1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
|
import AvlVerification.Tree
import AvlVerification.BinarySearchTree
import AvlVerification.Specifications
namespace Implementation
open Primitives
open avl_verification
open Tree (AVLTree)
variable {T: Type}
@[pspec]
theorem AVLTreeSet.insert_loop_spec {H: avl_verification.Ord T}
(a: T) (t: Option (AVLNode T))
[LT T]
(Hbs_search: BST.BST t)
(Hcmp_spec: ∀ a b, ∃ o, H.cmp a b = Result.ret o):
∃ added t_new, AVLTreeSet.insert_loop T H a t = Result.ret ⟨ added, t_new ⟩
-- ∧ AVLTree.set t'.2 = insert a (AVLTree.set t)
∧ BST.BST t_new
:= by match t with
| none =>
simp [AVLTreeSet.insert_loop, AVLTree.set, setOf, BST.BST]
| some (AVLNode.mk b left right) =>
rw [AVLTreeSet.insert_loop]
simp only []
progress keep Hordering as ⟨ ordering ⟩
cases ordering
all_goals simp only []
have Hbs_search_right: BST.BST right := BST.right Hbs_search
have Hbs_search_left: BST.BST left := BST.left Hbs_search
{
progress keep Htree as ⟨ added₁, right₁, Hbst ⟩
refine' ⟨ added₁, ⟨ some (AVLNode.mk b left right₁), _ ⟩ ⟩
simp only [true_and]
refine' (BST.BST.some b left right₁ _ _ Hbs_search_left Hbst)
cases' Hbs_search; assumption
induction right with
| none =>
simp [AVLTreeSet.insert_loop] at Htree
rw [← Htree.2]
refine' (BST.ForallNode.some _ _ _ BST.ForallNode.none _ BST.ForallNode.none)
sorry
| some node =>
-- clef: ∀ x ∈ node.right, b < x
-- de plus: b < a
-- or, right₁ = insert a node.right moralement
-- donc, il suffit de prouver que: ∀ x ∈ insert a node.right, b < x <-> b < a /\ ∀ x ∈ node.right, b < x
sorry
}
{
simp [Hbs_search]
}
{
-- Symmetric case of left.
sorry
}
@[pspec]
def AVLTreeSet.insert_spec
{H: avl_verification.Ord T}
-- TODO: this can be generalized into `H.cmp` must be an equivalence relation.
-- and insert works no longer on Sets but on set quotiented by this equivalence relation.
(Hcmp_eq: ∀ a b, H.cmp a b = Result.ret Ordering.Equal -> a = b)
(Hcmp_spec: ∀ a b, ∃ o, H.cmp a b = Result.ret o)
(Hbs_search: @BSTree.searchInvariant _ H t)
(a: T) (t: AVLTreeSet T):
∃ t', t.insert _ H a = Result.ret t'
-- set of values *POST* insertion is {a} \cup set of values of the *PRE* tree.
∧ AVLTree.setOf t'.2.root = insert a (AVLTree.setOf t.root)
-- it's still a binary search tree.
∧ @BSTree.searchInvariant _ H t'.2.root
-- TODO(reinforcement): (t'.1 is false <=> a \in AVLTree.setOf t.root)
:= by
rw [AVLTreeSet.insert]
progress keep h as ⟨ t', Hset ⟩; simp
rw [Hset]
sorry
-- insert is infaillible, right?
-- instance [LT T] (o: avl_verification.Ord T): Insert T (AVLTreeSet T) where
-- insert x tree := (AVLTreeSet.insert T o tree x).map (fun (added, tree) => tree)
end Implementation
|