From 3e8060b5501ec83940a4309389a68898df26ebd0 Mon Sep 17 00:00:00 2001 From: Son Ho Date: Mon, 17 Jul 2023 23:37:31 +0200 Subject: Reorganize the Lean backend --- backends/lean/Base/IList/IList.lean | 142 ++++++++++++++++++++++++++++++++++++ 1 file changed, 142 insertions(+) create mode 100644 backends/lean/Base/IList/IList.lean (limited to 'backends/lean/Base/IList') diff --git a/backends/lean/Base/IList/IList.lean b/backends/lean/Base/IList/IList.lean new file mode 100644 index 00000000..2a335cac --- /dev/null +++ b/backends/lean/Base/IList/IList.lean @@ -0,0 +1,142 @@ +/- Complementary list functions and lemmas which operate on integers rather + than natural numbers. -/ + +import Std.Data.Int.Lemmas +import Base.Arith + +namespace List + +def len (ls : List α) : Int := + match ls with + | [] => 0 + | _ :: tl => 1 + len tl + +-- Remark: if i < 0, then the result is none +def indexOpt (ls : List α) (i : Int) : Option α := + match ls with + | [] => none + | hd :: tl => if i = 0 then some hd else indexOpt tl (i - 1) + +-- Remark: if i < 0, then the result is the defaul element +def index [Inhabited α] (ls : List α) (i : Int) : α := + match ls with + | [] => Inhabited.default + | x :: tl => + if i = 0 then x else index tl (i - 1) + +-- Remark: the list is unchanged if the index is not in bounds (in particular +-- if it is < 0) +def update (ls : List α) (i : Int) (y : α) : List α := + match ls with + | [] => [] + | x :: tl => if i = 0 then y :: tl else x :: update tl (i - 1) y + +-- Remark: the whole list is dropped if the index is not in bounds (in particular +-- if it is < 0) +def idrop (i : Int) (ls : List α) : List α := + match ls with + | [] => [] + | x :: tl => if i = 0 then x :: tl else idrop (i - 1) tl + +section Lemmas + +variable {α : Type u} + +@[simp] theorem len_nil : len ([] : List α) = 0 := by simp [len] +@[simp] theorem len_cons : len ((x :: tl) : List α) = 1 + len tl := by simp [len] + +@[simp] theorem index_zero_cons [Inhabited α] : index ((x :: tl) : List α) 0 = x := by simp [index] +@[simp] theorem index_nzero_cons [Inhabited α] (hne : i ≠ 0) : index ((x :: tl) : List α) i = index tl (i - 1) := by simp [*, index] + +@[simp] theorem update_nil : update ([] : List α) i y = [] := by simp [update] +@[simp] theorem update_zero_cons : update ((x :: tl) : List α) 0 y = y :: tl := by simp [update] +@[simp] theorem update_nzero_cons (hne : i ≠ 0) : update ((x :: tl) : List α) i y = x :: update tl (i - 1) y := by simp [*, update] + +@[simp] theorem idrop_nil : idrop i ([] : List α) = [] := by simp [idrop] +@[simp] theorem idrop_zero : idrop 0 (ls : List α) = ls := by cases ls <;> simp [idrop] +@[simp] theorem idrop_nzero_cons (hne : i ≠ 0) : idrop i ((x :: tl) : List α) = idrop (i - 1) tl := by simp [*, idrop] + +theorem len_eq_length (ls : List α) : ls.len = ls.length := by + induction ls + . rfl + . simp [*, Int.ofNat_succ, Int.add_comm] + +@[simp] theorem len_append (l1 l2 : List α) : (l1 ++ l2).len = l1.len + l2.len := by + -- Remark: simp loops here because of the following rewritings: + -- @Nat.cast_add: ↑(List.length l1 + List.length l2) ==> ↑(List.length l1) + ↑(List.length l2) + -- Int.ofNat_add_ofNat: ↑(List.length l1) + ↑(List.length l2) ==> ↑(List.length l1 + List.length l2) + -- TODO: post an issue? + simp only [len_eq_length] + simp only [length_append] + simp only [Int.ofNat_add] + +@[simp] +theorem length_update (ls : List α) (i : Int) (x : α) : (ls.update i x).length = ls.length := by + revert i + induction ls <;> simp_all [length, update] + intro; split <;> simp [*] + +@[simp] +theorem len_update (ls : List α) (i : Int) (x : α) : (ls.update i x).len = ls.len := by + simp [len_eq_length] + + +theorem len_pos : 0 ≤ (ls : List α).len := by + induction ls <;> simp [*] + linarith + +instance (a : Type u) : Arith.HasIntProp (List a) where + prop_ty := λ ls => 0 ≤ ls.len + prop := λ ls => ls.len_pos + +theorem left_length_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l1.length = l1'.length) : + l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by + revert l1' + induction l1 + . intro l1'; cases l1' <;> simp [*] + . intro l1'; cases l1' <;> simp_all; tauto + +theorem right_length_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l2.length = l2'.length) : + l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by + have := left_length_eq_append_eq l1 l2 l1' l2' + constructor <;> intro heq2 <;> + have : l1.length + l2.length = l1'.length + l2'.length := by + have : (l1 ++ l2).length = (l1' ++ l2').length := by simp [*] + simp only [length_append] at this + apply this + . simp [heq] at this + tauto + . tauto + +theorem left_len_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l1.len = l1'.len) : + l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by + simp [len_eq_length] at heq + apply left_length_eq_append_eq + assumption + +theorem right_len_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l2.len = l2'.len) : + l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by + simp [len_eq_length] at heq + apply right_length_eq_append_eq + assumption + +open Arith in +theorem idrop_eq_nil_of_le (hineq : ls.len ≤ i) : idrop i ls = [] := by + revert i + induction ls <;> simp [*] + rename_i hd tl hi + intro i hineq + if heq: i = 0 then + simp [*] at * + have := tl.len_pos + linarith + else + simp at hineq + have : 0 < i := by int_tac + simp [*] + apply hi + linarith + +end Lemmas + +end List -- cgit v1.2.3 From 2fa3cb8ee04dd7ff4184e3e1000fdc025abc50a4 Mon Sep 17 00:00:00 2001 From: Son Ho Date: Mon, 17 Jul 2023 23:37:48 +0200 Subject: Start proving theorems for primitive definitions --- backends/lean/Base/IList/IList.lean | 66 +++++++++++++++++++++++++++++-------- 1 file changed, 52 insertions(+), 14 deletions(-) (limited to 'backends/lean/Base/IList') diff --git a/backends/lean/Base/IList/IList.lean b/backends/lean/Base/IList/IList.lean index 2a335cac..ddb10236 100644 --- a/backends/lean/Base/IList/IList.lean +++ b/backends/lean/Base/IList/IList.lean @@ -11,12 +11,27 @@ def len (ls : List α) : Int := | [] => 0 | _ :: tl => 1 + len tl +@[simp] theorem len_nil : len ([] : List α) = 0 := by simp [len] +@[simp] theorem len_cons : len ((x :: tl) : List α) = 1 + len tl := by simp [len] + +theorem len_pos : 0 ≤ (ls : List α).len := by + induction ls <;> simp [*] + linarith + +instance (a : Type u) : Arith.HasIntProp (List a) where + prop_ty := λ ls => 0 ≤ ls.len + prop := λ ls => ls.len_pos + -- Remark: if i < 0, then the result is none def indexOpt (ls : List α) (i : Int) : Option α := match ls with | [] => none | hd :: tl => if i = 0 then some hd else indexOpt tl (i - 1) +@[simp] theorem indexOpt_nil : indexOpt ([] : List α) i = none := by simp [indexOpt] +@[simp] theorem indexOpt_zero_cons : indexOpt ((x :: tl) : List α) 0 = some x := by simp [indexOpt] +@[simp] theorem indexOpt_nzero_cons (hne : i ≠ 0) : indexOpt ((x :: tl) : List α) i = indexOpt tl (i - 1) := by simp [*, indexOpt] + -- Remark: if i < 0, then the result is the defaul element def index [Inhabited α] (ls : List α) (i : Int) : α := match ls with @@ -24,6 +39,43 @@ def index [Inhabited α] (ls : List α) (i : Int) : α := | x :: tl => if i = 0 then x else index tl (i - 1) +@[simp] theorem index_zero_cons [Inhabited α] : index ((x :: tl) : List α) 0 = x := by simp [index] +@[simp] theorem index_nzero_cons [Inhabited α] (hne : i ≠ 0) : index ((x :: tl) : List α) i = index tl (i - 1) := by simp [*, index] + +theorem indexOpt_bounds (ls : List α) (i : Int) : + ls.indexOpt i = none ↔ i < 0 ∨ ls.len ≤ i := + match ls with + | [] => + have : ¬ (i < 0) → 0 ≤ i := by intro; linarith -- TODO: simplify (we could boost int_tac) + by simp; tauto + | _ :: tl => + have := indexOpt_bounds tl (i - 1) + if h: i = 0 then + by + simp [*]; + -- TODO: int_tac/scalar_tac should also explore the goal! + have := tl.len_pos + linarith + else by + simp [*] + constructor <;> intros <;> + -- TODO: tactic to split all disjunctions + rename_i hor <;> cases hor <;> + first | left; int_tac | right; int_tac + +theorem indexOpt_eq_index [Inhabited α] (ls : List α) (i : Int) : + 0 ≤ i → + i < ls.len → + ls.indexOpt i = some (ls.index i) := + match ls with + | [] => by simp; intros; linarith + | hd :: tl => + if h: i = 0 then + by simp [*] + else + have hi := indexOpt_eq_index tl (i - 1) + by simp [*]; intros; apply hi <;> int_tac + -- Remark: the list is unchanged if the index is not in bounds (in particular -- if it is < 0) def update (ls : List α) (i : Int) (y : α) : List α := @@ -42,12 +94,6 @@ section Lemmas variable {α : Type u} -@[simp] theorem len_nil : len ([] : List α) = 0 := by simp [len] -@[simp] theorem len_cons : len ((x :: tl) : List α) = 1 + len tl := by simp [len] - -@[simp] theorem index_zero_cons [Inhabited α] : index ((x :: tl) : List α) 0 = x := by simp [index] -@[simp] theorem index_nzero_cons [Inhabited α] (hne : i ≠ 0) : index ((x :: tl) : List α) i = index tl (i - 1) := by simp [*, index] - @[simp] theorem update_nil : update ([] : List α) i y = [] := by simp [update] @[simp] theorem update_zero_cons : update ((x :: tl) : List α) 0 y = y :: tl := by simp [update] @[simp] theorem update_nzero_cons (hne : i ≠ 0) : update ((x :: tl) : List α) i y = x :: update tl (i - 1) y := by simp [*, update] @@ -81,14 +127,6 @@ theorem len_update (ls : List α) (i : Int) (x : α) : (ls.update i x).len = ls. simp [len_eq_length] -theorem len_pos : 0 ≤ (ls : List α).len := by - induction ls <;> simp [*] - linarith - -instance (a : Type u) : Arith.HasIntProp (List a) where - prop_ty := λ ls => 0 ≤ ls.len - prop := λ ls => ls.len_pos - theorem left_length_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l1.length = l1'.length) : l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by revert l1' -- cgit v1.2.3 From 6ef1d360b89fd9f9383e63609888bf925a6a16ab Mon Sep 17 00:00:00 2001 From: Son Ho Date: Thu, 20 Jul 2023 12:08:09 +0200 Subject: Improve progress further and move some lemmas --- backends/lean/Base/IList/IList.lean | 67 +++++++++++++++++++++++++++++++++++++ 1 file changed, 67 insertions(+) (limited to 'backends/lean/Base/IList') diff --git a/backends/lean/Base/IList/IList.lean b/backends/lean/Base/IList/IList.lean index ddb10236..1773e593 100644 --- a/backends/lean/Base/IList/IList.lean +++ b/backends/lean/Base/IList/IList.lean @@ -175,6 +175,73 @@ theorem idrop_eq_nil_of_le (hineq : ls.len ≤ i) : idrop i ls = [] := by apply hi linarith +@[simp] +theorem index_ne + {α : Type u} [Inhabited α] (l: List α) (i: ℤ) (j: ℤ) (x: α) : + 0 ≤ i → i < l.len → 0 ≤ j → j < l.len → j ≠ i → + (l.update i x).index j = l.index j + := + λ _ _ _ _ _ => match l with + | [] => by simp at * + | hd :: tl => + if h: i = 0 then + have : j ≠ 0 := by scalar_tac + by simp [*] + else if h : j = 0 then + have : i ≠ 0 := by scalar_tac + by simp [*] + else + by + simp [*] + simp at * + apply index_ne <;> scalar_tac + +@[simp] +theorem index_eq + {α : Type u} [Inhabited α] (l: List α) (i: ℤ) (x: α) : + 0 ≤ i → i < l.len → + (l.update i x).index i = x + := + fun _ _ => match l with + | [] => by simp at *; exfalso; scalar_tac -- TODO: exfalso needed. Son FIXME + | hd :: tl => + if h: i = 0 then + by + simp [*] + else + by + simp [*] + simp at * + apply index_eq <;> scalar_tac + +def allP {α : Type u} (l : List α) (p: α → Prop) : Prop := + foldr (fun a r => p a ∧ r) True l + +@[simp] +theorem allP_nil {α : Type u} (p: α → Prop) : allP [] p := + by simp [allP, foldr] + +@[simp] +theorem allP_cons {α : Type u} (hd: α) (tl : List α) (p: α → Prop) : + allP (hd :: tl) p ↔ p hd ∧ allP tl p + := by simp [allP, foldr] + +def pairwise_rel + {α : Type u} (rel : α → α → Prop) (l: List α) : Prop + := match l with + | [] => True + | hd :: tl => allP tl (rel hd) ∧ pairwise_rel rel tl + +@[simp] +theorem pairwise_rel_nil {α : Type u} (rel : α → α → Prop) : + pairwise_rel rel [] + := by simp [pairwise_rel] + +@[simp] +theorem pairwise_rel_cons {α : Type u} (rel : α → α → Prop) (hd: α) (tl: List α) : + pairwise_rel rel (hd :: tl) ↔ allP tl (rel hd) ∧ pairwise_rel rel tl + := by simp [pairwise_rel] + end Lemmas end List -- cgit v1.2.3 From 876137dff361620d8ade1a4ee94fa9274df0bdc6 Mon Sep 17 00:00:00 2001 From: Son Ho Date: Tue, 25 Jul 2023 14:08:44 +0200 Subject: Improve int_tac and scalar_tac --- backends/lean/Base/IList/IList.lean | 12 ++++-------- 1 file changed, 4 insertions(+), 8 deletions(-) (limited to 'backends/lean/Base/IList') diff --git a/backends/lean/Base/IList/IList.lean b/backends/lean/Base/IList/IList.lean index 1773e593..2443b1a6 100644 --- a/backends/lean/Base/IList/IList.lean +++ b/backends/lean/Base/IList/IList.lean @@ -46,21 +46,18 @@ theorem indexOpt_bounds (ls : List α) (i : Int) : ls.indexOpt i = none ↔ i < 0 ∨ ls.len ≤ i := match ls with | [] => - have : ¬ (i < 0) → 0 ≤ i := by intro; linarith -- TODO: simplify (we could boost int_tac) + have : ¬ (i < 0) → 0 ≤ i := by int_tac by simp; tauto | _ :: tl => have := indexOpt_bounds tl (i - 1) if h: i = 0 then by simp [*]; - -- TODO: int_tac/scalar_tac should also explore the goal! - have := tl.len_pos - linarith + int_tac else by simp [*] constructor <;> intros <;> - -- TODO: tactic to split all disjunctions - rename_i hor <;> cases hor <;> + casesm* _ ∨ _ <;> -- splits all the disjunctions first | left; int_tac | right; int_tac theorem indexOpt_eq_index [Inhabited α] (ls : List α) (i : Int) : @@ -126,7 +123,6 @@ theorem length_update (ls : List α) (i : Int) (x : α) : (ls.update i x).length theorem len_update (ls : List α) (i : Int) (x : α) : (ls.update i x).len = ls.len := by simp [len_eq_length] - theorem left_length_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l1.length = l1'.length) : l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by revert l1' @@ -203,7 +199,7 @@ theorem index_eq (l.update i x).index i = x := fun _ _ => match l with - | [] => by simp at *; exfalso; scalar_tac -- TODO: exfalso needed. Son FIXME + | [] => by simp at *; scalar_tac | hd :: tl => if h: i = 0 then by -- cgit v1.2.3 From 0cc3c78137434d848188eee2a66b1e2cacfd102e Mon Sep 17 00:00:00 2001 From: Son Ho Date: Tue, 25 Jul 2023 19:06:05 +0200 Subject: Make progress on the proofs of the hashmap --- backends/lean/Base/IList/IList.lean | 41 +++++++++++++++++++++++++++++++++++++ 1 file changed, 41 insertions(+) (limited to 'backends/lean/Base/IList') diff --git a/backends/lean/Base/IList/IList.lean b/backends/lean/Base/IList/IList.lean index 2443b1a6..93047a1b 100644 --- a/backends/lean/Base/IList/IList.lean +++ b/backends/lean/Base/IList/IList.lean @@ -123,6 +123,10 @@ theorem length_update (ls : List α) (i : Int) (x : α) : (ls.update i x).length theorem len_update (ls : List α) (i : Int) (x : α) : (ls.update i x).len = ls.len := by simp [len_eq_length] +@[simp] +theorem len_map (ls : List α) (f : α → β) : (ls.map f).len = ls.len := by + simp [len_eq_length] + theorem left_length_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l1.length = l1'.length) : l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by revert l1' @@ -210,6 +214,43 @@ theorem index_eq simp at * apply index_eq <;> scalar_tac +theorem update_map_eq {α : Type u} {β : Type v} (ls : List α) (i : Int) (x : α) (f : α → β) : + (ls.update i x).map f = (ls.map f).update i (f x) := + match ls with + | [] => by simp + | hd :: tl => + if h : i = 0 then by simp [*] + else + have hi := update_map_eq tl (i - 1) x f + by simp [*] + +theorem len_flatten_update_eq {α : Type u} (ls : List (List α)) (i : Int) (x : List α) + (h0 : 0 ≤ i) (h1 : i < ls.len) : + (ls.update i x).flatten.len = ls.flatten.len + x.len - (ls.index i).len := + match ls with + | [] => by simp at h1; int_tac + | hd :: tl => by + simp at h1 + if h : i = 0 then simp [*]; int_tac + else + have hi := len_flatten_update_eq tl (i - 1) x (by int_tac) (by int_tac) + simp [*] + int_tac + +@[simp] +theorem index_map_eq {α : Type u} {β : Type v} [Inhabited α] [Inhabited β] (ls : List α) (i : Int) (f : α → β) + (h0 : 0 ≤ i) (h1 : i < ls.len) : + (ls.map f).index i = f (ls.index i) := + match ls with + | [] => by simp at h1; int_tac + | hd :: tl => + if h : i = 0 then by + simp [*] + else + have hi := index_map_eq tl (i - 1) f (by int_tac) (by simp at h1; int_tac) + by + simp [*] + def allP {α : Type u} (l : List α) (p: α → Prop) : Prop := foldr (fun a r => p a ∧ r) True l -- cgit v1.2.3