summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--AvlVerification/Insert.lean51
1 files changed, 26 insertions, 25 deletions
diff --git a/AvlVerification/Insert.lean b/AvlVerification/Insert.lean
index 870e9c2..92691b2 100644
--- a/AvlVerification/Insert.lean
+++ b/AvlVerification/Insert.lean
@@ -11,49 +11,50 @@ open Tree (AVLTree)
variable {T: Type}
@[pspec]
-theorem AVLTreeSet.insert_loop_spec {H: avl_verification.Ord T}
- (a: T) (t: Option (AVLNode T))
- [LT T]
- (Hbs_search: BST.BST t)
- (Hcmp_spec: ∀ a b, ∃ o, H.cmp a b = Result.ret o):
+theorem AVLTreeSet.insert_loop_spec_local (p: T -> Prop)
+ (Hcmp_spec: ∀ a b, ∃ o, H.cmp a b = Result.ret o)
+ (a: T) (t: Option (AVLNode T)):
∃ added t_new, AVLTreeSet.insert_loop T H a t = Result.ret ⟨ added, t_new ⟩
-- ∧ AVLTree.set t'.2 = insert a (AVLTree.set t)
- ∧ BST.BST t_new
+ ∧ (BST.ForallNode p t -> p a -> BST.ForallNode p t_new)
:= by match t with
| none =>
- simp [AVLTreeSet.insert_loop, AVLTree.set, setOf, BST.BST]
+ simp [AVLTreeSet.insert_loop, AVLTree.set, setOf]
+ intros _ Hpa
+ constructor; all_goals try simp [BST.ForallNode.none]
+ exact Hpa
| some (AVLNode.mk b left right) =>
rw [AVLTreeSet.insert_loop]
simp only []
progress keep Hordering as ⟨ ordering ⟩
cases ordering
all_goals simp only []
- have Hbs_search_right: BST.BST right := BST.right Hbs_search
- have Hbs_search_left: BST.BST left := BST.left Hbs_search
{
- progress keep Htree as ⟨ added₁, right₁, Hbst ⟩
+ progress keep Htree as ⟨ added₁, right₁, Hnode ⟩
refine' ⟨ added₁, ⟨ some (AVLNode.mk b left right₁), _ ⟩ ⟩
simp only [true_and]
- refine' (BST.BST.some b left right₁ _ _ Hbs_search_left Hbst)
- cases' Hbs_search; assumption
- induction right with
- | none =>
- simp [AVLTreeSet.insert_loop] at Htree
- rw [← Htree.2]
- refine' (BST.ForallNode.some _ _ _ BST.ForallNode.none _ BST.ForallNode.none)
- sorry
- | some node =>
- -- clef: ∀ x ∈ node.right, b < x
- -- de plus: b < a
- -- or, right₁ = insert a node.right moralement
- -- donc, il suffit de prouver que: ∀ x ∈ insert a node.right, b < x <-> b < a /\ ∀ x ∈ node.right, b < x
- sorry
+ intros Hptree Hpa
+ constructor
+ exact Hptree.left
+ exact Hptree.label
+ exact Hnode Hptree.right Hpa
}
{
- simp [Hbs_search]
+ simp; tauto
}
{
+ -- TODO: investigate wlog.
-- Symmetric case of left.
+ progress keep Htree as ⟨ added₁, left₁, Hnode ⟩
+ refine' ⟨ added₁, ⟨ some (AVLNode.mk b left₁ right), _ ⟩ ⟩
+ simp only [true_and]
+ intros Hptree Hpa
+ constructor
+ exact Hnode Hptree.left Hpa
+ exact Hptree.label
+ exact Hptree.right
+ }
+
sorry
}