summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorRaito Bezarius2024-03-28 17:59:35 +0100
committerRaito Bezarius2024-03-28 20:30:56 +0100
commit5e35e3875884ca4be63f253d9e8d7f2fc71b3527 (patch)
treece607fcdda121b87b133791d5e708c6809559a20
parent33a92dac2635ead90cb84c16023355a7d679d434 (diff)
refactor: generalize the theory and perform some lifts
Move forward the "HSpec" idea, move around files, construct the hierarchy of trees, etc. Signed-off-by: Raito Bezarius <masterancpp@gmail.com>
-rw-r--r--AvlVerification/BinarySearchTree.lean37
-rw-r--r--AvlVerification/Insert.lean87
-rw-r--r--AvlVerification/Specifications.lean55
-rw-r--r--AvlVerification/Tree.lean81
-rw-r--r--Main.lean122
-rw-r--r--notes.md11
6 files changed, 286 insertions, 107 deletions
diff --git a/AvlVerification/BinarySearchTree.lean b/AvlVerification/BinarySearchTree.lean
new file mode 100644
index 0000000..130fd73
--- /dev/null
+++ b/AvlVerification/BinarySearchTree.lean
@@ -0,0 +1,37 @@
+import AvlVerification.Tree
+
+namespace BST
+
+open Primitives (Result)
+open avl_verification (AVLNode Ordering)
+open Tree (AVLTree AVLNode.left AVLNode.right AVLNode.val)
+
+inductive ForallNode (p: T -> Prop): AVLTree T -> Prop
+| none : ForallNode p none
+| some (a: T) (left: AVLTree T) (right: AVLTree T) : ForallNode p left -> p a -> ForallNode p right -> ForallNode p (some (AVLNode.mk a left right))
+
+-- This is the binary search invariant.
+inductive BST [LT T]: AVLTree T -> Prop
+| none : BST none
+| some (a: T) (left: AVLTree T) (right: AVLTree T) :
+ ForallNode (fun v => v < a) left -> ForallNode (fun v => a < v) right
+ -> BST left -> BST right -> BST (some (AVLNode.mk a left right))
+
+@[simp]
+theorem singleton_bst [LT T] {a: T}: BST (some (AVLNode.mk a none none)) := by
+ apply BST.some
+ all_goals simp [ForallNode.none, BST.none]
+
+theorem left [LT T] {t: AVLTree T}: BST t -> BST t.left := by
+ intro H
+ induction H with
+ | none => exact BST.none
+ | some _ _ _ _ _ _ _ _ _ => simp [AVLTree.left]; assumption
+
+theorem right [LT T] {t: AVLTree T}: BST t -> BST t.right := by
+ intro H
+ induction H with
+ | none => exact BST.none
+ | some _ _ _ _ _ _ _ _ _ => simp [AVLTree.right]; assumption
+
+end BST
diff --git a/AvlVerification/Insert.lean b/AvlVerification/Insert.lean
new file mode 100644
index 0000000..870e9c2
--- /dev/null
+++ b/AvlVerification/Insert.lean
@@ -0,0 +1,87 @@
+import AvlVerification.Tree
+import AvlVerification.BinarySearchTree
+import AvlVerification.Specifications
+
+namespace Implementation
+
+open Primitives
+open avl_verification
+open Tree (AVLTree)
+
+variable {T: Type}
+
+@[pspec]
+theorem AVLTreeSet.insert_loop_spec {H: avl_verification.Ord T}
+ (a: T) (t: Option (AVLNode T))
+ [LT T]
+ (Hbs_search: BST.BST t)
+ (Hcmp_spec: ∀ a b, ∃ o, H.cmp a b = Result.ret o):
+ ∃ added t_new, AVLTreeSet.insert_loop T H a t = Result.ret ⟨ added, t_new ⟩
+-- ∧ AVLTree.set t'.2 = insert a (AVLTree.set t)
+ ∧ BST.BST t_new
+ := by match t with
+ | none =>
+ simp [AVLTreeSet.insert_loop, AVLTree.set, setOf, BST.BST]
+ | some (AVLNode.mk b left right) =>
+ rw [AVLTreeSet.insert_loop]
+ simp only []
+ progress keep Hordering as ⟨ ordering ⟩
+ cases ordering
+ all_goals simp only []
+ have Hbs_search_right: BST.BST right := BST.right Hbs_search
+ have Hbs_search_left: BST.BST left := BST.left Hbs_search
+ {
+ progress keep Htree as ⟨ added₁, right₁, Hbst ⟩
+ refine' ⟨ added₁, ⟨ some (AVLNode.mk b left right₁), _ ⟩ ⟩
+ simp only [true_and]
+ refine' (BST.BST.some b left right₁ _ _ Hbs_search_left Hbst)
+ cases' Hbs_search; assumption
+ induction right with
+ | none =>
+ simp [AVLTreeSet.insert_loop] at Htree
+ rw [← Htree.2]
+ refine' (BST.ForallNode.some _ _ _ BST.ForallNode.none _ BST.ForallNode.none)
+ sorry
+ | some node =>
+ -- clef: ∀ x ∈ node.right, b < x
+ -- de plus: b < a
+ -- or, right₁ = insert a node.right moralement
+ -- donc, il suffit de prouver que: ∀ x ∈ insert a node.right, b < x <-> b < a /\ ∀ x ∈ node.right, b < x
+ sorry
+ }
+ {
+ simp [Hbs_search]
+ }
+ {
+ -- Symmetric case of left.
+ sorry
+ }
+
+@[pspec]
+def AVLTreeSet.insert_spec
+ {H: avl_verification.Ord T}
+ -- TODO: this can be generalized into `H.cmp` must be an equivalence relation.
+ -- and insert works no longer on Sets but on set quotiented by this equivalence relation.
+ (Hcmp_eq: ∀ a b, H.cmp a b = Result.ret Ordering.Equal -> a = b)
+ (Hcmp_spec: ∀ a b, ∃ o, H.cmp a b = Result.ret o)
+ (Hbs_search: @BSTree.searchInvariant _ H t)
+ (a: T) (t: AVLTreeSet T):
+ ∃ t', t.insert _ H a = Result.ret t'
+ -- set of values *POST* insertion is {a} \cup set of values of the *PRE* tree.
+ ∧ AVLTree.setOf t'.2.root = insert a (AVLTree.setOf t.root)
+ -- it's still a binary search tree.
+ ∧ @BSTree.searchInvariant _ H t'.2.root
+ -- TODO(reinforcement): (t'.1 is false <=> a \in AVLTree.setOf t.root)
+ := by
+ rw [AVLTreeSet.insert]
+ progress keep h as ⟨ t', Hset ⟩; simp
+ rw [Hset]
+ sorry
+
+
+-- insert is infaillible, right?
+-- instance [LT T] (o: avl_verification.Ord T): Insert T (AVLTreeSet T) where
+-- insert x tree := (AVLTreeSet.insert T o tree x).map (fun (added, tree) => tree)
+
+end Implementation
+
diff --git a/AvlVerification/Specifications.lean b/AvlVerification/Specifications.lean
new file mode 100644
index 0000000..0bf9ffb
--- /dev/null
+++ b/AvlVerification/Specifications.lean
@@ -0,0 +1,55 @@
+import «AvlVerification»
+
+namespace Primitives
+
+namespace Result
+
+def map {A B: Type} (x: Result A) (f: A -> B): Result B := match x with
+| .ret y => .ret (f y)
+| .fail e => .fail e
+| .div => .div
+
+end Result
+
+end Primitives
+
+namespace avl_verification
+
+def Ordering.toLeanOrdering (o: avl_verification.Ordering): _root_.Ordering := match o with
+| .Less => .lt
+| .Equal => .eq
+| .Greater => .gt
+
+end avl_verification
+
+namespace Specifications
+
+open Primitives
+open Result
+
+variable {T: Type}
+
+class OrdSpec (U: Type) where
+ cmp: U -> U -> Result Ordering
+ infallible: ∀ a b, ∃ o, cmp a b = .ret o
+
+instance: Coe (avl_verification.Ordering) (_root_.Ordering) where
+ coe a := a.toLeanOrdering
+
+def ordSpecOfInfaillible
+ (H: avl_verification.Ord T)
+ (Hresult: ∀ a b, ∃ o, H.cmp a b = Primitives.Result.ret o)
+ : OrdSpec T where
+ cmp x y := (H.cmp x y).map (fun z => z.toLeanOrdering)
+ infallible := by
+ intros a b
+ -- TODO: transform the "raw" hypothesis into the "nice" hypothesis.
+ sorry
+
+instance [OrdSpec T]: Ord T where
+ compare x y := match (OrdSpec.cmp x y) with
+ | .ret z => z
+ | .fail _ => by sorry
+ | .div => by sorry
+
+end Specifications
diff --git a/AvlVerification/Tree.lean b/AvlVerification/Tree.lean
new file mode 100644
index 0000000..3316e9e
--- /dev/null
+++ b/AvlVerification/Tree.lean
@@ -0,0 +1,81 @@
+import «AvlVerification»
+
+namespace Tree
+
+variable {T: Type}
+
+open avl_verification
+
+-- Otherwise, Lean cannot prove termination by itself.
+@[reducible]
+def AVLTree (U: Type) := Option (AVLNode U)
+def AVLTree.nil: AVLTree T := none
+
+def AVLTree.val (t: AVLTree T): Option T := match t with
+| none => none
+| some (AVLNode.mk x _ _) => some x
+
+def AVLTree.left (t: AVLTree T): AVLTree T := match t with
+| none => none
+| some (AVLNode.mk _ left _) => left
+
+def AVLTree.right (t: AVLTree T): AVLTree T := match t with
+| none => none
+| some (AVLNode.mk _ _ right) => right
+
+def AVLNode.left (t: AVLNode T): AVLTree T := match t with
+| AVLNode.mk _ left _ => left
+
+def AVLNode.right (t: AVLNode T): AVLTree T := match t with
+| AVLNode.mk _ _ right => right
+
+def AVLNode.val (t: AVLNode T): T := match t with
+| AVLNode.mk x _ _ => x
+
+mutual
+def AVLTree.height_node (tree: AVLNode T): Nat := match tree with
+| AVLNode.mk y left right => 1 + AVLTree.height left + AVLTree.height right
+
+def AVLTree.height (tree: AVLTree T): Nat := match tree with
+| none => 0
+| some n => 1 + AVLTree.height_node n
+end
+
+def AVLTreeSet.nil: AVLTreeSet T := { root := AVLTree.nil }
+
+-- Automatic synthesization of this seems possible at the Lean level?
+instance: Inhabited (AVLTree T) where
+ default := AVLTree.nil
+
+instance: Inhabited (AVLTreeSet T) where
+ default := AVLTreeSet.nil
+
+instance: Coe (Option (AVLNode T)) (AVLTree T) where
+ coe x := x
+
+-- TODO: ideally, it would be nice if we could generalize
+-- this to any `BinaryTree` typeclass.
+
+def AVLTree.mem (tree: AVLTree T) (x: T) :=
+ match tree with
+ | none => False
+ | some (AVLNode.mk y left right) => x = y ∨ AVLTree.mem left x ∨ AVLTree.mem right x
+
+@[simp]
+def AVLTree.mem_none: AVLTree.mem none = ({}: Set T) := rfl
+
+@[simp]
+def AVLTree.mem_some {x: T} {left right: AVLTree T}: AVLTree.mem (some (AVLNode.mk x left right)) = (({x}: Set T) ∪ AVLTree.mem left ∪ AVLTree.mem right) := by
+ ext y
+ rw [AVLTree.mem]
+ simp [Set.insert_union]
+ simp [Set.insert_def, Set.setOf_set, Set.mem_def, Set.union_def]
+
+-- TODO(reinforcement): ∪ is actually disjoint if we prove this is a binary search tree.
+
+def AVLTree.set (t: AVLTree T): Set T := _root_.setOf (AVLTree.mem t)
+
+def AVLTree.setOf_left_incl (t: AVLTree T): t.left.set ⊂ t.set := sorry
+def AVLTree.setOf_right_incl (t: AVLTree T): t.right.set ⊂ t.set := sorry
+
+end Tree
diff --git a/Main.lean b/Main.lean
index c96af67..6010d26 100644
--- a/Main.lean
+++ b/Main.lean
@@ -10,119 +10,27 @@ namespace Avl
open avl_verification
variable {T: Type}
-def AVL.nil: AVLTreeSet T := { root := none }
+-- instance {H: avl_verification.Ord T}: LT T := {
+-- lt := λ x y => H.cmp x y = Result.ret Ordering.Less
+-- }
+-- This is the binary search invariant.
+def BSTree.searchInvariant {H: avl_verification.Ord T} (t: AVLTree T) := match t with
+| none => True
+| some (AVLNode.mk y u v) => ∀ x ∈ AVLTree.setOf (u : AVLTree T), H.cmp y x = Result.ret Ordering.Less ∧ ∀ x ∈ AVLTree.setOf (v : AVLTree T), H.cmp y x = Result.ret Ordering.Greater
--- TODO: AVLTree T ou AVLNode T?
-noncomputable def AVL.height' (tree: AVLNode T): Nat := AVLNode.rec tree
- (mk := fun _ _ _ ihl ihr => 1 + ihl + ihr)
- (none := 0)
- (some := fun _ ih => 1 + ih)
+-- Prove that:
+-- searchInvariant t <-> searchInvariant t.left /\ searchInvariant t.right /\ something about t.val
+-- searchInvariant t -> searchInvariant t.left /\ searchInvariant t.right by weakening.
--- Otherwise, Lean cannot prove termination by itself.
-@[reducible]
-def AVLTree (U: Type) := Option (AVLNode U)
+def BSTree.nil_has_searchInvariant {H: avl_verification.Ord T}: @BSTree.searchInvariant _ H AVL.nil.root := by trivial
-mutual
-def AVL.height'' (tree: AVLNode T): Nat := match tree with
-| AVLNode.mk y left right => 1 + AVL.height left + AVL.height right
+theorem BSTree.searchInvariant_children {H: avl_verification.Ord T} (t: AVLTree T): @searchInvariant _ H t -> @searchInvariant _ H t.left ∧ @searchInvariant _ H t.right := sorry
-def AVL.height (tree: AVLTree T): Nat := match tree with
-| none => 0
-| some node => 1 + AVL.height'' node
-end
-
-
-@[reducible]
-def AVLTree.mem (tree: AVLTree T) (x: T) :=
- match tree with
- | none => False
- | some (AVLNode.mk y left right) => x = y ∨ AVLTree.mem left x ∨ AVLTree.mem right x
-
-@[simp]
-def AVLTree.mem_none: AVLTree.mem none = ({}: Set T) := rfl
-
--- TODO: why the explicit type annotation is required here?
--- TODO(reinforcement): ∪ is actually disjoint.
-@[simp]
-def AVLTree.mem_some {x: T} {left right: AVLTree T}: AVLTree.mem (some (AVLNode.mk x left right)) = (({x}: Set T) ∪ AVLTree.mem left ∪ AVLTree.mem right) := by
- ext y
- rw [AVLTree.mem]
- simp [Set.insert_union]
- simp [Set.insert_def, Set.setOf_set, Set.mem_def, Set.union_def]
-
-
-def AVLTree.setOf: AVLTree T -> Set T := AVLTree.mem
-def AVLTree.val (t: AVLTree T): Option T := match t with
-| none => none
-| some (AVLNode.mk x _ _) => some x
-def AVLTree.left (t: AVLTree T): AVLTree T := match t with
-| none => none
-| some (AVLNode.mk _ left _) => left
-def AVLTree.right (t: AVLTree T): AVLTree T := match t with
-| none => none
-| some (AVLNode.mk _ _ right) => right
+def AVLTree.height (t: AVLTree T) := AVL.height t
+def AVLTree.balanceFactor (t: AVLTree T): Int := t.right.height - t.left.height
+def AVLTree.balanceInvariant (t: AVLTree T) := t.balanceFactor = -1 ∨ t.balanceFactor = 0 ∨ t.balanceFactor = 1
def AVLTree.mem_eq_setOf (t: AVLTree T): AVLTree.mem t = t.setOf := rfl
--- TODO: {t.val} = {} if t.val is none else {t.val.get!} otherwise.
--- @[simp]
--- def AVLTree.setOf_eq_union (t: AVLTree T): t.setOf = {t.val} ∪ t.left.setOf ∪ t.right.setOf := sorry
-
--- Note: we would like to have a theorem that says something like
--- t.setOf = {t.val} ∪ t.left.setOf ∪ t.right.setOf
--- but it's not doable because Aeneas does not generate a `structure` but an inductive type with one constructor.
-
-#check AVL.nil
-#check U32.ofInt 0
-#check 0#u32
--- TODO: créer une instance OfNat pour les Uxyz.
--- TODO: générer {} adéquatement... ?
--- TODO: derive from Ord an Lean Order instance.
--- TODO: oh no, H.cmp returns a Result!
-
-@[pspec]
-theorem AVLTreeSet.insert_loop_spec {H: avl_verification.Ord T}
- (a: T) (t: Option (AVLNode T))
- (Hcmp_eq: ∀ a b, H.cmp a b = Result.ret Ordering.Equal -> a = b)
- (Hcmp_spec: ∀ a b, ∃ o, H.cmp a b = Result.ret o):
- ∃ t', AVLTreeSet.insert_loop T H a t = Result.ret t'
- ∧ AVLTree.setOf t'.2 = insert a (AVLTree.setOf t) := by match t with
- | none =>
- simp [AVLTreeSet.insert_loop, AVLTree.setOf]
- | some (AVLNode.mk b left right) =>
- rw [AVLTreeSet.insert_loop]
- simp only []
- progress keep Hordering as ⟨ ordering ⟩
- cases ordering
- all_goals {
- -- TODO: oof.
- -- We are trying to tackle all goals at the same time.
- -- Refactor this to make it only one simp ideally without even `try`.
- simp only []
- try progress keep H as ⟨ t'', Hset ⟩
- simp [AVLTree.setOf]
- try simp [AVLTree.setOf] at Hset
- try simp [Hset]
- try rw [Set.insert_comm, Set.insert_union]
- try simp [Hcmp_eq _ _ Hordering]
- }
-
-@[pspec]
-def AVLTreeSet.insert_spec
- {H: avl_verification.Ord T}
- -- TODO: this can be generalized into `H.cmp` must be an equivalence relation.
- -- and insert works no longer on Sets but on set quotiented by this equivalence relation.
- (Hcmp_eq: ∀ a b, H.cmp a b = Result.ret Ordering.Equal -> a = b)
- (Hcmp_spec: ∀ a b, ∃ o, H.cmp a b = Result.ret o)
- (a: T) (t: AVLTreeSet T):
- ∃ t', t.insert _ H a = Result.ret t'
- -- set of values *POST* insertion is {a} \cup set of values of the *PRE* tree.
- ∧ AVLTree.setOf t'.2.root = insert a (AVLTree.setOf t.root)
- -- TODO(reinforcement): (t'.1 is false <=> a \in AVLTree.setOf t.root)
- := by
- rw [AVLTreeSet.insert]
- progress keep h as ⟨ t', Hset ⟩; simp
- rw [Hset]
-
end Avl
diff --git a/notes.md b/notes.md
new file mode 100644
index 0000000..cd82dd3
--- /dev/null
+++ b/notes.md
@@ -0,0 +1,11 @@
+# Formalization notes
+
+- Inhabited is not synthesized systematically for any type.
+- Synthesize type aliases (?): requires to obtain this information before MIR.
+
+## Bundle of specifications
+
+Most of the time, we have naked types which does not exhibit their "expected" specification,
+e.g. an `Ord` trait which does not prove that it's an order.
+
+Ideally, we need to be able to build trait specifications and find a way to unbundle them and use them in the different tactics.