diff options
author | Son HO | 2023-07-31 16:15:58 +0200 |
---|---|---|
committer | GitHub | 2023-07-31 16:15:58 +0200 |
commit | 887d0ef1efc8912c6273b5ebcf979384e9d7fa97 (patch) | |
tree | 92d6021eb549f7cc25501856edd58859786b7e90 /backends/lean/Base/IList | |
parent | 53adf30fe440eb8b6f58ba89f4a4c0acc7877498 (diff) | |
parent | 9b3a58e423333fc9a4a5a264c3beb0a3d951e86b (diff) |
Merge pull request #31 from AeneasVerif/son_lean_backend
Improve the Lean backend
Diffstat (limited to 'backends/lean/Base/IList')
-rw-r--r-- | backends/lean/Base/IList/IList.lean | 284 |
1 files changed, 284 insertions, 0 deletions
diff --git a/backends/lean/Base/IList/IList.lean b/backends/lean/Base/IList/IList.lean new file mode 100644 index 00000000..93047a1b --- /dev/null +++ b/backends/lean/Base/IList/IList.lean @@ -0,0 +1,284 @@ +/- Complementary list functions and lemmas which operate on integers rather + than natural numbers. -/ + +import Std.Data.Int.Lemmas +import Base.Arith + +namespace List + +def len (ls : List α) : Int := + match ls with + | [] => 0 + | _ :: tl => 1 + len tl + +@[simp] theorem len_nil : len ([] : List α) = 0 := by simp [len] +@[simp] theorem len_cons : len ((x :: tl) : List α) = 1 + len tl := by simp [len] + +theorem len_pos : 0 ≤ (ls : List α).len := by + induction ls <;> simp [*] + linarith + +instance (a : Type u) : Arith.HasIntProp (List a) where + prop_ty := λ ls => 0 ≤ ls.len + prop := λ ls => ls.len_pos + +-- Remark: if i < 0, then the result is none +def indexOpt (ls : List α) (i : Int) : Option α := + match ls with + | [] => none + | hd :: tl => if i = 0 then some hd else indexOpt tl (i - 1) + +@[simp] theorem indexOpt_nil : indexOpt ([] : List α) i = none := by simp [indexOpt] +@[simp] theorem indexOpt_zero_cons : indexOpt ((x :: tl) : List α) 0 = some x := by simp [indexOpt] +@[simp] theorem indexOpt_nzero_cons (hne : i ≠ 0) : indexOpt ((x :: tl) : List α) i = indexOpt tl (i - 1) := by simp [*, indexOpt] + +-- Remark: if i < 0, then the result is the defaul element +def index [Inhabited α] (ls : List α) (i : Int) : α := + match ls with + | [] => Inhabited.default + | x :: tl => + if i = 0 then x else index tl (i - 1) + +@[simp] theorem index_zero_cons [Inhabited α] : index ((x :: tl) : List α) 0 = x := by simp [index] +@[simp] theorem index_nzero_cons [Inhabited α] (hne : i ≠ 0) : index ((x :: tl) : List α) i = index tl (i - 1) := by simp [*, index] + +theorem indexOpt_bounds (ls : List α) (i : Int) : + ls.indexOpt i = none ↔ i < 0 ∨ ls.len ≤ i := + match ls with + | [] => + have : ¬ (i < 0) → 0 ≤ i := by int_tac + by simp; tauto + | _ :: tl => + have := indexOpt_bounds tl (i - 1) + if h: i = 0 then + by + simp [*]; + int_tac + else by + simp [*] + constructor <;> intros <;> + casesm* _ ∨ _ <;> -- splits all the disjunctions + first | left; int_tac | right; int_tac + +theorem indexOpt_eq_index [Inhabited α] (ls : List α) (i : Int) : + 0 ≤ i → + i < ls.len → + ls.indexOpt i = some (ls.index i) := + match ls with + | [] => by simp; intros; linarith + | hd :: tl => + if h: i = 0 then + by simp [*] + else + have hi := indexOpt_eq_index tl (i - 1) + by simp [*]; intros; apply hi <;> int_tac + +-- Remark: the list is unchanged if the index is not in bounds (in particular +-- if it is < 0) +def update (ls : List α) (i : Int) (y : α) : List α := + match ls with + | [] => [] + | x :: tl => if i = 0 then y :: tl else x :: update tl (i - 1) y + +-- Remark: the whole list is dropped if the index is not in bounds (in particular +-- if it is < 0) +def idrop (i : Int) (ls : List α) : List α := + match ls with + | [] => [] + | x :: tl => if i = 0 then x :: tl else idrop (i - 1) tl + +section Lemmas + +variable {α : Type u} + +@[simp] theorem update_nil : update ([] : List α) i y = [] := by simp [update] +@[simp] theorem update_zero_cons : update ((x :: tl) : List α) 0 y = y :: tl := by simp [update] +@[simp] theorem update_nzero_cons (hne : i ≠ 0) : update ((x :: tl) : List α) i y = x :: update tl (i - 1) y := by simp [*, update] + +@[simp] theorem idrop_nil : idrop i ([] : List α) = [] := by simp [idrop] +@[simp] theorem idrop_zero : idrop 0 (ls : List α) = ls := by cases ls <;> simp [idrop] +@[simp] theorem idrop_nzero_cons (hne : i ≠ 0) : idrop i ((x :: tl) : List α) = idrop (i - 1) tl := by simp [*, idrop] + +theorem len_eq_length (ls : List α) : ls.len = ls.length := by + induction ls + . rfl + . simp [*, Int.ofNat_succ, Int.add_comm] + +@[simp] theorem len_append (l1 l2 : List α) : (l1 ++ l2).len = l1.len + l2.len := by + -- Remark: simp loops here because of the following rewritings: + -- @Nat.cast_add: ↑(List.length l1 + List.length l2) ==> ↑(List.length l1) + ↑(List.length l2) + -- Int.ofNat_add_ofNat: ↑(List.length l1) + ↑(List.length l2) ==> ↑(List.length l1 + List.length l2) + -- TODO: post an issue? + simp only [len_eq_length] + simp only [length_append] + simp only [Int.ofNat_add] + +@[simp] +theorem length_update (ls : List α) (i : Int) (x : α) : (ls.update i x).length = ls.length := by + revert i + induction ls <;> simp_all [length, update] + intro; split <;> simp [*] + +@[simp] +theorem len_update (ls : List α) (i : Int) (x : α) : (ls.update i x).len = ls.len := by + simp [len_eq_length] + +@[simp] +theorem len_map (ls : List α) (f : α → β) : (ls.map f).len = ls.len := by + simp [len_eq_length] + +theorem left_length_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l1.length = l1'.length) : + l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by + revert l1' + induction l1 + . intro l1'; cases l1' <;> simp [*] + . intro l1'; cases l1' <;> simp_all; tauto + +theorem right_length_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l2.length = l2'.length) : + l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by + have := left_length_eq_append_eq l1 l2 l1' l2' + constructor <;> intro heq2 <;> + have : l1.length + l2.length = l1'.length + l2'.length := by + have : (l1 ++ l2).length = (l1' ++ l2').length := by simp [*] + simp only [length_append] at this + apply this + . simp [heq] at this + tauto + . tauto + +theorem left_len_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l1.len = l1'.len) : + l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by + simp [len_eq_length] at heq + apply left_length_eq_append_eq + assumption + +theorem right_len_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l2.len = l2'.len) : + l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by + simp [len_eq_length] at heq + apply right_length_eq_append_eq + assumption + +open Arith in +theorem idrop_eq_nil_of_le (hineq : ls.len ≤ i) : idrop i ls = [] := by + revert i + induction ls <;> simp [*] + rename_i hd tl hi + intro i hineq + if heq: i = 0 then + simp [*] at * + have := tl.len_pos + linarith + else + simp at hineq + have : 0 < i := by int_tac + simp [*] + apply hi + linarith + +@[simp] +theorem index_ne + {α : Type u} [Inhabited α] (l: List α) (i: ℤ) (j: ℤ) (x: α) : + 0 ≤ i → i < l.len → 0 ≤ j → j < l.len → j ≠ i → + (l.update i x).index j = l.index j + := + λ _ _ _ _ _ => match l with + | [] => by simp at * + | hd :: tl => + if h: i = 0 then + have : j ≠ 0 := by scalar_tac + by simp [*] + else if h : j = 0 then + have : i ≠ 0 := by scalar_tac + by simp [*] + else + by + simp [*] + simp at * + apply index_ne <;> scalar_tac + +@[simp] +theorem index_eq + {α : Type u} [Inhabited α] (l: List α) (i: ℤ) (x: α) : + 0 ≤ i → i < l.len → + (l.update i x).index i = x + := + fun _ _ => match l with + | [] => by simp at *; scalar_tac + | hd :: tl => + if h: i = 0 then + by + simp [*] + else + by + simp [*] + simp at * + apply index_eq <;> scalar_tac + +theorem update_map_eq {α : Type u} {β : Type v} (ls : List α) (i : Int) (x : α) (f : α → β) : + (ls.update i x).map f = (ls.map f).update i (f x) := + match ls with + | [] => by simp + | hd :: tl => + if h : i = 0 then by simp [*] + else + have hi := update_map_eq tl (i - 1) x f + by simp [*] + +theorem len_flatten_update_eq {α : Type u} (ls : List (List α)) (i : Int) (x : List α) + (h0 : 0 ≤ i) (h1 : i < ls.len) : + (ls.update i x).flatten.len = ls.flatten.len + x.len - (ls.index i).len := + match ls with + | [] => by simp at h1; int_tac + | hd :: tl => by + simp at h1 + if h : i = 0 then simp [*]; int_tac + else + have hi := len_flatten_update_eq tl (i - 1) x (by int_tac) (by int_tac) + simp [*] + int_tac + +@[simp] +theorem index_map_eq {α : Type u} {β : Type v} [Inhabited α] [Inhabited β] (ls : List α) (i : Int) (f : α → β) + (h0 : 0 ≤ i) (h1 : i < ls.len) : + (ls.map f).index i = f (ls.index i) := + match ls with + | [] => by simp at h1; int_tac + | hd :: tl => + if h : i = 0 then by + simp [*] + else + have hi := index_map_eq tl (i - 1) f (by int_tac) (by simp at h1; int_tac) + by + simp [*] + +def allP {α : Type u} (l : List α) (p: α → Prop) : Prop := + foldr (fun a r => p a ∧ r) True l + +@[simp] +theorem allP_nil {α : Type u} (p: α → Prop) : allP [] p := + by simp [allP, foldr] + +@[simp] +theorem allP_cons {α : Type u} (hd: α) (tl : List α) (p: α → Prop) : + allP (hd :: tl) p ↔ p hd ∧ allP tl p + := by simp [allP, foldr] + +def pairwise_rel + {α : Type u} (rel : α → α → Prop) (l: List α) : Prop + := match l with + | [] => True + | hd :: tl => allP tl (rel hd) ∧ pairwise_rel rel tl + +@[simp] +theorem pairwise_rel_nil {α : Type u} (rel : α → α → Prop) : + pairwise_rel rel [] + := by simp [pairwise_rel] + +@[simp] +theorem pairwise_rel_cons {α : Type u} (rel : α → α → Prop) (hd: α) (tl: List α) : + pairwise_rel rel (hd :: tl) ↔ allP tl (rel hd) ∧ pairwise_rel rel tl + := by simp [pairwise_rel] + +end Lemmas + +end List |