1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
|
(** Utilities for strongly connected components - this is similar to the [graphs.rs] file in Charon *)
open Collections
module SccId = Identifiers.IdGen ()
(** The local logger *)
let log = Logging.scc_log
(** A structure containing information about SCCs (strongly connected components) *)
type 'id sccs = {
sccs : 'id list SccId.Map.t;
scc_deps : SccId.Set.t SccId.Map.t; (** The dependencies between sccs *)
}
[@@deriving show]
(** A functor which provides functions to work on strongly connected components *)
module MakeReorder (Id : OrderedType) = struct
module IdMap = MakeMap (Id)
module IdSet = MakeSet (Id)
type id = Id.t
let pp_id = Id.pp_t
(** The order in which Tarjan's algorithm generates the SCCs is arbitrary,
while we want to keep as much as possible the original order (the order
in which the user generated the ids). For this, we iterate through
the ordered ids and try to add the SCC containing the id to a new list of SCCs
Of course, this SCC might have dependencies, so we need to add the dependencies
first (in which case we have reordering to do). This is what this function
does: we add an SCC and its dependencies to the list of reordered SCCs by
doing a depth-first search.
We also compute the SCC dependencies while performing this exploration.
Rem.: we push SCCs to the *front* of [reordered_sccs] (which should then
be reversed before being used).
Rem.: [scc_deps]: we use the fact that the elements inside [SccId.Set.t]
are ordered.
TODO: change the type of [reordered_sccs] (not efficient...)
*)
let rec insert_scc_with_deps (id_deps : Id.t list IdMap.t)
(reordered_sccs : SccId.id list ref)
(scc_deps : SccId.Set.t SccId.Map.t ref) (sccs : Id.t list SccId.Map.t)
(id_to_scc : SccId.id IdMap.t) (scc_id : SccId.id) : unit =
(* Check if the SCC id has already been added *)
if List.mem scc_id !reordered_sccs then ()
else
(* Add the dependencies.
For every id in the dependencies, get the SCC containing this id.
If this is the current SCC: continue. If it is a different one, it is
a dependency: add it to the list of reordered SCCs. *)
let scc = SccId.Map.find scc_id sccs in
List.iter
(fun id ->
let ids = IdMap.find id id_deps in
List.iter
(fun dep_id ->
let dep_scc_id = IdMap.find dep_id id_to_scc in
if dep_scc_id = scc_id then ()
else
(* Insert the dependency *)
let scc_deps_set = SccId.Map.find scc_id !scc_deps in
let scc_deps_set = SccId.Set.add dep_scc_id scc_deps_set in
scc_deps := SccId.Map.add scc_id scc_deps_set !scc_deps;
(* Explore the parent SCC *)
insert_scc_with_deps id_deps reordered_sccs scc_deps sccs
id_to_scc dep_scc_id)
ids)
scc;
(* Add the current SCC *)
reordered_sccs := scc_id :: !reordered_sccs
(** Provided we computed the SCCs (Strongly Connected Components) of a set of
identifier, and those identifiers are ordered, compute the set of SCCs where
the order of the SCCs and the order of the identifiers inside the SCCs attempt
to respect as much as possible the original order between the identifiers.
The [ids] vector gives the ordered set of identifiers.
This is used to generate the translated definitions in a consistent and
stable manner. For instance, if some Rust functions are mutually recursive,
it is possible that we can extract the forward functions in one group, and
extract the backward functions in one group (after filtering the useless
calls in {!module:PureMicroPasses}), but is is also possible that all the functions
(forward and backward) are mutually recursive). For this reason, we compute
the dependency graph and the strongly connected components of that graph.
Similar problems when functions contain loops (especially mutually recursive
functions which contain loops (!)).
Also see the comments for the equivalent function in [graph.rs] in the
Charon project.
*)
let reorder_sccs (id_deps : Id.t list IdMap.t) (ids : Id.t list)
(sccs : Id.t list list) : id sccs =
(* Map the identifiers to the SCC indices *)
let id_to_scc =
IdMap.of_list
(List.concat
(SccId.mapi
(fun scc_id scc -> List.map (fun id -> (id, scc_id)) scc)
sccs))
in
(* Reorder the identifiers inside the SCCs.
We iterate over the identifiers (in the order in which we register them) and add
them in their corresponding SCCs.
TODO: we append to the end of lists, this is not very efficient...
*)
let reordered_sccs : Id.t list SccId.Map.t ref =
ref (SccId.Map.of_list (SccId.mapi (fun scc_id _ -> (scc_id, [])) sccs))
in
List.iter
(fun id ->
let scc_id = IdMap.find id id_to_scc in
let scc_ids = SccId.Map.find scc_id !reordered_sccs in
(* TODO: this is not efficient *)
let scc_ids = List.append scc_ids [ id ] in
reordered_sccs := SccId.Map.add scc_id scc_ids !reordered_sccs)
ids;
(* Reorder the SCCs themselves - just do a depth first search. Iterate over
the def ids, and add the corresponding SCCs (with their dependencies) *)
let reordered_sccs_ids = ref [] in
let scc_deps =
ref (SccId.Map.map (fun _ -> SccId.Set.empty) !reordered_sccs)
in
List.iter
(fun id ->
let scc_id = IdMap.find id id_to_scc in
insert_scc_with_deps id_deps reordered_sccs_ids scc_deps !reordered_sccs
id_to_scc scc_id)
ids;
let reordered_sccs_ids = List.rev !reordered_sccs_ids in
(* Compute the map from the original SCC ids to the new SCC ids (after reordering) *)
let old_to_new_id =
SccId.Map.of_list
(SccId.mapi (fun new_id old_id -> (old_id, new_id)) reordered_sccs_ids)
in
(* Generate the reordered SCCs *)
let tgt_sccs =
SccId.Map.of_list
(SccId.mapi
(fun new_id scc_id ->
(new_id, SccId.Map.find scc_id !reordered_sccs))
reordered_sccs_ids)
in
(* Compute the dependencies with the new indices *)
let tgt_deps =
SccId.Map.of_list
(List.map
(fun (old_id, deps_ids) ->
let new_id = SccId.Map.find old_id old_to_new_id in
let new_deps_ids =
SccId.Set.map
(fun id -> SccId.Map.find id old_to_new_id)
deps_ids
in
(new_id, new_deps_ids))
(SccId.Map.bindings !scc_deps))
in
(* Return *)
{ sccs = tgt_sccs; scc_deps = tgt_deps }
end
module Make (Id : OrderedType) = struct
module M = MakeMap (Id)
module S = MakeSet (Id)
(** Compute the ordered SCC components for a graph, which is a map
from identifier to set of identifiers (which represent the set
of edges starting from an identifier).
*)
let compute (m : (Id.t * S.t) list) : Id.t sccs =
(*
* Create the dependency graph
*)
(* Compute the list/set of identifiers *)
let idl = List.map fst m in
let ids = S.of_list idl in
(* Convert the ids to vertices (i.e., injectively map ids to integers,
and create vertices labeled with those integers).
Rem.: [Graph.create] is *imperative*: it generates a new vertex every
time it is called (!!). For this reason, we first add all the vertices
we need, then add the edges.
*)
let open Graph in
let module IntMap = MakeMap (OrderedInt) in
let module Graph = Pack.Digraph in
let id_to_vertex : Graph.V.t M.t =
let cnt = ref 0 in
M.of_list
(List.map
(fun id ->
let lbl = !cnt in
cnt := !cnt + 1;
(* We create a vertex *)
let v = Graph.V.create lbl in
(id, v))
idl)
in
let vertex_to_id : Id.t IntMap.t =
IntMap.of_list
(List.map
(fun (fid, v) -> (Graph.V.label v, fid))
(M.bindings id_to_vertex))
in
let to_v id = M.find id id_to_vertex in
let to_id v = IntMap.find (Graph.V.label v) vertex_to_id in
let g = Graph.create () in
(* Add the edges, first from the vertices to themselves, then between
vertices. *)
List.iter
(fun (id, deps) ->
let v = to_v id in
Graph.add_edge g v v;
S.iter (fun dep_id -> Graph.add_edge g v (to_v dep_id)) deps)
m;
(* Compute the SCCs *)
let module Comp = Components.Make (Graph) in
let sccs = Comp.scc_list g in
(* Convert the vertices to ids *)
let sccs = List.map (List.map to_id) sccs in
(* Sanity check *)
let _ =
(* Check that the SCCs are pairwise disjoint *)
assert (S.pairwise_disjoint (List.map S.of_list sccs));
(* Check that all the ids are in the sccs *)
let scc_ids = S.of_list (List.concat sccs) in
log#ldebug
(lazy
("group_reorder_fun_decls: sanity check:" ^ "\n- ids : "
^ S.show ids ^ "\n- scc_ids: " ^ S.show scc_ids));
assert (S.equal scc_ids ids)
in
(* Reorder *)
let module Reorder = MakeReorder (Id) in
let id_deps =
M.of_list (List.map (fun (fid, deps) -> (fid, S.elements deps)) m)
in
let sccs = Reorder.reorder_sccs id_deps idl sccs in
(* Sanity check *)
let _ =
(* Check that the SCCs are pairwise disjoint *)
let sccs = List.map snd (SccId.Map.bindings sccs.sccs) in
assert (S.pairwise_disjoint (List.map S.of_list sccs));
(* Check that all the ids are in the sccs *)
let scc_ids = S.of_list (List.concat sccs) in
assert (S.equal scc_ids ids)
in
sccs
end
(** Test - TODO: make "real" unit tests *)
let _ =
(* Check that some SCCs are correctly reordered *)
let check_sccs (id_deps : (int * int list) list) (ids : int list)
(sccs : int list list) (tgt_sccs : int list list) : unit =
let module Ord = OrderedInt in
let module Reorder = MakeReorder (Ord) in
let module Map = MakeMap (Ord) in
let id_deps = Map.of_list id_deps in
let reordered = Reorder.reorder_sccs id_deps ids sccs in
let tgt_sccs =
SccId.Map.of_list (SccId.mapi (fun scc_id ids -> (scc_id, ids)) tgt_sccs)
in
assert (reordered.sccs = tgt_sccs)
in
(* Shouldn't reorder *)
let _ =
let id_deps =
[ (0, []); (1, [ 2; 3 ]); (2, [ 1 ]); (3, [ 1 ]); (4, [ 2 ]) ]
in
let ids = [ 0; 1; 2; 3; 4 ] in
let sccs = [ [ 0 ]; [ 1; 2; 3 ]; [ 4 ] ] in
let tgt_sccs = sccs in
check_sccs id_deps ids sccs tgt_sccs
in
(* Small reorder *)
let _ =
let id_deps =
[ (0, []); (1, [ 2; 3 ]); (2, [ 1 ]); (3, [ 1 ]); (4, [ 2 ]) ]
in
let ids = [ 0; 1; 3; 2; 4 ] in
let sccs = [ [ 0 ]; [ 1; 2; 3 ]; [ 4 ] ] in
let tgt_sccs = [ [ 0 ]; [ 1; 3; 2 ]; [ 4 ] ] in
check_sccs id_deps ids sccs tgt_sccs
in
let _ =
let id_deps = [ (0, [ 1 ]); (1, [ 0 ]); (2, [ 3 ]); (3, [ 2 ]) ] in
let ids = [ 3; 2; 0; 1 ] in
let sccs = [ [ 0; 1 ]; [ 2; 3 ] ] in
let tgt_sccs = [ [ 3; 2 ]; [ 0; 1 ] ] in
check_sccs id_deps ids sccs tgt_sccs
in
()
|