summaryrefslogtreecommitdiff
path: root/AvlVerification/Insert.lean
blob: f5b795887bd7b03b7d06e3daed7a33b66c271e1e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import AvlVerification.Tree
import AvlVerification.BinarySearchTree
import AvlVerification.Specifications

namespace Implementation

open Primitives
open avl_verification
open Tree (AVLTree AVLTree.set)
open Specifications (OrdSpecDualityEq ordOfOrdSpec ltOfRustOrder gtOfRustOrder)

-- example: OrdSpec OrdU32 := ordSpecOfTotalityAndDuality _ 
--   (by 
--   -- Totality
--   intro a b
--   unfold Ord.cmp
--   unfold OrdU32
--   unfold OrdU32.cmp
--   if hlt : a < b then 
--     use .Less
--     simp [hlt]
--   else
--     if heq: a = b
--     then
--     use .Equal
--     simp [hlt]
--     rw [heq]
--     -- TODO: simp [hlt, heq] breaks everything???
--     else
--       use .Greater
--       simp [hlt, heq]
--   ) (by 
--   -- Duality
--   intro a b Hgt
--   if hlt : b < a then
--     unfold Ord.cmp
--     unfold OrdU32
--     unfold OrdU32.cmp
--     simp [hlt]
--   else
--     unfold Ord.cmp at Hgt
--     unfold OrdU32 at Hgt
--     unfold OrdU32.cmp at Hgt
--     have hnlt : ¬ (a < b) := sorry
--     have hneq : ¬ (a = b) := sorry
--     exfalso
--     apply hlt
--     -- I need a Preorder on U32 now.
--     sorry)

variable (T: Type) (H: avl_verification.Ord T) (Ospec: @OrdSpecDualityEq T H)

@[pspec]
theorem AVLTreeSet.insert_loop_spec_local (p: T -> Prop)
  (Hcmp_spec:  a b,  o, H.cmp a b = Result.ok o)
  (a: T) (t: Option (AVLNode T)):
   added t_new, AVLTreeSet.insert_loop T H a t = Result.ok  added, t_new 
--  ∧ AVLTree.set t'.2 = insert a (AVLTree.set t)
   (BST.ForallNode p t -> p a -> BST.ForallNode p t_new)
  := by match t with
  | none =>
    simp [AVLTreeSet.insert_loop, AVLTree.set, setOf]
    intros _ Hpa
    constructor; all_goals try simp [BST.ForallNode.none]
    exact Hpa
  | some (AVLNode.mk b left right) =>
    rw [AVLTreeSet.insert_loop]
    simp only []
    progress keep Hordering as  ordering 
    cases ordering
    all_goals simp only []
    {
      progress keep Htree as  added₁, right₁, Hnode 
      refine'  added₁,  some (AVLNode.mk b left right₁), _  
      simp only [true_and]
      intros Hptree Hpa
      constructor
      exact Hptree.left
      exact Hptree.label
      exact Hnode Hptree.right Hpa
    }
    {
      simp; tauto
    }
    {
      -- TODO: investigate wlog.
      -- Symmetric case of left.
      progress keep Htree as  added₁, left₁, Hnode 
      refine'  added₁,  some (AVLNode.mk b left₁ right), _  
      simp only [true_and]
      intros Hptree Hpa
      constructor
      exact Hnode Hptree.left Hpa
      exact Hptree.label
      exact Hptree.right
    }

@[pspec]
lemma AVLTreeSet.insert_loop_spec_global
  (a: T) (t: Option (AVLNode T))
  :
  BST.Invariant t ->  added t_new, AVLTreeSet.insert_loop T H a t = Result.ok  added, t_new 
   BST.Invariant t_new  AVLTree.set t_new = {a}  AVLTree.set t := by 
  intro Hbst
  match t with
  | none => simp [AVLTreeSet.insert_loop, AVLTree.set, setOf]
  | some (AVLNode.mk b left right) =>
    rw [AVLTreeSet.insert_loop]
    simp only []
    have :  a b,  o, H.cmp a b = .ok o := Ospec.infallible
    progress keep Hordering as  ordering 
    cases ordering
    all_goals simp only []
    {
      have  added₂, right₂,  H_result,  H_bst, H_set    := AVLTreeSet.insert_loop_spec_global a right (BST.right Hbst)
      progress keep Htree with AVLTreeSet.insert_loop_spec_local as  added₁, right₁, Hnode 
      exact (fun x => b < x)
      rewrite [Htree] at H_result; simp at H_result
      refine'  added₁,  some (AVLNode.mk b left right₁), _  
      simp only [true_and]
      split_conjs
      cases' Hbst with _ _ _ H_forall_left H_forall_right H_bst_left H_bst_right
      constructor
      exact H_forall_left
      apply Hnode; exact H_forall_right
      exact (ltOfRustOrder H b a Hordering)
      exact H_bst_left
      convert H_bst
      exact H_result.2
      simp [AVLTree.set_some]
      rewrite [H_result.2, H_set]
      simp
    }
    {
      simp; split_conjs
      . tauto
      . simp [Ospec.equivalence _ _ Hordering]
    }
    {
      have  added₂, left₂,  H_result,  H_bst, H_set    := AVLTreeSet.insert_loop_spec_global a left (BST.left Hbst)
      progress keep Htree with AVLTreeSet.insert_loop_spec_local as  added₁, left₁, Hnode 
      exact (fun x => x < b)
      rewrite [Htree] at H_result; simp at H_result
      refine'  added₁,  some (AVLNode.mk b left₁ right), _  
      simp only [true_and]
      split_conjs
      cases' Hbst with _ _ _ H_forall_left H_forall_right H_bst_left H_bst_right
      constructor
      apply Hnode; exact H_forall_left
      exact (gtOfRustOrder H b a Hordering)
      exact H_forall_right
      convert H_bst
      exact H_result.2
      exact H_bst_right
      simp [AVLTree.set_some]
      rewrite [H_result.2, H_set]
      simp [Set.singleton_union, Set.insert_comm, Set.insert_union]
    }

@[pspec]
def AVLTreeSet.insert_spec 
  (a: T) (t: AVLTreeSet T):
  BST.Invariant t.root -> ( t' added,t.insert _ H a = Result.ok (added, t')
  -- it's still a binary search tree.
   BST.Invariant t'.root
   AVLTree.set t'.root = {a}  AVLTree.set t.root)
  := by
  rw [AVLTreeSet.insert]; intro Hbst
  progress keep h as  t', Hset ⟩; 
  simp; assumption

end Implementation