2.0) math;sqrt)]
(if (r.>= 0.0 real)
{#real t
#imaginary (r./ (r.* 2.0 t)
@@ -271,8 +296,7 @@
(if (n.= +0 nth)
(list)
(let [r-nth (|> nth nat-to-int int-to-real)
- nth-root-of-abs (math;pow (r./ r-nth 1.0)
- (c.abs input))
+ nth-root-of-abs (|> input c.abs (get@ #real) (math;pow (r./ r-nth 1.0)))
nth-phi (|> input argument (r./ r-nth))
slice (|> math;pi (r.* 2.0) (r./ r-nth))]
(|> (list;n.range +0 (n.dec nth))
diff --git a/stdlib/test/test/lux/math/complex.lux b/stdlib/test/test/lux/math/complex.lux
index 487e7ba59..0cb5be426 100644
--- a/stdlib/test/test/lux/math/complex.lux
+++ b/stdlib/test/test/lux/math/complex.lux
@@ -64,25 +64,27 @@
($_ seq
(assert "Absolute value of complex >= absolute value of any of the parts."
(let [r+i (&;complex real imaginary)
- abs (&;c.abs r+i)]
+ abs (get@ #&;real (&;c.abs r+i))]
(and (r.>= (r/abs real) abs)
(r.>= (r/abs imaginary) abs))))
(assert "The absolute value of a complex number involving a NaN on either dimension, results in a NaN value."
- (and (number;nan? (&;c.abs (&;complex number;nan imaginary)))
- (number;nan? (&;c.abs (&;complex real number;nan)))))
+ (and (number;nan? (get@ #&;real (&;c.abs (&;complex number;nan imaginary))))
+ (number;nan? (get@ #&;real (&;c.abs (&;complex real number;nan))))))
(assert "The absolute value of a complex number involving an infinity on either dimension, results in an infinite value."
- (and (r.= number;+inf (&;c.abs (&;complex number;+inf imaginary)))
- (r.= number;+inf (&;c.abs (&;complex real number;+inf)))
- (r.= number;+inf (&;c.abs (&;complex number;-inf imaginary)))
- (r.= number;+inf (&;c.abs (&;complex real number;-inf)))))
+ (and (r.= number;+inf (get@ #&;real (&;c.abs (&;complex number;+inf imaginary))))
+ (r.= number;+inf (get@ #&;real (&;c.abs (&;complex real number;+inf))))
+ (r.= number;+inf (get@ #&;real (&;c.abs (&;complex number;-inf imaginary))))
+ (r.= number;+inf (get@ #&;real (&;c.abs (&;complex real number;-inf))))))
))
(test: "Addidion, substraction, multiplication and division"
[x gen-complex
y gen-complex
- factor gen-dim]
+ factor gen-dim
+ #let [rem (&;c.% (&;complex 3.0 5.0)
+ (&;complex 6.0 4.0))]]
($_ seq
(assert "Adding 2 complex numbers is the same as adding their parts."
(let [z (&;c.+ y x)]
@@ -109,6 +111,17 @@
(assert "Scalar division is the inverse of scalar multiplication."
(|> x (&;c.*' factor) (&;c./' factor) (within? margin-of-error x)))
+
+ (assert "If you subtract the remainder, all divisions must be exact."
+ (let [rem (&;c.% y x)
+ quotient (|> x (&;c.- rem) (&;c./ y))
+ floored (|> quotient
+ (update@ #&;real math;floor)
+ (update@ #&;imaginary math;floor))
+ (^open "&/") &;Codec<Text,Complex>]
+ (within? 0.000000000001
+ x
+ (|> quotient (&;c.* y) (&;c.+ rem)))))
))
(test: "Conjugate, reciprocal, signum, negation"
@@ -128,7 +141,7 @@
(|> x (&;c.* (&;reciprocal x)) (within? margin-of-error &;one)))
(assert "Absolute value of signum is always sqrt(2), 1 or 0."
- (let [signum-abs (|> x &;c.signum &;c.abs)]
+ (let [signum-abs (|> x &;c.signum &;c.abs (get@ #&;real))]
(or (r.= 0.0 signum-abs)
(r.= 1.0 signum-abs)
(r.= (math;sqrt 2.0) signum-abs))))
@@ -140,8 +153,8 @@
(&;c.= back-again x))))
(assert "Negation doesn't change the absolute value."
- (r.= (&;c.abs x)
- (&;c.abs (&;c.negate x))))
+ (r.= (get@ #&;real (&;c.abs x))
+ (get@ #&;real (&;c.abs (&;c.negate x)))))
))
## ## Don't know how to test complex trigonometry properly.