diff options
author | Raito Bezarius | 2024-04-23 14:24:04 +0200 |
---|---|---|
committer | Raito Bezarius | 2024-04-23 14:24:04 +0200 |
commit | b650710ad3f8c14b713bdf52f684f472115dce2f (patch) | |
tree | d9da70f7564ea73ceacf880b78473c89f617bba7 /Verification/Specifications.lean | |
parent | 2ff68510aabc63e250f98264e0642557015de4e2 (diff) |
feat: close `find` / `insert` proofs
After a complete 180 with the Order theory, we close the goals of find
and insert and we give an example of U32 order that we will upstream to
Aeneas directly.
Signed-off-by: Raito Bezarius <masterancpp@gmail.com>
Diffstat (limited to 'Verification/Specifications.lean')
-rw-r--r-- | Verification/Specifications.lean | 150 |
1 files changed, 150 insertions, 0 deletions
diff --git a/Verification/Specifications.lean b/Verification/Specifications.lean new file mode 100644 index 0000000..392c438 --- /dev/null +++ b/Verification/Specifications.lean @@ -0,0 +1,150 @@ +import «AvlVerification» + +namespace Primitives + +namespace Result + +def map {A B: Type} (x: Result A) (f: A -> B): Result B := match x with +| .ok y => .ok (f y) +| .fail e => .fail e +| .div => .div + +@[inline] +def isok {A: Type} : Result A -> Bool +| .ok _ => true +| .fail _ => false +| .div => false + +@[inline] +def get? {A: Type}: (r: Result A) -> isok r -> A +| .ok x, _ => x + +end Result + +end Primitives + +namespace avl_verification + +@[simp] +def Ordering.toLeanOrdering (o: avl_verification.Ordering): _root_.Ordering := match o with +| .Less => .lt +| .Equal => .eq +| .Greater => .gt + +def Ordering.ofLeanOrdering (o: _root_.Ordering): avl_verification.Ordering := match o with +| .lt => .Less +| .eq => .Equal +| .gt => .Greater + +@[simp] +def Ordering.toDualOrdering (o: avl_verification.Ordering): avl_verification.Ordering := match o with +| .Less => .Greater +| .Equal => .Equal +| .Greater => .Less + +@[simp] +theorem Ordering.toLeanOrdering.injEq (x y: avl_verification.Ordering): (x.toLeanOrdering = y.toLeanOrdering) = (x = y) := by + apply propext + cases x <;> cases y <;> simp + +@[simp] +theorem ite_eq_lt_distrib (c : Prop) [Decidable c] (a b : Ordering) : + ((if c then a else b) = .Less) = if c then a = .Less else b = .Less := by + by_cases c <;> simp [*] + +@[simp] +theorem ite_eq_eq_distrib (c : Prop) [Decidable c] (a b : Ordering) : + ((if c then a else b) = .Equal) = if c then a = .Equal else b = .Equal := by + by_cases c <;> simp [*] + +@[simp] +theorem ite_eq_gt_distrib (c : Prop) [Decidable c] (a b : Ordering) : + ((if c then a else b) = .Greater) = if c then a = .Greater else b = .Greater := by + by_cases c <;> simp [*] + +end avl_verification + +namespace Specifications + +open Primitives +open Result + +variable {T: Type} (H: outParam (avl_verification.Ord T)) + +@[simp] +def _root_.Ordering.toDualOrdering (o: _root_.Ordering): _root_.Ordering := match o with +| .lt => .gt +| .eq => .eq +| .gt => .lt + + +@[simp] +theorem toDualOrderingOfToLeanOrdering (o: avl_verification.Ordering): o.toDualOrdering.toLeanOrdering = o.toLeanOrdering.toDualOrdering := by + cases o <;> simp + +@[simp] +theorem toDualOrderingIdempotency (o: _root_.Ordering): o.toDualOrdering.toDualOrdering = o := by + cases o <;> simp + +-- TODO: reason about raw bundling vs. refined bundling. +-- raw bundling: hypothesis with Rust extracted objects. +-- refined bundling: lifted hypothesis with Lean native objects. +class OrdSpec [Ord T] where + infallible: ∀ a b, ∃ (o: avl_verification.Ordering), H.cmp a b = .ok o ∧ compare a b = o.toLeanOrdering + +class OrdSpecSymmetry [O: Ord T] extends OrdSpec H where + symmetry: ∀ a b, O.compare a b = (O.opposite.compare a b).toDualOrdering + +-- Must be R decidableRel and an equivalence relationship? +class OrdSpecRel [O: Ord T] (R: outParam (T -> T -> Prop)) extends OrdSpec H where + equivalence: ∀ a b, H.cmp a b = .ok .Equal -> R a b + +class OrdSpecLinearOrderEq [O: Ord T] extends OrdSpecSymmetry H, OrdSpecRel H Eq + +theorem infallible [Ord T] [OrdSpec H]: ∀ a b, ∃ o, H.cmp a b = .ok o := fun a b => by + obtain ⟨ o, ⟨ H, _ ⟩ ⟩ := OrdSpec.infallible a b + exact ⟨ o, H ⟩ + +instance: Coe (avl_verification.Ordering) (_root_.Ordering) where + coe a := a.toLeanOrdering + +theorem rustCmpEq [Ord T] [O: OrdSpec H]: H.cmp a b = .ok o <-> compare a b = o.toLeanOrdering := by + apply Iff.intro + . intro Hcmp + obtain ⟨ o', ⟨ Hcmp', Hcompare ⟩ ⟩ := O.infallible a b + rw [Hcmp', ok.injEq] at Hcmp + simp [Hcompare, Hcmp', Hcmp] + . intro Hcompare + obtain ⟨ o', ⟨ Hcmp', Hcompare' ⟩ ⟩ := O.infallible a b + rw [Hcompare', avl_verification.Ordering.toLeanOrdering.injEq] at Hcompare + simp [Hcompare.symm, Hcmp'] + + +theorem oppositeOfOpposite {x y: _root_.Ordering}: x.toDualOrdering = y ↔ x = y.toDualOrdering := by + cases x <;> cases y <;> simp +theorem oppositeRustOrder [Ord T] [Spec: OrdSpecSymmetry H] {a b}: H.cmp b a = .ok o ↔ H.cmp a b = .ok o.toDualOrdering := by + rw [rustCmpEq, Spec.symmetry, compare, Ord.opposite, oppositeOfOpposite, rustCmpEq, toDualOrderingOfToLeanOrdering] + +theorem ltOfRustOrder + [LO: LinearOrder T] + [Spec: OrdSpec H]: + ∀ a b, H.cmp a b = .ok .Less -> a < b := by + intros a b + intro Hcmp + -- why the typeclass search doesn't work here? + refine' (@compare_lt_iff_lt T LO).1 _ + obtain ⟨ o, ⟨ Hcmp', Hcompare ⟩ ⟩ := Spec.infallible a b + simp only [Hcmp', ok.injEq] at Hcmp + simp [Hcompare, Hcmp, avl_verification.Ordering.toLeanOrdering] + +theorem gtOfRustOrder + [LinearOrder T] + [Spec: OrdSpecSymmetry H]: + ∀ a b, H.cmp a b = .ok .Greater -> b < a := by + intros a b + intro Hcmp + refine' @ltOfRustOrder _ H _ Spec.toOrdSpec _ _ _ + rewrite [oppositeRustOrder] + simp [Hcmp] + +end Specifications |