summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorSon HO2024-03-08 16:51:40 +0100
committerGitHub2024-03-08 16:51:40 +0100
commit169d011cbfa83d853d0148bbf6b946e6ccbe4c4c (patch)
treeed8953634d14313d5b7d6ad204343d64eb990baf
parentb604bb9935007a1f0e9c7f556f8196f0e14c85ce (diff)
parent873deb005b394aca3090497e6c21ab9f8c2676be (diff)
Merge pull request #83 from AeneasVerif/son/backs
Remove the option to split the forward/backward functions
Diffstat (limited to '')
-rw-r--r--.github/workflows/ci.yml1
-rw-r--r--Makefile25
-rw-r--r--backends/fstar/Makefile (renamed from backends/fstar/merge/Makefile)0
-rw-r--r--backends/fstar/Primitives.fst (renamed from backends/fstar/merge/Primitives.fst)0
-rw-r--r--backends/fstar/split/Makefile47
-rw-r--r--backends/fstar/split/Primitives.fst884
-rw-r--r--compiler/Config.ml107
-rw-r--r--compiler/Contexts.ml2
-rw-r--r--compiler/Extract.ml444
-rw-r--r--compiler/ExtractBase.ml243
-rw-r--r--compiler/ExtractBuiltin.ml138
-rw-r--r--compiler/ExtractTypes.ml2
-rw-r--r--compiler/Main.ml9
-rw-r--r--compiler/PrintPure.ml18
-rw-r--r--compiler/Pure.ml4
-rw-r--r--compiler/PureMicroPasses.ml331
-rw-r--r--compiler/ReorderDecls.ml12
-rw-r--r--compiler/SymbolicToPure.ml949
-rw-r--r--compiler/Translate.ml145
-rw-r--r--compiler/TranslateCore.ml15
-rw-r--r--flake.nix19
-rw-r--r--tests/fstar-split/.gitignore1
-rw-r--r--tests/fstar-split/Makefile33
-rw-r--r--tests/fstar-split/Makefile.template48
-rw-r--r--tests/fstar-split/arrays/Arrays.Clauses.Template.fst21
-rw-r--r--tests/fstar-split/arrays/Arrays.Clauses.fst19
-rw-r--r--tests/fstar-split/arrays/Arrays.Funs.fst445
-rw-r--r--tests/fstar-split/arrays/Arrays.Types.fst11
-rw-r--r--tests/fstar-split/arrays/Makefile49
-rw-r--r--tests/fstar-split/arrays/Primitives.fst884
-rw-r--r--tests/fstar-split/betree/BetreeMain.Clauses.Template.fst117
-rw-r--r--tests/fstar-split/betree/BetreeMain.Clauses.fst210
-rw-r--r--tests/fstar-split/betree/BetreeMain.Funs.fst1006
-rw-r--r--tests/fstar-split/betree/BetreeMain.FunsExternal.fsti35
-rw-r--r--tests/fstar-split/betree/BetreeMain.Types.fst61
-rw-r--r--tests/fstar-split/betree/BetreeMain.TypesExternal.fsti10
-rw-r--r--tests/fstar-split/betree/Makefile49
-rw-r--r--tests/fstar-split/betree/Primitives.fst884
-rw-r--r--tests/fstar-split/demo/Demo.fst187
-rw-r--r--tests/fstar-split/demo/Makefile49
-rw-r--r--tests/fstar-split/demo/Primitives.fst884
-rw-r--r--tests/fstar-split/hashmap/Hashmap.Clauses.Template.fst71
-rw-r--r--tests/fstar-split/hashmap/Hashmap.Clauses.fst61
-rw-r--r--tests/fstar-split/hashmap/Hashmap.Funs.fst529
-rw-r--r--tests/fstar-split/hashmap/Hashmap.Properties.fst3186
-rw-r--r--tests/fstar-split/hashmap/Hashmap.Properties.fsti267
-rw-r--r--tests/fstar-split/hashmap/Hashmap.Types.fst23
-rw-r--r--tests/fstar-split/hashmap/Makefile49
-rw-r--r--tests/fstar-split/hashmap/Primitives.fst884
-rw-r--r--tests/fstar-split/hashmap_on_disk/HashmapMain.Clauses.Template.fst72
-rw-r--r--tests/fstar-split/hashmap_on_disk/HashmapMain.Clauses.fst61
-rw-r--r--tests/fstar-split/hashmap_on_disk/HashmapMain.Funs.fst576
-rw-r--r--tests/fstar-split/hashmap_on_disk/HashmapMain.FunsExternal.fsti18
-rw-r--r--tests/fstar-split/hashmap_on_disk/HashmapMain.Properties.fst48
-rw-r--r--tests/fstar-split/hashmap_on_disk/HashmapMain.Types.fst24
-rw-r--r--tests/fstar-split/hashmap_on_disk/HashmapMain.TypesExternal.fsti10
-rw-r--r--tests/fstar-split/hashmap_on_disk/Makefile49
-rw-r--r--tests/fstar-split/hashmap_on_disk/Primitives.fst884
-rw-r--r--tests/fstar-split/misc/Bitwise.fst32
-rw-r--r--tests/fstar-split/misc/Constants.fst145
-rw-r--r--tests/fstar-split/misc/External.Funs.fst82
-rw-r--r--tests/fstar-split/misc/External.FunsExternal.fsti32
-rw-r--r--tests/fstar-split/misc/External.Types.fst8
-rw-r--r--tests/fstar-split/misc/External.TypesExternal.fsti14
-rw-r--r--tests/fstar-split/misc/Loops.Clauses.Template.fst138
-rw-r--r--tests/fstar-split/misc/Loops.Clauses.fst112
-rw-r--r--tests/fstar-split/misc/Loops.Funs.fst753
-rw-r--r--tests/fstar-split/misc/Loops.Types.fst13
-rw-r--r--tests/fstar-split/misc/Makefile49
-rw-r--r--tests/fstar-split/misc/NoNestedBorrows.fst618
-rw-r--r--tests/fstar-split/misc/Paper.fst109
-rw-r--r--tests/fstar-split/misc/PoloniusList.fst34
-rw-r--r--tests/fstar-split/misc/Primitives.fst884
-rw-r--r--tests/fstar-split/traits/Makefile49
-rw-r--r--tests/fstar-split/traits/Primitives.fst884
-rw-r--r--tests/fstar-split/traits/Traits.fst468
76 files changed, 705 insertions, 18929 deletions
diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml
index 2039e65d..6b5aacf0 100644
--- a/.github/workflows/ci.yml
+++ b/.github/workflows/ci.yml
@@ -14,7 +14,6 @@ jobs:
- run: nix build -L .#aeneas
- run: nix build -L .#checks.x86_64-linux.aeneas-tests
- run: nix build -L .#checks.x86_64-linux.aeneas-verify-fstar
- - run: nix build -L .#checks.x86_64-linux.aeneas-verify-fstar-split
- run: nix build -L .#checks.x86_64-linux.aeneas-verify-coq
- run: nix build -L .#checks.x86_64-linux.aeneas-verify-hol4
# Lean doesn't work with Nix
diff --git a/Makefile b/Makefile
index 26392c11..8b9c8392 100644
--- a/Makefile
+++ b/Makefile
@@ -70,11 +70,9 @@ build-bin-dir: build-bin build-lib
mkdir -p bin
cp -f compiler/_build/default/main.exe bin/aeneas
cp -f compiler/_build/default/main.exe bin/aeneas.cmxs
- mkdir -p bin/backends/fstar/split
- mkdir -p bin/backends/fstar/merge
+ mkdir -p bin/backends/fstar
mkdir -p bin/backends/coq
- cp -rf backends/fstar/split/*.fst* bin/backends/fstar/split/
- cp -rf backends/fstar/merge/*.fst* bin/backends/fstar/merge/
+ cp -rf backends/fstar/*.fst* bin/backends/fstar/
cp -rf backends/coq/*.v bin/backends/coq/
.PHONY: doc
@@ -263,29 +261,14 @@ testp-%: gen-llbcp-% tfstarp-% tcoqp-% tleanp-% thol4p-%
.PHONY: tfstar-%
tfstar-%: OPTIONS += -backend fstar
tfstar-%: BACKEND_SUBDIR := fstar
-tfstar-%: tsplit-fstar-%
+tfstar-%:
$(AENEAS_CMD)
# "p" stands for "Polonius"
.PHONY: tfstarp-%
tfstarp-%: OPTIONS += -backend fstar
tfstarp-%: BACKEND_SUBDIR := fstar
-tfstarp-%: tsplit-fstarp-%
- $(AENEAS_CMD)
-
-# Test where we split the forward/backward functions
-.PHONY: tsplit-fstar-%
-tsplit-fstar-%: OPTIONS += -backend fstar -split-fwd-back
-tsplit-fstar-%: BACKEND_SUBDIR := fstar-split
-tsplit-fstar-%:
- $(AENEAS_CMD)
-
-# Test where we split the forward/backward functions
-# "p" stands for "Polonius"
-.PHONY: tsplit-fstarp-%
-tsplit-fstarp-%: OPTIONS += -backend fstar -split-fwd-back
-tsplit-fstarp-%: BACKEND_SUBDIR := fstar-split
-tsplit-fstarp-%:
+tfstarp-%:
$(AENEAS_CMD)
.PHONY: tcoq-%
diff --git a/backends/fstar/merge/Makefile b/backends/fstar/Makefile
index a16b0edb..a16b0edb 100644
--- a/backends/fstar/merge/Makefile
+++ b/backends/fstar/Makefile
diff --git a/backends/fstar/merge/Primitives.fst b/backends/fstar/Primitives.fst
index fca80829..fca80829 100644
--- a/backends/fstar/merge/Primitives.fst
+++ b/backends/fstar/Primitives.fst
diff --git a/backends/fstar/split/Makefile b/backends/fstar/split/Makefile
deleted file mode 100644
index a16b0edb..00000000
--- a/backends/fstar/split/Makefile
+++ /dev/null
@@ -1,47 +0,0 @@
-INCLUDE_DIRS = .
-
-FSTAR_INCLUDES = $(addprefix --include ,$(INCLUDE_DIRS))
-
-FSTAR_HINTS ?= --use_hints --use_hint_hashes --record_hints
-
-FSTAR_OPTIONS = $(FSTAR_HINTS) \
- --cache_checked_modules $(FSTAR_INCLUDES) --cmi \
- --warn_error '+241@247+285-274' \
-
-FSTAR_NO_FLAGS = fstar.exe --already_cached 'Prims FStar LowStar Steel' --odir obj --cache_dir obj
-
-FSTAR = $(FSTAR_NO_FLAGS) $(FSTAR_OPTIONS)
-
-# The F* roots are used to compute the dependency graph, and generate the .depend file
-FSTAR_ROOTS ?= $(wildcard *.fst *.fsti)
-
-# Build all the files
-all: $(addprefix obj/,$(addsuffix .checked,$(FSTAR_ROOTS)))
-
-# This is the right way to ensure the .depend file always gets re-built.
-ifeq (,$(filter %-in,$(MAKECMDGOALS)))
-ifndef NODEPEND
-ifndef MAKE_RESTARTS
-.depend: .FORCE
- $(FSTAR_NO_FLAGS) --dep full $(notdir $(FSTAR_ROOTS)) > $@
-
-.PHONY: .FORCE
-.FORCE:
-endif
-endif
-
-include .depend
-endif
-
-# For the interactive mode
-%.fst-in %.fsti-in:
- @echo $(FSTAR_OPTIONS)
-
-# Generete the .checked files in batch mode
-%.checked:
- $(FSTAR) $(FSTAR_OPTIONS) $< && \
- touch -c $@
-
-.PHONY: clean
-clean:
- rm -f obj/*
diff --git a/backends/fstar/split/Primitives.fst b/backends/fstar/split/Primitives.fst
deleted file mode 100644
index a3ffbde4..00000000
--- a/backends/fstar/split/Primitives.fst
+++ /dev/null
@@ -1,884 +0,0 @@
-/// This file lists primitive and assumed functions and types
-module Primitives
-open FStar.Mul
-open FStar.List.Tot
-
-#set-options "--z3rlimit 15 --fuel 0 --ifuel 1"
-
-(*** Utilities *)
-val list_update (#a : Type0) (ls : list a) (i : nat{i < length ls}) (x : a) :
- ls':list a{
- length ls' = length ls /\
- index ls' i == x
- }
-#push-options "--fuel 1"
-let rec list_update #a ls i x =
- match ls with
- | x' :: ls -> if i = 0 then x :: ls else x' :: list_update ls (i-1) x
-#pop-options
-
-(*** Result *)
-type error : Type0 =
-| Failure
-| OutOfFuel
-
-type result (a : Type0) : Type0 =
-| Return : v:a -> result a
-| Fail : e:error -> result a
-
-// Monadic return operator
-unfold let return (#a : Type0) (x : a) : result a = Return x
-
-// Monadic bind operator.
-// Allows to use the notation:
-// ```
-// let* x = y in
-// ...
-// ```
-unfold let (let*) (#a #b : Type0) (m: result a)
- (f: (x:a) -> Pure (result b) (requires (m == Return x)) (ensures fun _ -> True)) :
- result b =
- match m with
- | Return x -> f x
- | Fail e -> Fail e
-
-// Monadic assert(...)
-let massert (b:bool) : result unit = if b then Return () else Fail Failure
-
-// Normalize and unwrap a successful result (used for globals).
-let eval_global (#a : Type0) (x : result a{Return? (normalize_term x)}) : a = Return?.v x
-
-(*** Misc *)
-type char = FStar.Char.char
-type string = string
-
-let is_zero (n: nat) : bool = n = 0
-let decrease (n: nat{n > 0}) : nat = n - 1
-
-let core_mem_replace (a : Type0) (x : a) (y : a) : a = x
-let core_mem_replace_back (a : Type0) (x : a) (y : a) : a = y
-
-// We don't really use raw pointers for now
-type mut_raw_ptr (t : Type0) = { v : t }
-type const_raw_ptr (t : Type0) = { v : t }
-
-(*** Scalars *)
-/// Rem.: most of the following code was partially generated
-
-assume val size_numbits : pos
-
-// TODO: we could use FStar.Int.int_t and FStar.UInt.int_t
-
-let isize_min : int = -9223372036854775808 // TODO: should be opaque
-let isize_max : int = 9223372036854775807 // TODO: should be opaque
-let i8_min : int = -128
-let i8_max : int = 127
-let i16_min : int = -32768
-let i16_max : int = 32767
-let i32_min : int = -2147483648
-let i32_max : int = 2147483647
-let i64_min : int = -9223372036854775808
-let i64_max : int = 9223372036854775807
-let i128_min : int = -170141183460469231731687303715884105728
-let i128_max : int = 170141183460469231731687303715884105727
-let usize_min : int = 0
-let usize_max : int = 4294967295 // TODO: should be opaque
-let u8_min : int = 0
-let u8_max : int = 255
-let u16_min : int = 0
-let u16_max : int = 65535
-let u32_min : int = 0
-let u32_max : int = 4294967295
-let u64_min : int = 0
-let u64_max : int = 18446744073709551615
-let u128_min : int = 0
-let u128_max : int = 340282366920938463463374607431768211455
-
-type scalar_ty =
-| Isize
-| I8
-| I16
-| I32
-| I64
-| I128
-| Usize
-| U8
-| U16
-| U32
-| U64
-| U128
-
-let is_unsigned = function
- | Isize | I8 | I16 | I32 | I64 | I128 -> false
- | Usize | U8 | U16 | U32 | U64 | U128 -> true
-
-let scalar_min (ty : scalar_ty) : int =
- match ty with
- | Isize -> isize_min
- | I8 -> i8_min
- | I16 -> i16_min
- | I32 -> i32_min
- | I64 -> i64_min
- | I128 -> i128_min
- | Usize -> usize_min
- | U8 -> u8_min
- | U16 -> u16_min
- | U32 -> u32_min
- | U64 -> u64_min
- | U128 -> u128_min
-
-let scalar_max (ty : scalar_ty) : int =
- match ty with
- | Isize -> isize_max
- | I8 -> i8_max
- | I16 -> i16_max
- | I32 -> i32_max
- | I64 -> i64_max
- | I128 -> i128_max
- | Usize -> usize_max
- | U8 -> u8_max
- | U16 -> u16_max
- | U32 -> u32_max
- | U64 -> u64_max
- | U128 -> u128_max
-
-type scalar (ty : scalar_ty) : eqtype = x:int{scalar_min ty <= x && x <= scalar_max ty}
-
-let mk_scalar (ty : scalar_ty) (x : int) : result (scalar ty) =
- if scalar_min ty <= x && scalar_max ty >= x then Return x else Fail Failure
-
-let scalar_neg (#ty : scalar_ty) (x : scalar ty) : result (scalar ty) = mk_scalar ty (-x)
-
-let scalar_div (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- if y <> 0 then mk_scalar ty (x / y) else Fail Failure
-
-/// The remainder operation
-let int_rem (x : int) (y : int{y <> 0}) : int =
- if x >= 0 then (x % y) else -(x % y)
-
-(* Checking consistency with Rust *)
-let _ = assert_norm(int_rem 1 2 = 1)
-let _ = assert_norm(int_rem (-1) 2 = -1)
-let _ = assert_norm(int_rem 1 (-2) = 1)
-let _ = assert_norm(int_rem (-1) (-2) = -1)
-
-let scalar_rem (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- if y <> 0 then mk_scalar ty (int_rem x y) else Fail Failure
-
-let scalar_add (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- mk_scalar ty (x + y)
-
-let scalar_sub (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- mk_scalar ty (x - y)
-
-let scalar_mul (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- mk_scalar ty (x * y)
-
-let scalar_xor (#ty : scalar_ty)
- (x : scalar ty) (y : scalar ty) : scalar ty =
- match ty with
- | U8 -> FStar.UInt.logxor #8 x y
- | U16 -> FStar.UInt.logxor #16 x y
- | U32 -> FStar.UInt.logxor #32 x y
- | U64 -> FStar.UInt.logxor #64 x y
- | U128 -> FStar.UInt.logxor #128 x y
- | Usize -> admit() // TODO
- | I8 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 8);
- normalize_spec (scalar I8);
- FStar.Int.logxor #8 x y
- | I16 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 16);
- normalize_spec (scalar I16);
- FStar.Int.logxor #16 x y
- | I32 -> FStar.Int.logxor #32 x y
- | I64 -> FStar.Int.logxor #64 x y
- | I128 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 128);
- normalize_spec (scalar I128);
- FStar.Int.logxor #128 x y
- | Isize -> admit() // TODO
-
-let scalar_or (#ty : scalar_ty)
- (x : scalar ty) (y : scalar ty) : scalar ty =
- match ty with
- | U8 -> FStar.UInt.logor #8 x y
- | U16 -> FStar.UInt.logor #16 x y
- | U32 -> FStar.UInt.logor #32 x y
- | U64 -> FStar.UInt.logor #64 x y
- | U128 -> FStar.UInt.logor #128 x y
- | Usize -> admit() // TODO
- | I8 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 8);
- normalize_spec (scalar I8);
- FStar.Int.logor #8 x y
- | I16 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 16);
- normalize_spec (scalar I16);
- FStar.Int.logor #16 x y
- | I32 -> FStar.Int.logor #32 x y
- | I64 -> FStar.Int.logor #64 x y
- | I128 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 128);
- normalize_spec (scalar I128);
- FStar.Int.logor #128 x y
- | Isize -> admit() // TODO
-
-let scalar_and (#ty : scalar_ty)
- (x : scalar ty) (y : scalar ty) : scalar ty =
- match ty with
- | U8 -> FStar.UInt.logand #8 x y
- | U16 -> FStar.UInt.logand #16 x y
- | U32 -> FStar.UInt.logand #32 x y
- | U64 -> FStar.UInt.logand #64 x y
- | U128 -> FStar.UInt.logand #128 x y
- | Usize -> admit() // TODO
- | I8 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 8);
- normalize_spec (scalar I8);
- FStar.Int.logand #8 x y
- | I16 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 16);
- normalize_spec (scalar I16);
- FStar.Int.logand #16 x y
- | I32 -> FStar.Int.logand #32 x y
- | I64 -> FStar.Int.logand #64 x y
- | I128 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 128);
- normalize_spec (scalar I128);
- FStar.Int.logand #128 x y
- | Isize -> admit() // TODO
-
-// Shift left
-let scalar_shl (#ty0 #ty1 : scalar_ty)
- (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) =
- admit()
-
-// Shift right
-let scalar_shr (#ty0 #ty1 : scalar_ty)
- (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) =
- admit()
-
-(** Cast an integer from a [src_ty] to a [tgt_ty] *)
-// TODO: check the semantics of casts in Rust
-let scalar_cast (src_ty : scalar_ty) (tgt_ty : scalar_ty) (x : scalar src_ty) : result (scalar tgt_ty) =
- mk_scalar tgt_ty x
-
-// This can't fail, but for now we make all casts faillible (easier for the translation)
-let scalar_cast_bool (tgt_ty : scalar_ty) (x : bool) : result (scalar tgt_ty) =
- mk_scalar tgt_ty (if x then 1 else 0)
-
-/// The scalar types
-type isize : eqtype = scalar Isize
-type i8 : eqtype = scalar I8
-type i16 : eqtype = scalar I16
-type i32 : eqtype = scalar I32
-type i64 : eqtype = scalar I64
-type i128 : eqtype = scalar I128
-type usize : eqtype = scalar Usize
-type u8 : eqtype = scalar U8
-type u16 : eqtype = scalar U16
-type u32 : eqtype = scalar U32
-type u64 : eqtype = scalar U64
-type u128 : eqtype = scalar U128
-
-
-let core_isize_min : isize = isize_min
-let core_isize_max : isize = isize_max
-let core_i8_min : i8 = i8_min
-let core_i8_max : i8 = i8_max
-let core_i16_min : i16 = i16_min
-let core_i16_max : i16 = i16_max
-let core_i32_min : i32 = i32_min
-let core_i32_max : i32 = i32_max
-let core_i64_min : i64 = i64_min
-let core_i64_max : i64 = i64_max
-let core_i128_min : i128 = i128_min
-let core_i128_max : i128 = i128_max
-
-let core_usize_min : usize = usize_min
-let core_usize_max : usize = usize_max
-let core_u8_min : u8 = u8_min
-let core_u8_max : u8 = u8_max
-let core_u16_min : u16 = u16_min
-let core_u16_max : u16 = u16_max
-let core_u32_min : u32 = u32_min
-let core_u32_max : u32 = u32_max
-let core_u64_min : u64 = u64_min
-let core_u64_max : u64 = u64_max
-let core_u128_min : u128 = u128_min
-let core_u128_max : u128 = u128_max
-
-/// Negation
-let isize_neg = scalar_neg #Isize
-let i8_neg = scalar_neg #I8
-let i16_neg = scalar_neg #I16
-let i32_neg = scalar_neg #I32
-let i64_neg = scalar_neg #I64
-let i128_neg = scalar_neg #I128
-
-/// Division
-let isize_div = scalar_div #Isize
-let i8_div = scalar_div #I8
-let i16_div = scalar_div #I16
-let i32_div = scalar_div #I32
-let i64_div = scalar_div #I64
-let i128_div = scalar_div #I128
-let usize_div = scalar_div #Usize
-let u8_div = scalar_div #U8
-let u16_div = scalar_div #U16
-let u32_div = scalar_div #U32
-let u64_div = scalar_div #U64
-let u128_div = scalar_div #U128
-
-/// Remainder
-let isize_rem = scalar_rem #Isize
-let i8_rem = scalar_rem #I8
-let i16_rem = scalar_rem #I16
-let i32_rem = scalar_rem #I32
-let i64_rem = scalar_rem #I64
-let i128_rem = scalar_rem #I128
-let usize_rem = scalar_rem #Usize
-let u8_rem = scalar_rem #U8
-let u16_rem = scalar_rem #U16
-let u32_rem = scalar_rem #U32
-let u64_rem = scalar_rem #U64
-let u128_rem = scalar_rem #U128
-
-/// Addition
-let isize_add = scalar_add #Isize
-let i8_add = scalar_add #I8
-let i16_add = scalar_add #I16
-let i32_add = scalar_add #I32
-let i64_add = scalar_add #I64
-let i128_add = scalar_add #I128
-let usize_add = scalar_add #Usize
-let u8_add = scalar_add #U8
-let u16_add = scalar_add #U16
-let u32_add = scalar_add #U32
-let u64_add = scalar_add #U64
-let u128_add = scalar_add #U128
-
-/// Subtraction
-let isize_sub = scalar_sub #Isize
-let i8_sub = scalar_sub #I8
-let i16_sub = scalar_sub #I16
-let i32_sub = scalar_sub #I32
-let i64_sub = scalar_sub #I64
-let i128_sub = scalar_sub #I128
-let usize_sub = scalar_sub #Usize
-let u8_sub = scalar_sub #U8
-let u16_sub = scalar_sub #U16
-let u32_sub = scalar_sub #U32
-let u64_sub = scalar_sub #U64
-let u128_sub = scalar_sub #U128
-
-/// Multiplication
-let isize_mul = scalar_mul #Isize
-let i8_mul = scalar_mul #I8
-let i16_mul = scalar_mul #I16
-let i32_mul = scalar_mul #I32
-let i64_mul = scalar_mul #I64
-let i128_mul = scalar_mul #I128
-let usize_mul = scalar_mul #Usize
-let u8_mul = scalar_mul #U8
-let u16_mul = scalar_mul #U16
-let u32_mul = scalar_mul #U32
-let u64_mul = scalar_mul #U64
-let u128_mul = scalar_mul #U128
-
-/// Xor
-let u8_xor = scalar_xor #U8
-let u16_xor = scalar_xor #U16
-let u32_xor = scalar_xor #U32
-let u64_xor = scalar_xor #U64
-let u128_xor = scalar_xor #U128
-let usize_xor = scalar_xor #Usize
-let i8_xor = scalar_xor #I8
-let i16_xor = scalar_xor #I16
-let i32_xor = scalar_xor #I32
-let i64_xor = scalar_xor #I64
-let i128_xor = scalar_xor #I128
-let isize_xor = scalar_xor #Isize
-
-/// Or
-let u8_or = scalar_or #U8
-let u16_or = scalar_or #U16
-let u32_or = scalar_or #U32
-let u64_or = scalar_or #U64
-let u128_or = scalar_or #U128
-let usize_or = scalar_or #Usize
-let i8_or = scalar_or #I8
-let i16_or = scalar_or #I16
-let i32_or = scalar_or #I32
-let i64_or = scalar_or #I64
-let i128_or = scalar_or #I128
-let isize_or = scalar_or #Isize
-
-/// And
-let u8_and = scalar_and #U8
-let u16_and = scalar_and #U16
-let u32_and = scalar_and #U32
-let u64_and = scalar_and #U64
-let u128_and = scalar_and #U128
-let usize_and = scalar_and #Usize
-let i8_and = scalar_and #I8
-let i16_and = scalar_and #I16
-let i32_and = scalar_and #I32
-let i64_and = scalar_and #I64
-let i128_and = scalar_and #I128
-let isize_and = scalar_and #Isize
-
-/// Shift left
-let u8_shl #ty = scalar_shl #U8 #ty
-let u16_shl #ty = scalar_shl #U16 #ty
-let u32_shl #ty = scalar_shl #U32 #ty
-let u64_shl #ty = scalar_shl #U64 #ty
-let u128_shl #ty = scalar_shl #U128 #ty
-let usize_shl #ty = scalar_shl #Usize #ty
-let i8_shl #ty = scalar_shl #I8 #ty
-let i16_shl #ty = scalar_shl #I16 #ty
-let i32_shl #ty = scalar_shl #I32 #ty
-let i64_shl #ty = scalar_shl #I64 #ty
-let i128_shl #ty = scalar_shl #I128 #ty
-let isize_shl #ty = scalar_shl #Isize #ty
-
-/// Shift right
-let u8_shr #ty = scalar_shr #U8 #ty
-let u16_shr #ty = scalar_shr #U16 #ty
-let u32_shr #ty = scalar_shr #U32 #ty
-let u64_shr #ty = scalar_shr #U64 #ty
-let u128_shr #ty = scalar_shr #U128 #ty
-let usize_shr #ty = scalar_shr #Usize #ty
-let i8_shr #ty = scalar_shr #I8 #ty
-let i16_shr #ty = scalar_shr #I16 #ty
-let i32_shr #ty = scalar_shr #I32 #ty
-let i64_shr #ty = scalar_shr #I64 #ty
-let i128_shr #ty = scalar_shr #I128 #ty
-let isize_shr #ty = scalar_shr #Isize #ty
-
-(*** core::ops *)
-
-// Trait declaration: [core::ops::index::Index]
-noeq type core_ops_index_Index (self idx : Type0) = {
- output : Type0;
- index : self → idx → result output
-}
-
-// Trait declaration: [core::ops::index::IndexMut]
-noeq type core_ops_index_IndexMut (self idx : Type0) = {
- indexInst : core_ops_index_Index self idx;
- index_mut : self → idx → result indexInst.output;
- index_mut_back : self → idx → indexInst.output → result self;
-}
-
-// Trait declaration [core::ops::deref::Deref]
-noeq type core_ops_deref_Deref (self : Type0) = {
- target : Type0;
- deref : self → result target;
-}
-
-// Trait declaration [core::ops::deref::DerefMut]
-noeq type core_ops_deref_DerefMut (self : Type0) = {
- derefInst : core_ops_deref_Deref self;
- deref_mut : self → result derefInst.target;
- deref_mut_back : self → derefInst.target → result self;
-}
-
-type core_ops_range_Range (a : Type0) = {
- start : a;
- end_ : a;
-}
-
-(*** [alloc] *)
-
-let alloc_boxed_Box_deref (t : Type0) (x : t) : result t = Return x
-let alloc_boxed_Box_deref_mut (t : Type0) (x : t) : result t = Return x
-let alloc_boxed_Box_deref_mut_back (t : Type) (_ : t) (x : t) : result t = Return x
-
-// Trait instance
-let alloc_boxed_Box_coreopsDerefInst (self : Type0) : core_ops_deref_Deref self = {
- target = self;
- deref = alloc_boxed_Box_deref self;
-}
-
-// Trait instance
-let alloc_boxed_Box_coreopsDerefMutInst (self : Type0) : core_ops_deref_DerefMut self = {
- derefInst = alloc_boxed_Box_coreopsDerefInst self;
- deref_mut = alloc_boxed_Box_deref_mut self;
- deref_mut_back = alloc_boxed_Box_deref_mut_back self;
-}
-
-(*** Array *)
-type array (a : Type0) (n : usize) = s:list a{length s = n}
-
-// We tried putting the normalize_term condition as a refinement on the list
-// but it didn't work. It works with the requires clause.
-let mk_array (a : Type0) (n : usize)
- (l : list a) :
- Pure (array a n)
- (requires (normalize_term(FStar.List.Tot.length l) = n))
- (ensures (fun _ -> True)) =
- normalize_term_spec (FStar.List.Tot.length l);
- l
-
-let array_index_usize (a : Type0) (n : usize) (x : array a n) (i : usize) : result a =
- if i < length x then Return (index x i)
- else Fail Failure
-
-let array_update_usize (a : Type0) (n : usize) (x : array a n) (i : usize) (nx : a) : result (array a n) =
- if i < length x then Return (list_update x i nx)
- else Fail Failure
-
-(*** Slice *)
-type slice (a : Type0) = s:list a{length s <= usize_max}
-
-let slice_len (a : Type0) (s : slice a) : usize = length s
-
-let slice_index_usize (a : Type0) (x : slice a) (i : usize) : result a =
- if i < length x then Return (index x i)
- else Fail Failure
-
-let slice_update_usize (a : Type0) (x : slice a) (i : usize) (nx : a) : result (slice a) =
- if i < length x then Return (list_update x i nx)
- else Fail Failure
-
-(*** Subslices *)
-
-let array_to_slice (a : Type0) (n : usize) (x : array a n) : result (slice a) = Return x
-let array_from_slice (a : Type0) (n : usize) (x : array a n) (s : slice a) : result (array a n) =
- if length s = n then Return s
- else Fail Failure
-
-// TODO: finish the definitions below (there lacks [List.drop] and [List.take] in the standard library *)
-let array_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) : result (slice a) =
- admit()
-
-let array_update_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) (ns : slice a) : result (array a n) =
- admit()
-
-let array_repeat (a : Type0) (n : usize) (x : a) : array a n =
- admit()
-
-let slice_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) : result (slice a) =
- admit()
-
-let slice_update_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) (ns : slice a) : result (slice a) =
- admit()
-
-(*** Vector *)
-type alloc_vec_Vec (a : Type0) = v:list a{length v <= usize_max}
-
-let alloc_vec_Vec_new (a : Type0) : alloc_vec_Vec a = assert_norm(length #a [] == 0); []
-let alloc_vec_Vec_len (a : Type0) (v : alloc_vec_Vec a) : usize = length v
-
-// Helper
-let alloc_vec_Vec_index_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : result a =
- if i < length v then Return (index v i) else Fail Failure
-// Helper
-let alloc_vec_Vec_update_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) =
- if i < length v then Return (list_update v i x) else Fail Failure
-
-// The **forward** function shouldn't be used
-let alloc_vec_Vec_push_fwd (a : Type0) (v : alloc_vec_Vec a) (x : a) : unit = ()
-let alloc_vec_Vec_push (a : Type0) (v : alloc_vec_Vec a) (x : a) :
- Pure (result (alloc_vec_Vec a))
- (requires True)
- (ensures (fun res ->
- match res with
- | Fail e -> e == Failure
- | Return v' -> length v' = length v + 1)) =
- if length v < usize_max then begin
- (**) assert_norm(length [x] == 1);
- (**) append_length v [x];
- (**) assert(length (append v [x]) = length v + 1);
- Return (append v [x])
- end
- else Fail Failure
-
-// The **forward** function shouldn't be used
-let alloc_vec_Vec_insert_fwd (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result unit =
- if i < length v then Return () else Fail Failure
-let alloc_vec_Vec_insert (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) =
- if i < length v then Return (list_update v i x) else Fail Failure
-
-// Trait declaration: [core::slice::index::private_slice_index::Sealed]
-type core_slice_index_private_slice_index_Sealed (self : Type0) = unit
-
-// Trait declaration: [core::slice::index::SliceIndex]
-noeq type core_slice_index_SliceIndex (self t : Type0) = {
- sealedInst : core_slice_index_private_slice_index_Sealed self;
- output : Type0;
- get : self → t → result (option output);
- get_mut : self → t → result (option output);
- get_mut_back : self → t → option output → result t;
- get_unchecked : self → const_raw_ptr t → result (const_raw_ptr output);
- get_unchecked_mut : self → mut_raw_ptr t → result (mut_raw_ptr output);
- index : self → t → result output;
- index_mut : self → t → result output;
- index_mut_back : self → t → output → result t;
-}
-
-// [core::slice::index::[T]::index]: forward function
-let core_slice_index_Slice_index
- (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
- (s : slice t) (i : idx) : result inst.output =
- let* x = inst.get i s in
- match x with
- | None -> Fail Failure
- | Some x -> Return x
-
-// [core::slice::index::Range:::get]: forward function
-let core_slice_index_RangeUsize_get (t : Type0) (i : core_ops_range_Range usize) (s : slice t) :
- result (option (slice t)) =
- admit () // TODO
-
-// [core::slice::index::Range::get_mut]: forward function
-let core_slice_index_RangeUsize_get_mut
- (t : Type0) : core_ops_range_Range usize → slice t → result (option (slice t)) =
- admit () // TODO
-
-// [core::slice::index::Range::get_mut]: backward function 0
-let core_slice_index_RangeUsize_get_mut_back
- (t : Type0) :
- core_ops_range_Range usize → slice t → option (slice t) → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::Range::get_unchecked]: forward function
-let core_slice_index_RangeUsize_get_unchecked
- (t : Type0) :
- core_ops_range_Range usize → const_raw_ptr (slice t) → result (const_raw_ptr (slice t)) =
- // Don't know what the model should be - for now we always fail to make
- // sure code which uses it fails
- fun _ _ -> Fail Failure
-
-// [core::slice::index::Range::get_unchecked_mut]: forward function
-let core_slice_index_RangeUsize_get_unchecked_mut
- (t : Type0) :
- core_ops_range_Range usize → mut_raw_ptr (slice t) → result (mut_raw_ptr (slice t)) =
- // Don't know what the model should be - for now we always fail to make
- // sure code which uses it fails
- fun _ _ -> Fail Failure
-
-// [core::slice::index::Range::index]: forward function
-let core_slice_index_RangeUsize_index
- (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::Range::index_mut]: forward function
-let core_slice_index_RangeUsize_index_mut
- (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::Range::index_mut]: backward function 0
-let core_slice_index_RangeUsize_index_mut_back
- (t : Type0) : core_ops_range_Range usize → slice t → slice t → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::[T]::index_mut]: forward function
-let core_slice_index_Slice_index_mut
- (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) :
- slice t → idx → result inst.output =
- admit () //
-
-// [core::slice::index::[T]::index_mut]: backward function 0
-let core_slice_index_Slice_index_mut_back
- (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) :
- slice t → idx → inst.output → result (slice t) =
- admit () // TODO
-
-// [core::array::[T; N]::index]: forward function
-let core_array_Array_index
- (t idx : Type0) (n : usize) (inst : core_ops_index_Index (slice t) idx)
- (a : array t n) (i : idx) : result inst.output =
- admit () // TODO
-
-// [core::array::[T; N]::index_mut]: forward function
-let core_array_Array_index_mut
- (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx)
- (a : array t n) (i : idx) : result inst.indexInst.output =
- admit () // TODO
-
-// [core::array::[T; N]::index_mut]: backward function 0
-let core_array_Array_index_mut_back
- (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx)
- (a : array t n) (i : idx) (x : inst.indexInst.output) : result (array t n) =
- admit () // TODO
-
-// Trait implementation: [core::slice::index::private_slice_index::Range]
-let core_slice_index_private_slice_index_SealedRangeUsizeInst
- : core_slice_index_private_slice_index_Sealed (core_ops_range_Range usize) = ()
-
-// Trait implementation: [core::slice::index::Range]
-let core_slice_index_SliceIndexRangeUsizeSliceTInst (t : Type0) :
- core_slice_index_SliceIndex (core_ops_range_Range usize) (slice t) = {
- sealedInst = core_slice_index_private_slice_index_SealedRangeUsizeInst;
- output = slice t;
- get = core_slice_index_RangeUsize_get t;
- get_mut = core_slice_index_RangeUsize_get_mut t;
- get_mut_back = core_slice_index_RangeUsize_get_mut_back t;
- get_unchecked = core_slice_index_RangeUsize_get_unchecked t;
- get_unchecked_mut = core_slice_index_RangeUsize_get_unchecked_mut t;
- index = core_slice_index_RangeUsize_index t;
- index_mut = core_slice_index_RangeUsize_index_mut t;
- index_mut_back = core_slice_index_RangeUsize_index_mut_back t;
-}
-
-// Trait implementation: [core::slice::index::[T]]
-let core_ops_index_IndexSliceTIInst (t idx : Type0)
- (inst : core_slice_index_SliceIndex idx (slice t)) :
- core_ops_index_Index (slice t) idx = {
- output = inst.output;
- index = core_slice_index_Slice_index t idx inst;
-}
-
-// Trait implementation: [core::slice::index::[T]]
-let core_ops_index_IndexMutSliceTIInst (t idx : Type0)
- (inst : core_slice_index_SliceIndex idx (slice t)) :
- core_ops_index_IndexMut (slice t) idx = {
- indexInst = core_ops_index_IndexSliceTIInst t idx inst;
- index_mut = core_slice_index_Slice_index_mut t idx inst;
- index_mut_back = core_slice_index_Slice_index_mut_back t idx inst;
-}
-
-// Trait implementation: [core::array::[T; N]]
-let core_ops_index_IndexArrayInst (t idx : Type0) (n : usize)
- (inst : core_ops_index_Index (slice t) idx) :
- core_ops_index_Index (array t n) idx = {
- output = inst.output;
- index = core_array_Array_index t idx n inst;
-}
-
-// Trait implementation: [core::array::[T; N]]
-let core_ops_index_IndexMutArrayIInst (t idx : Type0) (n : usize)
- (inst : core_ops_index_IndexMut (slice t) idx) :
- core_ops_index_IndexMut (array t n) idx = {
- indexInst = core_ops_index_IndexArrayInst t idx n inst.indexInst;
- index_mut = core_array_Array_index_mut t idx n inst;
- index_mut_back = core_array_Array_index_mut_back t idx n inst;
-}
-
-// [core::slice::index::usize::get]: forward function
-let core_slice_index_usize_get
- (t : Type0) : usize → slice t → result (option t) =
- admit () // TODO
-
-// [core::slice::index::usize::get_mut]: forward function
-let core_slice_index_usize_get_mut
- (t : Type0) : usize → slice t → result (option t) =
- admit () // TODO
-
-// [core::slice::index::usize::get_mut]: backward function 0
-let core_slice_index_usize_get_mut_back
- (t : Type0) : usize → slice t → option t → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::usize::get_unchecked]: forward function
-let core_slice_index_usize_get_unchecked
- (t : Type0) : usize → const_raw_ptr (slice t) → result (const_raw_ptr t) =
- admit () // TODO
-
-// [core::slice::index::usize::get_unchecked_mut]: forward function
-let core_slice_index_usize_get_unchecked_mut
- (t : Type0) : usize → mut_raw_ptr (slice t) → result (mut_raw_ptr t) =
- admit () // TODO
-
-// [core::slice::index::usize::index]: forward function
-let core_slice_index_usize_index (t : Type0) : usize → slice t → result t =
- admit () // TODO
-
-// [core::slice::index::usize::index_mut]: forward function
-let core_slice_index_usize_index_mut (t : Type0) : usize → slice t → result t =
- admit () // TODO
-
-// [core::slice::index::usize::index_mut]: backward function 0
-let core_slice_index_usize_index_mut_back
- (t : Type0) : usize → slice t → t → result (slice t) =
- admit () // TODO
-
-// Trait implementation: [core::slice::index::private_slice_index::usize]
-let core_slice_index_private_slice_index_SealedUsizeInst
- : core_slice_index_private_slice_index_Sealed usize = ()
-
-// Trait implementation: [core::slice::index::usize]
-let core_slice_index_SliceIndexUsizeSliceTInst (t : Type0) :
- core_slice_index_SliceIndex usize (slice t) = {
- sealedInst = core_slice_index_private_slice_index_SealedUsizeInst;
- output = t;
- get = core_slice_index_usize_get t;
- get_mut = core_slice_index_usize_get_mut t;
- get_mut_back = core_slice_index_usize_get_mut_back t;
- get_unchecked = core_slice_index_usize_get_unchecked t;
- get_unchecked_mut = core_slice_index_usize_get_unchecked_mut t;
- index = core_slice_index_usize_index t;
- index_mut = core_slice_index_usize_index_mut t;
- index_mut_back = core_slice_index_usize_index_mut_back t;
-}
-
-// [alloc::vec::Vec::index]: forward function
-let alloc_vec_Vec_index (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
- (self : alloc_vec_Vec t) (i : idx) : result inst.output =
- admit () // TODO
-
-// [alloc::vec::Vec::index_mut]: forward function
-let alloc_vec_Vec_index_mut (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
- (self : alloc_vec_Vec t) (i : idx) : result inst.output =
- admit () // TODO
-
-// [alloc::vec::Vec::index_mut]: backward function 0
-let alloc_vec_Vec_index_mut_back
- (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
- (self : alloc_vec_Vec t) (i : idx) (x : inst.output) : result (alloc_vec_Vec t) =
- admit () // TODO
-
-// Trait implementation: [alloc::vec::Vec]
-let alloc_vec_Vec_coreopsindexIndexInst (t idx : Type0)
- (inst : core_slice_index_SliceIndex idx (slice t)) :
- core_ops_index_Index (alloc_vec_Vec t) idx = {
- output = inst.output;
- index = alloc_vec_Vec_index t idx inst;
-}
-
-// Trait implementation: [alloc::vec::Vec]
-let alloc_vec_Vec_coreopsindexIndexMutInst (t idx : Type0)
- (inst : core_slice_index_SliceIndex idx (slice t)) :
- core_ops_index_IndexMut (alloc_vec_Vec t) idx = {
- indexInst = alloc_vec_Vec_coreopsindexIndexInst t idx inst;
- index_mut = alloc_vec_Vec_index_mut t idx inst;
- index_mut_back = alloc_vec_Vec_index_mut_back t idx inst;
-}
-
-(*** Theorems *)
-
-let alloc_vec_Vec_index_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) :
- Lemma (
- alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i ==
- alloc_vec_Vec_index_usize v i)
- [SMTPat (alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)]
- =
- admit()
-
-let alloc_vec_Vec_index_mut_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) :
- Lemma (
- alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i ==
- alloc_vec_Vec_index_usize v i)
- [SMTPat (alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)]
- =
- admit()
-
-let alloc_vec_Vec_index_mut_back_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) :
- Lemma (
- alloc_vec_Vec_index_mut_back a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i x ==
- alloc_vec_Vec_update_usize v i x)
- [SMTPat (alloc_vec_Vec_index_mut_back a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i x)]
- =
- admit()
diff --git a/compiler/Config.ml b/compiler/Config.ml
index 3b0070c0..af0e62d1 100644
--- a/compiler/Config.ml
+++ b/compiler/Config.ml
@@ -92,69 +92,6 @@ let loop_fixed_point_max_num_iters = 2
(** {1 Translation} *)
-(** If true, do not define separate forward/backward functions, but make the
- forward functions return the backward function.
-
- Example:
- {[
- (* Rust *)
- pub fn list_nth<'a, T>(l: &'a mut List<T>, i: u32) -> &'a mut T {
- match l {
- List::Nil => {
- panic!()
- }
- List::Cons(x, tl) => {
- if i == 0 {
- x
- } else {
- list_nth(tl, i - 1)
- }
- }
- }
- }
-
- (* Translation, if return_back_funs = false *)
- def list_nth (T : Type) (l : List T) (i : U32) : Result T :=
- match l with
- | List.Cons x tl =>
- if i = 0#u32
- then Result.ret x
- else do
- let i0 ← i - 1#u32
- list_nth T tl i0
- | List.Nil => Result.fail .panic
-
- def list_nth_back
- (T : Type) (l : List T) (i : U32) (ret : T) : Result (List T) :=
- match l with
- | List.Cons x tl =>
- if i = 0#u32
- then Result.ret (List.Cons ret tl)
- else
- do
- let i0 ← i - 1#u32
- let tl0 ← list_nth_back T tl i0 ret
- Result.ret (List.Cons x tl0)
- | List.Nil => Result.fail .panic
-
- (* Translation, if return_back_funs = true *)
- def list_nth (T: Type) (ls : List T) (i : U32) :
- Result (T × (T → Result (List T))) :=
- match ls with
- | List.Cons x tl =>
- if i = 0#u32
- then Result.ret (x, (λ ret => return (ret :: ls)))
- else do
- let i0 ← i - 1#u32
- let (x, back) ← list_nth ls i0
- Return.ret (x,
- (λ ret => do
- let ls ← back ret
- return (x :: ls)))
- ]}
- *)
-let return_back_funs = ref true
-
(** Forbids using field projectors for structures.
If we don't use field projectors, whenever we symbolically expand a structure
@@ -326,50 +263,6 @@ let decompose_nested_let_patterns = ref false
*)
let unfold_monadic_let_bindings = ref false
-(** Controls whether we try to filter the calls to monadic functions
- (which can fail) when their outputs are not used.
-
- The useless calls are calls to backward functions which have no outputs.
- This case happens if the original Rust function only takes *shared* borrows
- as inputs, and is thus pretty common.
-
- We are allowed to do this only because in this specific case,
- the backward function fails *exactly* when the forward function fails
- (they actually do exactly the same thing, the only difference being
- that the forward function can potentially return a value), and upon
- reaching the place where we should introduce a call to the backward
- function, we know we have introduced a call to the forward function.
-
- Also note that in general, backward functions "do more things" than
- forward functions, and have more opportunities to fail (even though
- in the generated code, calls to the backward functions should fail
- exactly when the corresponding, previous call to the forward functions
- failed).
-
- This optimization is done in {!SymbolicToPure}. We might want to move it to
- the micro-passes subsequent to the translation from symbolic to pure, but it
- is really super easy to do it when going from symbolic to pure. Note that
- we later filter the useless *forward* calls in the micro-passes, where it is
- more natural to do.
-
- See the comments for {!PureMicroPasses.expression_contains_child_call_in_all_paths}
- for additional explanations.
- *)
-let filter_useless_monadic_calls = ref true
-
-(** If {!filter_useless_monadic_calls} is activated, some functions
- become useless: if this option is true, we don't extract them.
-
- The calls to functions which always get filtered are:
- - the forward functions with unit return value
- - the backward functions which don't output anything (backward
- functions coming from rust functions with no mutable borrows
- as input values - note that if a function doesn't take mutable
- borrows as inputs, it can't return mutable borrows; we actually
- dynamically check for that).
- *)
-let filter_useless_functions = ref true
-
(** Simplify the forward/backward functions, in case we merge them
(i.e., the forward functions return the backward functions).
diff --git a/compiler/Contexts.ml b/compiler/Contexts.ml
index b1dd9553..54411fd5 100644
--- a/compiler/Contexts.ml
+++ b/compiler/Contexts.ml
@@ -109,6 +109,8 @@ let reset_global_counters () =
region_id_counter := RegionId.generator_zero;
abstraction_id_counter := AbstractionId.generator_zero;
loop_id_counter := LoopId.generator_zero;
+ (* We want the loop id to start at 1 *)
+ let _ = fresh_loop_id () in
fun_call_id_counter := FunCallId.generator_zero;
dummy_var_id_counter := DummyVarId.generator_zero
diff --git a/compiler/Extract.ml b/compiler/Extract.ml
index dbca4f8f..794a1bfa 100644
--- a/compiler/Extract.ml
+++ b/compiler/Extract.ml
@@ -9,8 +9,7 @@ open TranslateCore
open Config
include ExtractTypes
-(** Compute the names for all the pure functions generated from a rust function
- (forward function and backward functions).
+(** Compute the names for all the pure functions generated from a rust function.
*)
let extract_fun_decl_register_names (ctx : extraction_ctx)
(has_decreases_clause : fun_decl -> bool) (def : pure_fun_translation) :
@@ -19,63 +18,36 @@ let extract_fun_decl_register_names (ctx : extraction_ctx)
method implementations): we do not need to refer to them directly. We will
only use their type for the fields of the records we generate for the trait
declarations *)
- match def.fwd.f.kind with
+ match def.f.kind with
| TraitMethodDecl _ -> ctx
| _ -> (
(* Check if the function is builtin *)
let builtin =
let open ExtractBuiltin in
let funs_map = builtin_funs_map () in
- match_name_find_opt ctx.trans_ctx def.fwd.f.llbc_name funs_map
+ match_name_find_opt ctx.trans_ctx def.f.llbc_name funs_map
in
(* Use the builtin names if necessary *)
match builtin with
- | Some (filter_info, info) ->
- (* Register the filtering information, if there is *)
+ | Some (filter_info, fun_info) ->
+ (* Builtin function: register the filtering information, if there is *)
let ctx =
match filter_info with
| Some keep ->
{
ctx with
funs_filter_type_args_map =
- FunDeclId.Map.add def.fwd.f.def_id keep
+ FunDeclId.Map.add def.f.def_id keep
ctx.funs_filter_type_args_map;
}
| _ -> ctx
in
- let funs =
- if !Config.return_back_funs then [ def.fwd.f ]
- else
- let backs = List.map (fun f -> f.f) def.backs in
- if def.keep_fwd then def.fwd.f :: backs else backs
- in
- List.fold_left
- (fun ctx (f : fun_decl) ->
- let open ExtractBuiltin in
- let fun_id =
- (Pure.FunId (FRegular f.def_id), f.loop_id, f.back_id)
- in
- let fun_info =
- List.find_opt
- (fun (x : builtin_fun_info) -> x.rg = f.back_id)
- info
- in
- match fun_info with
- | Some fun_info ->
- ctx_add (FunId (FromLlbc fun_id)) fun_info.extract_name ctx
- | None ->
- raise
- (Failure
- ("Not found: "
- ^ name_to_string ctx f.llbc_name
- ^ ", "
- ^ Print.option_to_string Pure.show_loop_id f.loop_id
- ^ Print.option_to_string Pure.show_region_group_id
- f.back_id)))
- ctx funs
+ let f = def.f in
+ let open ExtractBuiltin in
+ let fun_id = (Pure.FunId (FRegular f.def_id), f.loop_id) in
+ ctx_add (FunId (FromLlbc fun_id)) fun_info.extract_name ctx
| None ->
- let fwd = def.fwd in
- let backs = def.backs in
+ (* Not builtin *)
(* Register the decrease clauses, if necessary *)
let register_decreases ctx def =
if has_decreases_clause def then
@@ -88,21 +60,15 @@ let extract_fun_decl_register_names (ctx : extraction_ctx)
| Lean -> ctx_add_decreases_proof def ctx
else ctx
in
- let ctx =
- List.fold_left register_decreases ctx (fwd.f :: fwd.loops)
- in
- let register_fun ctx f = ctx_add_fun_decl def f ctx in
+ (* We have to register the function itself, and the loops it
+ may contain (which are extracted as functions) *)
+ let funs = def.f :: def.loops in
+ (* Register the decrease clauses *)
+ let ctx = List.fold_left register_decreases ctx funs in
+ (* Register the name of the function and the loops *)
+ let register_fun ctx f = ctx_add_fun_decl f ctx in
let register_funs ctx fl = List.fold_left register_fun ctx fl in
- (* Register the names of the forward functions *)
- let ctx =
- if def.keep_fwd then register_funs ctx (fwd.f :: fwd.loops) else ctx
- in
- (* Register the names of the backward functions *)
- List.fold_left
- (fun ctx { f = back; loops = loop_backs } ->
- let ctx = register_fun ctx back in
- register_funs ctx loop_backs)
- ctx backs)
+ register_funs ctx funs)
(** Simply add the global name to the context. *)
let extract_global_decl_register_names (ctx : extraction_ctx)
@@ -230,7 +196,7 @@ let fun_builtin_filter_types (id : FunDeclId.id) (types : 'a list)
let decl = FunDeclId.Map.find id ctx.trans_funs in
let err =
"Ill-formed builtin information for function "
- ^ name_to_string ctx decl.fwd.f.llbc_name
+ ^ name_to_string ctx decl.f.llbc_name
^ ": "
^ string_of_int (List.length filter)
^ " filtering arguments provided for "
@@ -460,8 +426,7 @@ and extract_function_call (ctx : extraction_ctx) (fmt : F.formatter)
]}
*)
(match fun_id with
- | FromLlbc
- (TraitMethod (trait_ref, method_name, _fun_decl_id), lp_id, rg_id) ->
+ | FromLlbc (TraitMethod (trait_ref, method_name, _fun_decl_id), lp_id) ->
(* We have to check whether the trait method is required or provided *)
let trait_decl_id = trait_ref.trait_decl_ref.trait_decl_id in
let trait_decl =
@@ -477,7 +442,7 @@ and extract_function_call (ctx : extraction_ctx) (fmt : F.formatter)
extract_trait_ref ctx fmt TypeDeclId.Set.empty true trait_ref;
let fun_name =
ctx_get_trait_method trait_ref.trait_decl_ref.trait_decl_id
- method_name rg_id ctx
+ method_name ctx
in
let add_brackets (s : string) =
if !backend = Coq then "(" ^ s ^ ")" else s
@@ -486,9 +451,7 @@ and extract_function_call (ctx : extraction_ctx) (fmt : F.formatter)
else
(* Provided method: we see it as a regular function call, and use
the function name *)
- let fun_id =
- FromLlbc (FunId (FRegular method_id.id), lp_id, rg_id)
- in
+ let fun_id = FromLlbc (FunId (FRegular method_id.id), lp_id) in
let fun_name = ctx_get_function fun_id ctx in
F.pp_print_string fmt fun_name;
@@ -513,7 +476,7 @@ and extract_function_call (ctx : extraction_ctx) (fmt : F.formatter)
*)
let types =
match fun_id with
- | FromLlbc (FunId (FRegular id), _, _) ->
+ | FromLlbc (FunId (FRegular id), _) ->
fun_builtin_filter_types id generics.types ctx
| _ -> Result.Ok generics.types
in
@@ -1392,11 +1355,6 @@ let extract_template_lean_termination_and_decreasing (ctx : extraction_ctx)
let extract_fun_comment (ctx : extraction_ctx) (fmt : F.formatter)
(def : fun_decl) : unit =
- let { keep_fwd; num_backs } =
- PureUtils.RegularFunIdMap.find
- (Pure.FunId (FRegular def.def_id), def.loop_id, def.back_id)
- ctx.fun_name_info
- in
let comment_pre = "[" ^ name_to_string ctx def.llbc_name ^ "]:" in
let comment =
let loop_comment =
@@ -1404,23 +1362,7 @@ let extract_fun_comment (ctx : extraction_ctx) (fmt : F.formatter)
| None -> ""
| Some id -> " loop " ^ LoopId.to_string id ^ ":"
in
- let fwd_back_comment =
- match def.back_id with
- | None -> if !Config.return_back_funs then [] else [ "forward function" ]
- | Some id ->
- (* Check if there is only one backward function, and no forward function *)
- if (not keep_fwd) && num_backs = 1 then
- [
- "merged forward/backward function";
- "(there is a single backward function, and the forward function \
- returns ())";
- ]
- else [ "backward function " ^ T.RegionGroupId.to_string id ]
- in
- match fwd_back_comment with
- | [] -> [ comment_pre ^ loop_comment ]
- | [ s ] -> [ comment_pre ^ loop_comment ^ " " ^ s ]
- | s :: sl -> (comment_pre ^ loop_comment ^ " " ^ s) :: sl
+ [ comment_pre ^ loop_comment ]
in
extract_comment_with_span fmt comment def.meta.span
@@ -1435,9 +1377,7 @@ let extract_fun_decl_gen (ctx : extraction_ctx) (fmt : F.formatter)
(kind : decl_kind) (has_decreases_clause : bool) (def : fun_decl) : unit =
assert (not def.is_global_decl_body);
(* Retrieve the function name *)
- let def_name =
- ctx_get_local_function def.def_id def.loop_id def.back_id ctx
- in
+ let def_name = ctx_get_local_function def.def_id def.loop_id ctx in
(* Add a break before *)
if !backend <> HOL4 || not (decl_is_first_from_group kind) then
F.pp_print_break fmt 0 0;
@@ -1681,9 +1621,7 @@ let extract_fun_decl_gen (ctx : extraction_ctx) (fmt : F.formatter)
let extract_fun_decl_hol4_opaque (ctx : extraction_ctx) (fmt : F.formatter)
(def : fun_decl) : unit =
(* Retrieve the definition name *)
- let def_name =
- ctx_get_local_function def.def_id def.loop_id def.back_id ctx
- in
+ let def_name = ctx_get_local_function def.def_id def.loop_id ctx in
assert (def.signature.generics.const_generics = []);
(* Add the type/const gen parameters - note that we need those bindings
only for the generation of the type (they are not top-level) *)
@@ -1870,7 +1808,6 @@ let extract_global_decl_hol4_opaque (ctx : extraction_ctx) (fmt : F.formatter)
let extract_global_decl (ctx : extraction_ctx) (fmt : F.formatter)
(global : A.global_decl) (body : fun_decl) (interface : bool) : unit =
assert body.is_global_decl_body;
- assert (Option.is_none body.back_id);
assert (body.signature.inputs = []);
assert (body.signature.generics = empty_generic_params);
@@ -1883,9 +1820,7 @@ let extract_global_decl (ctx : extraction_ctx) (fmt : F.formatter)
let decl_name = ctx_get_global global.def_id ctx in
let body_name =
- ctx_get_function
- (FromLlbc (Pure.FunId (FRegular global.body), None, None))
- ctx
+ ctx_get_function (FromLlbc (Pure.FunId (FRegular global.body), None)) ctx
in
let decl_ty, body_ty =
@@ -2058,80 +1993,45 @@ let extract_trait_decl_method_names (ctx : extraction_ctx)
let required_methods = trait_decl.required_methods in
(* Compute the names *)
let method_names =
- (* We add one field per required forward/backward function *)
- let get_funs_for_id (id : fun_decl_id) : fun_decl list =
- let trans : pure_fun_translation = FunDeclId.Map.find id ctx.trans_funs in
- if !Config.return_back_funs then [ trans.fwd.f ]
- else List.map (fun f -> f.f) (trans.fwd :: trans.backs)
- in
match builtin_info with
| None ->
- (* We add one field per required forward/backward function *)
- let compute_item_names (item_name : string) (id : fun_decl_id) :
- string * (RegionGroupId.id option * string) list =
- let compute_fun_name (f : fun_decl) : RegionGroupId.id option * string
- =
- (* We do something special to reuse the [ctx_compute_fun_decl]
- function. TODO: make it cleaner. *)
- let llbc_name : Types.name =
- [ Types.PeIdent (item_name, Disambiguator.zero) ]
- in
- let f = { f with llbc_name } in
- let trans = A.FunDeclId.Map.find f.def_id ctx.trans_funs in
- let name = ctx_compute_fun_name trans f ctx in
- (* Add a prefix if necessary *)
- let name =
- if !Config.record_fields_short_names then name
- else ctx_compute_trait_decl_name ctx trait_decl ^ "_" ^ name
- in
- (f.back_id, name)
+ (* Not a builtin function *)
+ let compute_item_name (item_name : string) (id : fun_decl_id) :
+ string * string =
+ let trans : pure_fun_translation =
+ FunDeclId.Map.find id ctx.trans_funs
+ in
+ let f = trans.f in
+ (* We do something special to reuse the [ctx_compute_fun_decl]
+ function. TODO: make it cleaner. *)
+ let llbc_name : Types.name =
+ [ Types.PeIdent (item_name, Disambiguator.zero) ]
+ in
+ let f = { f with llbc_name } in
+ let name = ctx_compute_fun_name f ctx in
+ (* Add a prefix if necessary *)
+ let name =
+ if !Config.record_fields_short_names then name
+ else ctx_compute_trait_decl_name ctx trait_decl ^ "_" ^ name
in
- let funs = get_funs_for_id id in
- (item_name, List.map compute_fun_name funs)
+ (item_name, name)
in
- List.map (fun (name, id) -> compute_item_names name id) required_methods
+ List.map (fun (name, id) -> compute_item_name name id) required_methods
| Some info ->
+ (* This is a builtin *)
let funs_map = StringMap.of_list info.methods in
List.map
- (fun (item_name, fun_id) ->
+ (fun (item_name, _) ->
let open ExtractBuiltin in
let info = StringMap.find item_name funs_map in
- let trans_funs = get_funs_for_id fun_id in
- let find (trans_fun : fun_decl) =
- let info =
- List.find_opt
- (fun (info : builtin_fun_info) -> info.rg = trans_fun.back_id)
- info
- in
- match info with
- | Some info -> (info.rg, info.extract_name)
- | None ->
- let err =
- "Ill-formed builtin information for trait decl \""
- ^ name_to_string ctx trait_decl.llbc_name
- ^ "\", method \"" ^ item_name
- ^ "\": could not find name for region "
- ^ Print.option_to_string Pure.show_region_group_id
- trans_fun.back_id
- in
- log#serror err;
- if !Config.fail_hard then raise (Failure err)
- else (trans_fun.back_id, "%ERROR_BUILTIN_NAME_NOT_FOUND%")
- in
- let rg_with_name_list = List.map find trans_funs in
- (item_name, rg_with_name_list))
+ let fun_name = info.extract_name in
+ (item_name, fun_name))
required_methods
in
(* Register the names *)
List.fold_left
- (fun ctx (item_name, funs) ->
- (* We add one field per required forward/backward function *)
- List.fold_left
- (fun ctx (rg, fun_name) ->
- ctx_add
- (TraitMethodId (trait_decl.def_id, item_name, rg))
- fun_name ctx)
- ctx funs)
+ (fun ctx (item_name, fun_name) ->
+ ctx_add (TraitMethodId (trait_decl.def_id, item_name)) fun_name ctx)
ctx method_names
(** Similar to {!extract_type_decl_register_names} *)
@@ -2263,46 +2163,41 @@ let extract_trait_decl_method_items (ctx : extraction_ctx) (fmt : F.formatter)
(* Lookup the definition *)
let trans = A.FunDeclId.Map.find id ctx.trans_funs in
(* Extract the items *)
- let funs = if trans.keep_fwd then trans.fwd :: trans.backs else trans.backs in
- let extract_method (f : fun_and_loops) =
- let f = f.f in
- let fun_name = ctx_get_trait_method decl.def_id item_name f.back_id ctx in
- let ty () =
- (* Extract the generics *)
- (* We need to add the generics specific to the method, by removing those
- which actually apply to the trait decl *)
- let generics =
- let drop_trait_clauses = false in
- generic_params_drop_prefix ~drop_trait_clauses decl.generics
- f.signature.generics
- in
- (* Note that we do not filter the LLBC generic parameters.
- This is ok because:
- - we only use them to find meaningful names for the trait clauses
- - we only generate trait clauses for the clauses we find in the
- pure generics *)
- let ctx, type_params, cg_params, trait_clauses =
- ctx_add_generic_params f.llbc_name f.signature.llbc_generics generics
- ctx
- in
- let backend_uses_forall =
- match !backend with Coq | Lean -> true | FStar | HOL4 -> false
- in
- let generics_not_empty = generics <> empty_generic_params in
- let use_forall = generics_not_empty && backend_uses_forall in
- let use_arrows = generics_not_empty && not backend_uses_forall in
- let use_forall_use_sep = false in
- extract_generic_params ctx fmt TypeDeclId.Set.empty ~use_forall
- ~use_forall_use_sep ~use_arrows generics type_params cg_params
- trait_clauses;
- if use_forall then F.pp_print_string fmt ",";
- (* Extract the inputs and output *)
- F.pp_print_space fmt ();
- extract_fun_inputs_output_parameters_types ctx fmt f
+ let f = trans.f in
+ let fun_name = ctx_get_trait_method decl.def_id item_name ctx in
+ let ty () =
+ (* Extract the generics *)
+ (* We need to add the generics specific to the method, by removing those
+ which actually apply to the trait decl *)
+ let generics =
+ let drop_trait_clauses = false in
+ generic_params_drop_prefix ~drop_trait_clauses decl.generics
+ f.signature.generics
+ in
+ (* Note that we do not filter the LLBC generic parameters.
+ This is ok because:
+ - we only use them to find meaningful names for the trait clauses
+ - we only generate trait clauses for the clauses we find in the
+ pure generics *)
+ let ctx, type_params, cg_params, trait_clauses =
+ ctx_add_generic_params f.llbc_name f.signature.llbc_generics generics ctx
in
- extract_trait_decl_item ctx fmt fun_name ty
+ let backend_uses_forall =
+ match !backend with Coq | Lean -> true | FStar | HOL4 -> false
+ in
+ let generics_not_empty = generics <> empty_generic_params in
+ let use_forall = generics_not_empty && backend_uses_forall in
+ let use_arrows = generics_not_empty && not backend_uses_forall in
+ let use_forall_use_sep = false in
+ extract_generic_params ctx fmt TypeDeclId.Set.empty ~use_forall
+ ~use_forall_use_sep ~use_arrows generics type_params cg_params
+ trait_clauses;
+ if use_forall then F.pp_print_string fmt ",";
+ (* Extract the inputs and output *)
+ F.pp_print_space fmt ();
+ extract_fun_inputs_output_parameters_types ctx fmt f
in
- List.iter extract_method funs
+ extract_trait_decl_item ctx fmt fun_name ty
(** Extract a trait declaration *)
let extract_trait_decl (ctx : extraction_ctx) (fmt : F.formatter)
@@ -2494,21 +2389,10 @@ let extract_trait_decl_coq_arguments (ctx : extraction_ctx) (fmt : F.formatter)
decl.parent_clauses;
(* The required methods *)
List.iter
- (fun (item_name, id) ->
- (* Lookup the definition *)
- let trans = A.FunDeclId.Map.find id ctx.trans_funs in
+ (fun (item_name, _) ->
(* Extract the items *)
- let funs =
- if trans.keep_fwd then trans.fwd :: trans.backs else trans.backs
- in
- let extract_for_method (f : fun_and_loops) =
- let f = f.f in
- let item_name =
- ctx_get_trait_method decl.def_id item_name f.back_id ctx
- in
- extract_coq_arguments_instruction ctx fmt item_name num_params
- in
- List.iter extract_for_method funs)
+ let item_name = ctx_get_trait_method decl.def_id item_name ctx in
+ extract_coq_arguments_instruction ctx fmt item_name num_params)
decl.required_methods;
(* Add a space *)
F.pp_print_space fmt ())
@@ -2531,75 +2415,71 @@ let extract_trait_impl_method_items (ctx : extraction_ctx) (fmt : F.formatter)
(* Lookup the definition *)
let trans = A.FunDeclId.Map.find id ctx.trans_funs in
(* Extract the items *)
- let funs = if trans.keep_fwd then trans.fwd :: trans.backs else trans.backs in
- let extract_method (f : fun_and_loops) =
- let f = f.f in
- let fun_name = ctx_get_trait_method trait_decl_id item_name f.back_id ctx in
- let ty () =
- (* Filter the generics if the method is a builtin *)
- let i_tys, _, _ = impl_generics in
- let impl_types, i_tys, f_tys =
- match FunDeclId.Map.find_opt f.def_id ctx.funs_filter_type_args_map with
- | None -> (impl.generics.types, i_tys, f.signature.generics.types)
- | Some filter ->
- let filter_list filter ls =
- let ls = List.combine filter ls in
- List.filter_map (fun (b, ty) -> if b then Some ty else None) ls
- in
- let impl_types = impl.generics.types in
- let impl_filter =
- Collections.List.prefix (List.length impl_types) filter
- in
- let i_tys = i_tys in
- let i_filter = Collections.List.prefix (List.length i_tys) filter in
- ( filter_list impl_filter impl_types,
- filter_list i_filter i_tys,
- filter_list filter f.signature.generics.types )
- in
- let f_generics = { f.signature.generics with types = f_tys } in
- (* Extract the generics - we need to quantify over the generics which
- are specific to the method, and call it will all the generics
- (trait impl + method generics) *)
- let f_generics =
- let drop_trait_clauses = true in
- generic_params_drop_prefix ~drop_trait_clauses
- { impl.generics with types = impl_types }
- f_generics
- in
- (* Register and print the quantified generics.
-
- Note that we do not filter the LLBC generic parameters.
- This is ok because:
- - we only use them to find meaningful names for the trait clauses
- - we only generate trait clauses for the clauses we find in the
- pure generics *)
- let ctx, f_tys, f_cgs, f_tcs =
- ctx_add_generic_params f.llbc_name f.signature.llbc_generics f_generics
- ctx
- in
- let use_forall = f_generics <> empty_generic_params in
- extract_generic_params ctx fmt TypeDeclId.Set.empty ~use_forall f_generics
- f_tys f_cgs f_tcs;
- if use_forall then F.pp_print_string fmt ",";
- (* Extract the function call *)
- F.pp_print_space fmt ();
- let fun_name = ctx_get_local_function f.def_id None f.back_id ctx in
- F.pp_print_string fmt fun_name;
- let all_generics =
- let _, i_cgs, i_tcs = impl_generics in
- List.concat [ i_tys; f_tys; i_cgs; f_cgs; i_tcs; f_tcs ]
- in
-
- (* Filter the generics if the function is builtin *)
- List.iter
- (fun p ->
- F.pp_print_space fmt ();
- F.pp_print_string fmt p)
- all_generics
+ let f = trans.f in
+ let fun_name = ctx_get_trait_method trait_decl_id item_name ctx in
+ let ty () =
+ (* Filter the generics if the method is a builtin *)
+ let i_tys, _, _ = impl_generics in
+ let impl_types, i_tys, f_tys =
+ match FunDeclId.Map.find_opt f.def_id ctx.funs_filter_type_args_map with
+ | None -> (impl.generics.types, i_tys, f.signature.generics.types)
+ | Some filter ->
+ let filter_list filter ls =
+ let ls = List.combine filter ls in
+ List.filter_map (fun (b, ty) -> if b then Some ty else None) ls
+ in
+ let impl_types = impl.generics.types in
+ let impl_filter =
+ Collections.List.prefix (List.length impl_types) filter
+ in
+ let i_tys = i_tys in
+ let i_filter = Collections.List.prefix (List.length i_tys) filter in
+ ( filter_list impl_filter impl_types,
+ filter_list i_filter i_tys,
+ filter_list filter f.signature.generics.types )
+ in
+ let f_generics = { f.signature.generics with types = f_tys } in
+ (* Extract the generics - we need to quantify over the generics which
+ are specific to the method, and call it will all the generics
+ (trait impl + method generics) *)
+ let f_generics =
+ let drop_trait_clauses = true in
+ generic_params_drop_prefix ~drop_trait_clauses
+ { impl.generics with types = impl_types }
+ f_generics
+ in
+ (* Register and print the quantified generics.
+
+ Note that we do not filter the LLBC generic parameters.
+ This is ok because:
+ - we only use them to find meaningful names for the trait clauses
+ - we only generate trait clauses for the clauses we find in the
+ pure generics *)
+ let ctx, f_tys, f_cgs, f_tcs =
+ ctx_add_generic_params f.llbc_name f.signature.llbc_generics f_generics
+ ctx
+ in
+ let use_forall = f_generics <> empty_generic_params in
+ extract_generic_params ctx fmt TypeDeclId.Set.empty ~use_forall f_generics
+ f_tys f_cgs f_tcs;
+ if use_forall then F.pp_print_string fmt ",";
+ (* Extract the function call *)
+ F.pp_print_space fmt ();
+ let fun_name = ctx_get_local_function f.def_id None ctx in
+ F.pp_print_string fmt fun_name;
+ let all_generics =
+ let _, i_cgs, i_tcs = impl_generics in
+ List.concat [ i_tys; f_tys; i_cgs; f_cgs; i_tcs; f_tcs ]
in
- extract_trait_impl_item ctx fmt fun_name ty
+
+ (* Filter the generics if the function is builtin *)
+ List.iter
+ (fun p ->
+ F.pp_print_space fmt ();
+ F.pp_print_string fmt p)
+ all_generics
in
- List.iter extract_method funs
+ extract_trait_impl_item ctx fmt fun_name ty
(** Extract a trait implementation *)
let extract_trait_impl (ctx : extraction_ctx) (fmt : F.formatter)
@@ -2766,8 +2646,6 @@ let extract_trait_impl (ctx : extraction_ctx) (fmt : F.formatter)
*)
let extract_unit_test_if_unit_fun (ctx : extraction_ctx) (fmt : F.formatter)
(def : fun_decl) : unit =
- (* We only insert unit tests for forward functions *)
- assert (def.back_id = None);
(* Check if this is a unit function *)
let sg = def.signature in
if
@@ -2791,9 +2669,7 @@ let extract_unit_test_if_unit_fun (ctx : extraction_ctx) (fmt : F.formatter)
F.pp_print_string fmt "assert_norm";
F.pp_print_space fmt ();
F.pp_print_string fmt "(";
- let fun_name =
- ctx_get_local_function def.def_id def.loop_id def.back_id ctx
- in
+ let fun_name = ctx_get_local_function def.def_id def.loop_id ctx in
F.pp_print_string fmt fun_name;
if sg.inputs <> [] then (
F.pp_print_space fmt ();
@@ -2807,9 +2683,7 @@ let extract_unit_test_if_unit_fun (ctx : extraction_ctx) (fmt : F.formatter)
F.pp_print_string fmt "Check";
F.pp_print_space fmt ();
F.pp_print_string fmt "(";
- let fun_name =
- ctx_get_local_function def.def_id def.loop_id def.back_id ctx
- in
+ let fun_name = ctx_get_local_function def.def_id def.loop_id ctx in
F.pp_print_string fmt fun_name;
if sg.inputs <> [] then (
F.pp_print_space fmt ();
@@ -2820,9 +2694,7 @@ let extract_unit_test_if_unit_fun (ctx : extraction_ctx) (fmt : F.formatter)
F.pp_print_string fmt "#assert";
F.pp_print_space fmt ();
F.pp_print_string fmt "(";
- let fun_name =
- ctx_get_local_function def.def_id def.loop_id def.back_id ctx
- in
+ let fun_name = ctx_get_local_function def.def_id def.loop_id ctx in
F.pp_print_string fmt fun_name;
if sg.inputs <> [] then (
F.pp_print_space fmt ();
@@ -2835,9 +2707,7 @@ let extract_unit_test_if_unit_fun (ctx : extraction_ctx) (fmt : F.formatter)
| HOL4 ->
F.pp_print_string fmt "val _ = assert_return (";
F.pp_print_string fmt "“";
- let fun_name =
- ctx_get_local_function def.def_id def.loop_id def.back_id ctx
- in
+ let fun_name = ctx_get_local_function def.def_id def.loop_id ctx in
F.pp_print_string fmt fun_name;
if sg.inputs <> [] then (
F.pp_print_space fmt ();
diff --git a/compiler/ExtractBase.ml b/compiler/ExtractBase.ml
index 5aa8323e..591e8aab 100644
--- a/compiler/ExtractBase.ml
+++ b/compiler/ExtractBase.ml
@@ -167,11 +167,7 @@ type id =
| TraitImplId of TraitImplId.id
| LocalTraitClauseId of TraitClauseId.id
| TraitDeclConstructorId of TraitDeclId.id
- | TraitMethodId of TraitDeclId.id * string * T.RegionGroupId.id option
- (** Something peculiar with trait methods: because we have to take into
- account forward/backward functions, we may need to generate fields
- items per method.
- *)
+ | TraitMethodId of TraitDeclId.id * string
| TraitItemId of TraitDeclId.id * string
(** A trait associated item which is not a method *)
| TraitParentClauseId of TraitDeclId.id * TraitClauseId.id
@@ -353,8 +349,6 @@ let basename_to_unique (names_set : StringSet.t)
in
if StringSet.mem basename names_set then gen 1 else basename
-type fun_name_info = { keep_fwd : bool; num_backs : int }
-
type names_maps = {
names_map : names_map;
(** The map for id to names, where we forbid name collisions
@@ -384,7 +378,7 @@ let allow_collisions (id : id) : bool =
| FieldId _ | TraitItemClauseId _ | TraitParentClauseId _ | TraitItemId _
| TraitMethodId _ ->
!Config.record_fields_short_names
- | FunId (Pure _ | FromLlbc (FunId (FAssumed _), _, _)) ->
+ | FunId (Pure _ | FromLlbc (FunId (FAssumed _), _)) ->
(* We map several assumed functions to the same id *)
true
| _ -> false
@@ -471,8 +465,7 @@ type names_map_init = {
assumed_adts : (assumed_ty * string) list;
assumed_structs : (assumed_ty * string) list;
assumed_variants : (assumed_ty * VariantId.id * string) list;
- assumed_llbc_functions :
- (A.assumed_fun_id * RegionGroupId.id option * string) list;
+ assumed_llbc_functions : (A.assumed_fun_id * string) list;
assumed_pure_functions : (pure_assumed_fun_id * string) list;
}
@@ -550,15 +543,6 @@ type extraction_ctx = {
-- makes the if then else dependent
]}
*)
- fun_name_info : fun_name_info PureUtils.RegularFunIdMap.t;
- (** Information used to filter and name functions - we use it
- to print comments in the generated code, to help link
- the generated code to the original code (information such
- as: "this function is the backward function of ...", or
- "this function is the merged forward/backward function of ..."
- in case a Rust function only has one backward translation
- and we filter the forward function because it returns unit.
- *)
trait_decl_id : trait_decl_id option;
(** If we are extracting a trait declaration, identifies it *)
is_provided_method : bool;
@@ -669,14 +653,8 @@ let id_to_string (id : id) (ctx : extraction_ctx) : string =
^ TraitClauseId.to_string clause_id
| TraitItemId (id, name) ->
"trait_item_id: " ^ trait_decl_id_to_string id ^ ", type name: " ^ name
- | TraitMethodId (trait_decl_id, fun_name, rg_id) ->
- let fwd_back_kind =
- match rg_id with
- | None -> "forward"
- | Some rg_id -> "backward " ^ RegionGroupId.to_string rg_id
- in
- trait_decl_id_to_string trait_decl_id
- ^ ", method name (" ^ fwd_back_kind ^ "): " ^ fun_name
+ | TraitMethodId (trait_decl_id, fun_name) ->
+ trait_decl_id_to_string trait_decl_id ^ ", method name: " ^ fun_name
| TraitSelfClauseId -> "trait_self_clause"
let ctx_add (id : id) (name : string) (ctx : extraction_ctx) : extraction_ctx =
@@ -695,8 +673,8 @@ let ctx_get_function (id : fun_id) (ctx : extraction_ctx) : string =
ctx_get (FunId id) ctx
let ctx_get_local_function (id : A.FunDeclId.id) (lp : LoopId.id option)
- (rg : RegionGroupId.id option) (ctx : extraction_ctx) : string =
- ctx_get_function (FromLlbc (FunId (FRegular id), lp, rg)) ctx
+ (ctx : extraction_ctx) : string =
+ ctx_get_function (FromLlbc (FunId (FRegular id), lp)) ctx
let ctx_get_type (id : type_id) (ctx : extraction_ctx) : string =
assert (id <> TTuple);
@@ -734,8 +712,8 @@ let ctx_get_trait_type (id : trait_decl_id) (item_name : string)
ctx_get_trait_item id item_name ctx
let ctx_get_trait_method (id : trait_decl_id) (item_name : string)
- (rg_id : T.RegionGroupId.id option) (ctx : extraction_ctx) : string =
- ctx_get (TraitMethodId (id, item_name, rg_id)) ctx
+ (ctx : extraction_ctx) : string =
+ ctx_get (TraitMethodId (id, item_name)) ctx
let ctx_get_trait_parent_clause (id : trait_decl_id) (clause : trait_clause_id)
(ctx : extraction_ctx) : string =
@@ -1052,63 +1030,28 @@ let assumed_variants () : (assumed_ty * VariantId.id * string) list =
(* No Fuel::Succ on purpose *)
]
-let assumed_llbc_functions () :
- (A.assumed_fun_id * T.RegionGroupId.id option * string) list =
- let rg0 = Some T.RegionGroupId.zero in
- let regular : (A.assumed_fun_id * T.RegionGroupId.id option * string) list =
- match !backend with
- | FStar | Coq | HOL4 ->
- [
- (ArrayIndexShared, None, "array_index_usize");
- (ArrayToSliceShared, None, "array_to_slice");
- (ArrayRepeat, None, "array_repeat");
- (SliceIndexShared, None, "slice_index_usize");
- ]
- | Lean ->
- [
- (ArrayIndexShared, None, "Array.index_usize");
- (ArrayToSliceShared, None, "Array.to_slice");
- (ArrayRepeat, None, "Array.repeat");
- (SliceIndexShared, None, "Slice.index_usize");
- ]
- in
- let mut_funs : (A.assumed_fun_id * T.RegionGroupId.id option * string) list =
- if !Config.return_back_funs then
- match !backend with
- | FStar | Coq | HOL4 ->
- [
- (ArrayIndexMut, None, "array_index_mut_usize");
- (ArrayToSliceMut, None, "array_to_slice_mut");
- (SliceIndexMut, None, "slice_index_mut_usize");
- ]
- | Lean ->
- [
- (ArrayIndexMut, None, "Array.index_mut_usize");
- (ArrayToSliceMut, None, "Array.to_slice_mut");
- (SliceIndexMut, None, "Slice.index_mut_usize");
- ]
- else
- match !backend with
- | FStar | Coq | HOL4 ->
- [
- (ArrayIndexMut, None, "array_index_usize");
- (ArrayIndexMut, rg0, "array_update_usize");
- (ArrayToSliceMut, None, "array_to_slice");
- (ArrayToSliceMut, rg0, "array_from_slice");
- (SliceIndexMut, None, "slice_index_usize");
- (SliceIndexMut, rg0, "slice_update_usize");
- ]
- | Lean ->
- [
- (ArrayIndexMut, None, "Array.index_usize");
- (ArrayIndexMut, rg0, "Array.update_usize");
- (ArrayToSliceMut, None, "Array.to_slice");
- (ArrayToSliceMut, rg0, "Array.from_slice");
- (SliceIndexMut, None, "Slice.index_usize");
- (SliceIndexMut, rg0, "Slice.update_usize");
- ]
- in
- regular @ mut_funs
+let assumed_llbc_functions () : (A.assumed_fun_id * string) list =
+ match !backend with
+ | FStar | Coq | HOL4 ->
+ [
+ (ArrayIndexShared, "array_index_usize");
+ (ArrayIndexMut, "array_index_mut_usize");
+ (ArrayToSliceShared, "array_to_slice");
+ (ArrayToSliceMut, "array_to_slice_mut");
+ (ArrayRepeat, "array_repeat");
+ (SliceIndexShared, "slice_index_usize");
+ (SliceIndexMut, "slice_index_mut_usize");
+ ]
+ | Lean ->
+ [
+ (ArrayIndexShared, "Array.index_usize");
+ (ArrayIndexMut, "Array.index_mut_usize");
+ (ArrayToSliceShared, "Array.to_slice");
+ (ArrayToSliceMut, "Array.to_slice_mut");
+ (ArrayRepeat, "Array.repeat");
+ (SliceIndexShared, "Slice.index_usize");
+ (SliceIndexMut, "Slice.index_mut_usize");
+ ]
let assumed_pure_functions () : (pure_assumed_fun_id * string) list =
match !backend with
@@ -1200,8 +1143,7 @@ let initialize_names_maps () : names_maps =
in
let assumed_functions =
List.map
- (fun (fid, rg, name) ->
- (FromLlbc (Pure.FunId (FAssumed fid), None, rg), name))
+ (fun (fid, name) -> (FromLlbc (Pure.FunId (FAssumed fid), None), name))
init.assumed_llbc_functions
@ List.map (fun (fid, name) -> (Pure fid, name)) init.assumed_pure_functions
in
@@ -1444,61 +1386,12 @@ let default_fun_loop_suffix (num_loops : int) (loop_id : LoopId.id option) :
If this function admits only one loop, we omit it. *)
if num_loops = 1 then "_loop" else "_loop" ^ LoopId.to_string loop_id
-(** A helper function: generates a function suffix from a region group
- information.
+(** A helper function: generates a function suffix.
TODO: move all those helpers.
*)
-let default_fun_suffix (num_loops : int) (loop_id : LoopId.id option)
- (num_region_groups : int) (rg : region_group_info option)
- ((keep_fwd, num_backs) : bool * int) : string =
- let lp_suff = default_fun_loop_suffix num_loops loop_id in
-
- (* There are several cases:
- - [rg] is [Some]: this is a forward function:
- - we add "_fwd"
- - [rg] is [None]: this is a backward function:
- - this function has one extracted backward function:
- - if the forward function has been filtered, we add nothing:
- the forward function is useless, so the unique backward function
- takes its place, in a way (in effect, we "merge" the forward
- and the backward functions).
- - otherwise we add "_back"
- - this function has several backward functions: we add "_back" and an
- additional suffix to identify the precise backward function
- Note that we always add a suffix (in case there are no region groups,
- we could not add the "_fwd" suffix) to prevent name clashes between
- definitions (in particular between type and function definitions).
- *)
- let rg_suff =
- (* TODO: make all the backends match what is done for Lean *)
- match rg with
- | None ->
- if
- (* In order to avoid name conflicts:
- * - if the forward is eliminated, we add the suffix "_fwd" (it won't be used)
- * - otherwise, no suffix (because the backward functions will have a suffix)
- *)
- num_backs = 1 && not keep_fwd
- then "_fwd"
- else ""
- | Some rg ->
- assert (num_region_groups > 0 && num_backs > 0);
- if num_backs = 1 then
- (* Exactly one backward function *)
- if not keep_fwd then "" else "_back"
- else if
- (* Several region groups/backward functions:
- - if all the regions in the group have names, we use those names
- - otherwise we use an index
- *)
- List.for_all Option.is_some rg.region_names
- then
- (* Concatenate the region names *)
- "_back" ^ String.concat "" (List.map Option.get rg.region_names)
- else (* Use the region index *)
- "_back" ^ RegionGroupId.to_string rg.id
- in
- lp_suff ^ rg_suff
+let default_fun_suffix (num_loops : int) (loop_id : LoopId.id option) : string =
+ (* We only generate a suffix for the functions we generate from the loops *)
+ default_fun_loop_suffix num_loops loop_id
(** Compute the name of a regular (non-assumed) function.
@@ -1508,24 +1401,13 @@ let default_fun_suffix (num_loops : int) (loop_id : LoopId.id option)
indices to derive unique names for the loops for instance - if there is
exactly one loop, we don't need to use indices)
- loop id (if pertinent)
- - number of region groups
- - region group information in case of a backward function
- ([None] if forward function)
- - pair:
- - do we generate the forward function (it may have been filtered)?
- - the number of *extracted backward functions* (same comment as for
- the number of loops)
- The number of extracted backward functions if not necessarily
- equal to the number of region groups, because we may have
- filtered some of them.
TODO: use the fun id for the assumed functions.
*)
let ctx_compute_fun_name (ctx : extraction_ctx) (fname : llbc_name)
- (num_loops : int) (loop_id : LoopId.id option) (num_rgs : int)
- (rg : region_group_info option) (filter_info : bool * int) : string =
+ (num_loops : int) (loop_id : LoopId.id option) : string =
let fname = ctx_compute_fun_name_no_suffix ctx fname in
(* Compute the suffix *)
- let suffix = default_fun_suffix num_loops loop_id num_rgs rg filter_info in
+ let suffix = default_fun_suffix num_loops loop_id in
(* Concatenate *)
fname ^ suffix
@@ -1999,61 +1881,26 @@ let ctx_add_global_decl_and_body (def : A.global_decl) (ctx : extraction_ctx) :
| None ->
(* Not the case: "standard" registration *)
let name = ctx_compute_global_name ctx def.name in
- let body = FunId (FromLlbc (FunId (FRegular def.body), None, None)) in
+ let body = FunId (FromLlbc (FunId (FRegular def.body), None)) in
let ctx = ctx_add decl (name ^ "_c") ctx in
let ctx = ctx_add body (name ^ "_body") ctx in
ctx
-let ctx_compute_fun_name (trans_group : pure_fun_translation) (def : fun_decl)
- (ctx : extraction_ctx) : string =
- (* Lookup the LLBC def to compute the region group information *)
- let def_id = def.def_id in
- let llbc_def = A.FunDeclId.Map.find def_id ctx.trans_ctx.fun_ctx.fun_decls in
- let sg = llbc_def.signature in
- let regions_hierarchy =
- LlbcAstUtils.FunIdMap.find (FRegular def_id)
- ctx.trans_ctx.fun_ctx.regions_hierarchies
- in
- let num_rgs = List.length regions_hierarchy in
- let { keep_fwd; fwd = _; backs } = trans_group in
- let num_backs = List.length backs in
- let rg_info =
- match def.back_id with
- | None -> None
- | Some rg_id ->
- let rg = T.RegionGroupId.nth regions_hierarchy rg_id in
- let region_names =
- List.map
- (fun rid -> (T.RegionVarId.nth sg.generics.regions rid).name)
- rg.regions
- in
- Some { id = rg_id; region_names }
- in
+let ctx_compute_fun_name (def : fun_decl) (ctx : extraction_ctx) : string =
(* Add the function name *)
- ctx_compute_fun_name ctx def.llbc_name def.num_loops def.loop_id num_rgs
- rg_info (keep_fwd, num_backs)
+ ctx_compute_fun_name ctx def.llbc_name def.num_loops def.loop_id
(* TODO: move to Extract *)
-let ctx_add_fun_decl (trans_group : pure_fun_translation) (def : fun_decl)
- (ctx : extraction_ctx) : extraction_ctx =
+let ctx_add_fun_decl (def : fun_decl) (ctx : extraction_ctx) : extraction_ctx =
(* Sanity check: the function should not be a global body - those are handled
* separately *)
assert (not def.is_global_decl_body);
(* Lookup the LLBC def to compute the region group information *)
let def_id = def.def_id in
- let { keep_fwd; fwd = _; backs } = trans_group in
- let num_backs = List.length backs in
(* Add the function name *)
- let def_name = ctx_compute_fun_name trans_group def ctx in
- let fun_id = (Pure.FunId (FRegular def_id), def.loop_id, def.back_id) in
- let ctx = ctx_add (FunId (FromLlbc fun_id)) def_name ctx in
- (* Add the name info *)
- {
- ctx with
- fun_name_info =
- PureUtils.RegularFunIdMap.add fun_id { keep_fwd; num_backs }
- ctx.fun_name_info;
- }
+ let def_name = ctx_compute_fun_name def ctx in
+ let fun_id = (Pure.FunId (FRegular def_id), def.loop_id) in
+ ctx_add (FunId (FromLlbc fun_id)) def_name ctx
let ctx_compute_type_decl_name (ctx : extraction_ctx) (def : type_decl) : string
=
diff --git a/compiler/ExtractBuiltin.ml b/compiler/ExtractBuiltin.ml
index ee8d4831..88de31fe 100644
--- a/compiler/ExtractBuiltin.ml
+++ b/compiler/ExtractBuiltin.ml
@@ -213,11 +213,7 @@ let mk_builtin_types_map () =
let builtin_types_map = mk_memoized mk_builtin_types_map
-type builtin_fun_info = {
- rg : Types.RegionGroupId.id option;
- extract_name : string;
-}
-[@@deriving show]
+type builtin_fun_info = { extract_name : string } [@@deriving show]
(** The assumed functions.
@@ -225,21 +221,11 @@ type builtin_fun_info = {
parameters. For instance, in the case of the `Vec` functions, there is
a type parameter for the allocator to use, which we want to filter.
*)
-let builtin_funs () : (pattern * bool list option * builtin_fun_info list) list
- =
- let rg0 = Some Types.RegionGroupId.zero in
+let builtin_funs () : (pattern * bool list option * builtin_fun_info) list =
(* Small utility *)
let mk_fun (rust_name : string) (extract_name : string option)
- (filter : bool list option) (with_back : bool) (back_no_suffix : bool) :
- pattern * bool list option * builtin_fun_info list =
- (* [back_no_suffix] is used to control whether the backward function should
- have the suffix "_back" or not (if not, then the forward function has the
- prefix "_fwd", and is filtered anyway). This is pertinent only if we split
- the fwd/back functions. *)
- let back_no_suffix = back_no_suffix && not !Config.return_back_funs in
- (* Same for the [with_back] option: this is pertinent only if we split
- the fwd/back functions *)
- let with_back = with_back && not !Config.return_back_funs in
+ (filter : bool list option) :
+ pattern * bool list option * builtin_fun_info =
let rust_name =
try parse_pattern rust_name
with Failure _ ->
@@ -251,68 +237,51 @@ let builtin_funs () : (pattern * bool list option * builtin_fun_info list) list
| Some name -> split_on_separator name
in
let basename = flatten_name extract_name in
- let fwd_suffix = if with_back && back_no_suffix then "_fwd" else "" in
- let fwd = [ { rg = None; extract_name = basename ^ fwd_suffix } ] in
- let back_suffix = if with_back && back_no_suffix then "" else "_back" in
- let back =
- if with_back then [ { rg = rg0; extract_name = basename ^ back_suffix } ]
- else []
- in
- (rust_name, filter, fwd @ back)
+ let f = { extract_name = basename } in
+ (rust_name, filter, f)
in
[
- mk_fun "core::mem::replace" None None true false;
+ mk_fun "core::mem::replace" None None;
mk_fun "core::slice::{[@T]}::len"
(Some (backend_choice "slice::len" "Slice::len"))
- None true false;
+ None;
mk_fun "alloc::vec::{alloc::vec::Vec<@T, alloc::alloc::Global>}::new"
- (Some "alloc::vec::Vec::new") None false false;
+ (Some "alloc::vec::Vec::new") None;
mk_fun "alloc::vec::{alloc::vec::Vec<@T, @A>}::push" None
- (Some [ true; false ])
- true true;
+ (Some [ true; false ]);
mk_fun "alloc::vec::{alloc::vec::Vec<@T, @A>}::insert" None
- (Some [ true; false ])
- true true;
+ (Some [ true; false ]);
mk_fun "alloc::vec::{alloc::vec::Vec<@T, @A>}::len" None
- (Some [ true; false ])
- true false;
+ (Some [ true; false ]);
mk_fun "alloc::vec::{alloc::vec::Vec<@T, @A>}::index" None
- (Some [ true; true; false ])
- true false;
+ (Some [ true; true; false ]);
mk_fun "alloc::vec::{alloc::vec::Vec<@T, @A>}::index_mut" None
- (Some [ true; true; false ])
- true false;
- mk_fun "alloc::boxed::{Box<@T>}::deref" None
- (Some [ true; false ])
- true false;
- mk_fun "alloc::boxed::{Box<@T>}::deref_mut" None
- (Some [ true; false ])
- true false;
- mk_fun "core::slice::index::{[@T]}::index" None None true false;
- mk_fun "core::slice::index::{[@T]}::index_mut" None None true false;
- mk_fun "core::array::{[@T; @C]}::index" None None true false;
- mk_fun "core::array::{[@T; @C]}::index_mut" None None true false;
+ (Some [ true; true; false ]);
+ mk_fun "alloc::boxed::{Box<@T>}::deref" None (Some [ true; false ]);
+ mk_fun "alloc::boxed::{Box<@T>}::deref_mut" None (Some [ true; false ]);
+ mk_fun "core::slice::index::{[@T]}::index" None None;
+ mk_fun "core::slice::index::{[@T]}::index_mut" None None;
+ mk_fun "core::array::{[@T; @C]}::index" None None;
+ mk_fun "core::array::{[@T; @C]}::index_mut" None None;
mk_fun "core::slice::index::{core::ops::range::Range<usize>}::get"
- (Some "core::slice::index::RangeUsize::get") None true false;
+ (Some "core::slice::index::RangeUsize::get") None;
mk_fun "core::slice::index::{core::ops::range::Range<usize>}::get_mut"
- (Some "core::slice::index::RangeUsize::get_mut") None true false;
+ (Some "core::slice::index::RangeUsize::get_mut") None;
mk_fun "core::slice::index::{core::ops::range::Range<usize>}::index"
- (Some "core::slice::index::RangeUsize::index") None true false;
+ (Some "core::slice::index::RangeUsize::index") None;
mk_fun "core::slice::index::{core::ops::range::Range<usize>}::index_mut"
- (Some "core::slice::index::RangeUsize::index_mut") None true false;
+ (Some "core::slice::index::RangeUsize::index_mut") None;
mk_fun "core::slice::index::{core::ops::range::Range<usize>}::get_unchecked"
- (Some "core::slice::index::RangeUsize::get_unchecked") None false false;
+ (Some "core::slice::index::RangeUsize::get_unchecked") None;
mk_fun
"core::slice::index::{core::ops::range::Range<usize>}::get_unchecked_mut"
- (Some "core::slice::index::RangeUsize::get_unchecked_mut") None false
- false;
- mk_fun "core::slice::index::{usize}::get" None None true false;
- mk_fun "core::slice::index::{usize}::get_mut" None None true false;
- mk_fun "core::slice::index::{usize}::get_unchecked" None None false false;
- mk_fun "core::slice::index::{usize}::get_unchecked_mut" None None false
- false;
- mk_fun "core::slice::index::{usize}::index" None None true false;
- mk_fun "core::slice::index::{usize}::index_mut" None None true false;
+ (Some "core::slice::index::RangeUsize::get_unchecked_mut") None;
+ mk_fun "core::slice::index::{usize}::get" None None;
+ mk_fun "core::slice::index::{usize}::get_mut" None None;
+ mk_fun "core::slice::index::{usize}::get_unchecked" None None;
+ mk_fun "core::slice::index::{usize}::get_unchecked_mut" None None;
+ mk_fun "core::slice::index::{usize}::index" None None;
+ mk_fun "core::slice::index::{usize}::index_mut" None None;
]
let mk_builtin_funs_map () =
@@ -407,15 +376,14 @@ type builtin_trait_decl_info = {
- a Rust name
- an extraction name
- a list of clauses *)
- methods : (string * builtin_fun_info list) list;
+ methods : (string * builtin_fun_info) list;
}
[@@deriving show]
let builtin_trait_decls_info () =
- let rg0 = Some Types.RegionGroupId.zero in
let mk_trait (rust_name : string) ?(extract_name : string option = None)
?(parent_clauses : string list = []) ?(types : string list = [])
- ?(methods : (string * bool) list = []) () : builtin_trait_decl_info =
+ ?(methods : string list = []) () : builtin_trait_decl_info =
let rust_name = parse_pattern rust_name in
let extract_name =
match extract_name with
@@ -443,22 +411,14 @@ let builtin_trait_decls_info () =
List.map mk_type types
in
let methods =
- let mk_method (item_name, with_back) =
+ let mk_method item_name =
(* TODO: factor out with builtin_funs_info *)
let basename =
if !record_fields_short_names then item_name
else extract_name ^ "_" ^ item_name
in
- let back_no_suffix = false in
- let fwd_suffix = if with_back && back_no_suffix then "_fwd" else "" in
- let fwd = [ { rg = None; extract_name = basename ^ fwd_suffix } ] in
- let back_suffix = if with_back && back_no_suffix then "" else "_back" in
- let back =
- if with_back then
- [ { rg = rg0; extract_name = basename ^ back_suffix } ]
- else []
- in
- (item_name, fwd @ back)
+ let fwd = { extract_name = basename } in
+ (item_name, fwd)
in
List.map mk_method methods
in
@@ -474,21 +434,17 @@ let builtin_trait_decls_info () =
in
[
(* Deref *)
- mk_trait "core::ops::deref::Deref" ~types:[ "Target" ]
- ~methods:[ ("deref", true) ]
+ mk_trait "core::ops::deref::Deref" ~types:[ "Target" ] ~methods:[ "deref" ]
();
(* DerefMut *)
mk_trait "core::ops::deref::DerefMut" ~parent_clauses:[ "derefInst" ]
- ~methods:[ ("deref_mut", true) ]
- ();
+ ~methods:[ "deref_mut" ] ();
(* Index *)
- mk_trait "core::ops::index::Index" ~types:[ "Output" ]
- ~methods:[ ("index", true) ]
+ mk_trait "core::ops::index::Index" ~types:[ "Output" ] ~methods:[ "index" ]
();
(* IndexMut *)
mk_trait "core::ops::index::IndexMut" ~parent_clauses:[ "indexInst" ]
- ~methods:[ ("index_mut", true) ]
- ();
+ ~methods:[ "index_mut" ] ();
(* Sealed *)
mk_trait "core::slice::index::private_slice_index::Sealed" ();
(* SliceIndex *)
@@ -496,12 +452,12 @@ let builtin_trait_decls_info () =
~types:[ "Output" ]
~methods:
[
- ("get", true);
- ("get_mut", true);
- ("get_unchecked", false);
- ("get_unchecked_mut", false);
- ("index", true);
- ("index_mut", true);
+ "get";
+ "get_mut";
+ "get_unchecked";
+ "get_unchecked_mut";
+ "index";
+ "index_mut";
]
();
]
diff --git a/compiler/ExtractTypes.ml b/compiler/ExtractTypes.ml
index a3dbf3cc..05b71b9f 100644
--- a/compiler/ExtractTypes.ml
+++ b/compiler/ExtractTypes.ml
@@ -272,7 +272,7 @@ let start_fun_decl_group (ctx : extraction_ctx) (fmt : F.formatter)
if is_single_opaque_fun_decl_group dg then ()
else
let compute_fun_def_name (def : Pure.fun_decl) : string =
- ctx_get_local_function def.def_id def.loop_id def.back_id ctx ^ "_def"
+ ctx_get_local_function def.def_id def.loop_id ctx ^ "_def"
in
let names = List.map compute_fun_def_name dg in
(* Add a break before *)
diff --git a/compiler/Main.ml b/compiler/Main.ml
index 4a2d01dc..3f5e62ad 100644
--- a/compiler/Main.ml
+++ b/compiler/Main.ml
@@ -72,12 +72,6 @@ let () =
Arg.Symbol (backend_names, set_backend),
" Specify the target backend" );
("-dest", Arg.Set_string dest_dir, " Specify the output directory");
- ( "-no-filter-useless-calls",
- Arg.Clear filter_useless_monadic_calls,
- " Do not filter the useless function calls" );
- ( "-no-filter-useless-funs",
- Arg.Clear filter_useless_functions,
- " Do not filter the useless forward/backward functions" );
( "-test-units",
Arg.Set test_unit_functions,
" Test the unit functions with the concrete (i.e., not symbolic) \
@@ -120,9 +114,6 @@ let () =
" Generate a default lakefile.lean (Lean only)" );
("-print-llbc", Arg.Set print_llbc, " Print the imported LLBC");
("-k", Arg.Clear fail_hard, " Do not fail hard in case of error");
- ( "-split-fwd-back",
- Arg.Clear return_back_funs,
- " Split the forward and backward functions." );
( "-tuple-nested-proj",
Arg.Set use_nested_tuple_projectors,
" Use nested projectors for tuples (e.g., (0, 1).snd.fst instead of \
diff --git a/compiler/PrintPure.ml b/compiler/PrintPure.ml
index 66475d02..21ca7f08 100644
--- a/compiler/PrintPure.ml
+++ b/compiler/PrintPure.ml
@@ -462,21 +462,13 @@ let inst_fun_sig_to_string (env : fmt_env) (sg : inst_fun_sig) : string =
let all_types = List.append inputs [ output ] in
String.concat " -> " all_types
-let fun_suffix (lp_id : LoopId.id option) (rg_id : T.RegionGroupId.id option) :
- string =
+let fun_suffix (lp_id : LoopId.id option) : string =
let lp_suff =
match lp_id with
| None -> ""
| Some lp_id -> "^loop" ^ LoopId.to_string lp_id
in
-
- let rg_suff =
- match rg_id with
- | None -> ""
- | Some rg_id -> "@" ^ T.RegionGroupId.to_string rg_id
- in
-
- lp_suff ^ rg_suff
+ lp_suff
let llbc_assumed_fun_id_to_string (fid : A.assumed_fun_id) : string =
match fid with
@@ -505,7 +497,7 @@ let pure_assumed_fun_id_to_string (fid : pure_assumed_fun_id) : string =
let regular_fun_id_to_string (env : fmt_env) (fun_id : fun_id) : string =
match fun_id with
- | FromLlbc (fid, lp_id, rg_id) ->
+ | FromLlbc (fid, lp_id) ->
let f =
match fid with
| FunId (FRegular fid) -> fun_decl_id_to_string env fid
@@ -513,7 +505,7 @@ let regular_fun_id_to_string (env : fmt_env) (fun_id : fun_id) : string =
| TraitMethod (trait_ref, method_name, _) ->
trait_ref_to_string env true trait_ref ^ "." ^ method_name
in
- f ^ fun_suffix lp_id rg_id
+ f ^ fun_suffix lp_id
| Pure fid -> pure_assumed_fun_id_to_string fid
let unop_to_string (unop : unop) : string =
@@ -746,7 +738,7 @@ and emeta_to_string (env : fmt_env) (meta : emeta) : string =
let fun_decl_to_string (env : fmt_env) (def : fun_decl) : string =
let env = { env with generics = def.signature.generics } in
- let name = def.name ^ fun_suffix def.loop_id def.back_id in
+ let name = def.name ^ fun_suffix def.loop_id in
let signature = fun_sig_to_string env def.signature in
match def.body with
| None -> "val " ^ name ^ " :\n " ^ signature
diff --git a/compiler/Pure.ml b/compiler/Pure.ml
index a879ba37..dd7a4acf 100644
--- a/compiler/Pure.ml
+++ b/compiler/Pure.ml
@@ -560,8 +560,7 @@ type fun_id_or_trait_method_ref =
[@@deriving show, ord]
(** A function id for a non-assumed function *)
-type regular_fun_id =
- fun_id_or_trait_method_ref * LoopId.id option * RegionGroupId.id option
+type regular_fun_id = fun_id_or_trait_method_ref * LoopId.id option
[@@deriving show, ord]
(** A function identifier *)
@@ -1078,7 +1077,6 @@ type fun_decl = {
*)
loop_id : LoopId.id option;
(** [Some] if this definition was generated for a loop *)
- back_id : RegionGroupId.id option;
llbc_name : llbc_name; (** The original LLBC name. *)
name : string;
(** We use the name only for printing purposes (for debugging):
diff --git a/compiler/PureMicroPasses.ml b/compiler/PureMicroPasses.ml
index ec64df21..04bc90d7 100644
--- a/compiler/PureMicroPasses.ml
+++ b/compiler/PureMicroPasses.ml
@@ -925,156 +925,9 @@ let inline_useless_var_reassignments (ctx : trans_ctx) ~(inline_named : bool)
in
{ def with body = Some body }
-(** For the cases where we split the forward/backward functions.
-
- Given a forward or backward function call, is there, for every execution
- path, a child backward function called later with exactly the same input
- list prefix. We use this to filter useless function calls: if there are
- such child calls, we can remove this one (in case its outputs are not
- used).
- We do this check because we can't simply remove function calls whose
- outputs are not used, as they might fail. However, if a function fails,
- its children backward functions then fail on the same inputs (ignoring
- the additional inputs those receive).
-
- For instance, if we have:
- {[
- fn f<'a>(x : &'a mut T);
- ]}
-
- We often have things like this in the synthesized code:
- {[
- _ <-- f@fwd x;
- ...
- nx <-- f@back'a x y;
- ...
- ]}
-
- If [f@back'a x y] fails, then necessarily [f@fwd x] also fails.
- In this situation, we can remove the call [f@fwd x].
- *)
-let expression_contains_child_call_in_all_paths (ctx : trans_ctx)
- (id0 : fun_id_or_trait_method_ref) (lp_id0 : LoopId.id option)
- (rg_id0 : T.RegionGroupId.id option) (generics0 : generic_args)
- (args0 : texpression list) (e : texpression) : bool =
- let check_call (fun_id1 : fun_or_op_id) (generics1 : generic_args)
- (args1 : texpression list) : bool =
- (* Check the fun_ids, to see if call1's function is a child of call0's function *)
- match fun_id1 with
- | Fun (FromLlbc (id1, lp_id1, rg_id1)) ->
- (* Both are "regular" calls: check if they come from the same rust function *)
- if id0 = id1 && lp_id0 = lp_id1 then
- (* Same rust functions: check the regions hierarchy *)
- let call1_is_child =
- match (rg_id0, rg_id1) with
- | None, _ ->
- (* The function used in call0 is the forward function: the one
- * used in call1 is necessarily a child *)
- true
- | Some _, None ->
- (* Opposite of previous case *)
- false
- | Some rg_id0, Some rg_id1 ->
- if rg_id0 = rg_id1 then true
- else
- (* We need to use the regions hierarchy *)
- let regions_hierarchy =
- let id0 =
- match id0 with
- | FunId fun_id -> fun_id
- | TraitMethod (_, _, fun_decl_id) -> FRegular fun_decl_id
- in
- LlbcAstUtils.FunIdMap.find id0
- ctx.fun_ctx.regions_hierarchies
- in
- (* Compute the set of ancestors of the function in call1 *)
- let call1_ancestors =
- LlbcAstUtils.list_ancestor_region_groups regions_hierarchy
- rg_id1
- in
- (* Check if the function used in call0 is inside *)
- T.RegionGroupId.Set.mem rg_id0 call1_ancestors
- in
- (* If call1 is a child, then we need to check if the input arguments
- * used in call0 are a prefix of the input arguments used in call1
- * (note call1 being a child, it will likely consume strictly more
- * given back values).
- * *)
- if call1_is_child then
- let call1_args =
- Collections.List.prefix (List.length args0) args1
- in
- let args = List.combine args0 call1_args in
- (* Note that the input values are expressions, *which may contain
- * meta-values* (which we need to ignore). *)
- let input_eq (v0, v1) =
- PureUtils.remove_meta v0 = PureUtils.remove_meta v1
- in
- (* Compare the generics and the prefix of the input arguments *)
- generics0 = generics1 && List.for_all input_eq args
- else (* Not a child *)
- false
- else (* Not the same function *)
- false
- | _ -> false
- in
-
- let visitor =
- object (self)
- inherit [_] reduce_expression
- method zero _ = false
- method plus b0 b1 _ = b0 () && b1 ()
-
- method! visit_texpression env e =
- match e.e with
- | Var _ | CVar _ | Const _ -> fun _ -> false
- | StructUpdate _ ->
- (* There shouldn't be monadic calls in structure updates - also
- note that by returning [false] we are conservative: we might
- *prevent* possible optimisations (i.e., filtering some function
- calls), which is sound. *)
- fun _ -> false
- | Let (_, _, re, e) -> (
- match opt_destruct_function_call re with
- | None -> fun () -> self#visit_texpression env e ()
- | Some (func1, generics1, args1) ->
- let call_is_child = check_call func1 generics1 args1 in
- if call_is_child then fun () -> true
- else fun () -> self#visit_texpression env e ())
- | Lambda (_, e) -> self#visit_texpression env e
- | App _ -> (
- fun () ->
- match opt_destruct_function_call e with
- | Some (func1, tys1, args1) -> check_call func1 tys1 args1
- | None -> false)
- | Qualif _ ->
- (* Note that this case includes functions without arguments *)
- fun () -> false
- | Meta (_, e) -> self#visit_texpression env e
- | Loop loop ->
- (* We only visit the *function end* *)
- self#visit_texpression env loop.fun_end
- | Switch (_, body) -> self#visit_switch_body env body
-
- method! visit_switch_body env body =
- match body with
- | If (e1, e2) ->
- fun () ->
- self#visit_texpression env e1 ()
- && self#visit_texpression env e2 ()
- | Match branches ->
- fun () ->
- List.for_all
- (fun br -> self#visit_texpression env br.branch ())
- branches
- end
- in
- visitor#visit_texpression () e ()
-
(** Filter the useless assignments (removes the useless variables, filters
the function calls) *)
-let filter_useless (filter_monadic_calls : bool) (ctx : trans_ctx)
- (def : fun_decl) : fun_decl =
+let filter_useless (_ctx : trans_ctx) (def : fun_decl) : fun_decl =
(* We first need a transformation on *left-values*, which filters the useless
* variables and tells us whether the value contains any variable which has
* not been replaced by [_] (in which case we need to keep the assignment,
@@ -1166,30 +1019,8 @@ let filter_useless (filter_monadic_calls : bool) (ctx : trans_ctx)
if not monadic then
(* Not a monadic let-binding: simple case *)
(e.e, fun _ -> used)
- else
- (* Monadic let-binding: trickier.
- * We can filter if the right-expression is a function call,
- * under some conditions. *)
- match (filter_monadic_calls, opt_destruct_function_call re) with
- | true, Some (Fun (FromLlbc (fid, lp_id, rg_id)), tys, args) ->
- (* If we split the forward/backward functions.
-
- We need to check if there is a child call - see
- the comments for:
- [expression_contains_child_call_in_all_paths] *)
- if not !Config.return_back_funs then
- let has_child_call =
- expression_contains_child_call_in_all_paths ctx fid
- lp_id rg_id tys args e
- in
- if has_child_call then (* Filter *)
- (e.e, fun _ -> used)
- else (* No child call: don't filter *)
- dont_filter ()
- else dont_filter ()
- | _ ->
- (* Not an LLBC function call or not allowed to filter: we can't filter *)
- dont_filter ()
+ else (* Monadic let-binding: can't filter *)
+ dont_filter ()
else (* There are used variables: don't filter *)
dont_filter ()
| Loop loop ->
@@ -1442,22 +1273,6 @@ let simplify_aggregates (ctx : trans_ctx) (def : fun_decl) : fun_decl =
let body = { body with body = body_exp } in
{ def with body = Some body }
-(** Return [None] if the function is a backward function with no outputs (so
- that we eliminate the definition which is useless).
-
- Note that the calls to such functions are filtered when translating from
- symbolic to pure. Here, we remove the definitions altogether, because they
- are now useless
- *)
-let filter_if_backward_with_no_outputs (def : fun_decl) : fun_decl option =
- if
- !Config.filter_useless_functions
- && Option.is_some def.back_id
- && def.signature.output = mk_result_ty mk_unit_ty
- || def.signature.output = mk_unit_ty
- then None
- else Some def
-
(** Retrieve the loop definitions from the function definition.
{!SymbolicToPure} generates an AST in which the loop bodies are part of
@@ -1530,14 +1345,7 @@ let decompose_loops (_ctx : trans_ctx) (def : fun_decl) :
info.num_inputs_with_fuel_no_state
info.num_inputs_with_fuel_with_state
in
- let back_inputs =
- if !Config.return_back_funs then []
- else
- snd
- (Collections.List.split_at fun_sig.inputs
- info.num_inputs_with_fuel_with_state)
- in
- List.concat [ fuel; fwd_inputs; fwd_state; back_inputs ]
+ List.concat [ fuel; fwd_inputs; fwd_state ]
in
let output = loop.output_ty in
@@ -1618,7 +1426,6 @@ let decompose_loops (_ctx : trans_ctx) (def : fun_decl) :
kind = def.kind;
num_loops;
loop_id = Some loop.loop_id;
- back_id = def.back_id;
llbc_name = def.llbc_name;
name = def.name;
signature = loop_sig;
@@ -1640,35 +1447,6 @@ let decompose_loops (_ctx : trans_ctx) (def : fun_decl) :
let loops = List.map snd (LoopId.Map.bindings !loops) in
(def, loops)
-(** Return [false] if the forward function is useless and should be filtered.
-
- - a forward function with no output (comes from a Rust function with
- unit return type)
- - the function has mutable borrows as inputs (which is materialized
- by the fact we generated backward functions which were not filtered).
-
- In such situation, every call to the Rust function will be translated to:
- - a call to the forward function which returns nothing
- - calls to the backward functions
- As a failing backward function implies the forward function also fails,
- we can filter the calls to the forward function, which thus becomes
- useless.
- In such situation, we can remove the forward function definition
- altogether.
- *)
-let keep_forward (fwd : fun_and_loops) (backs : fun_and_loops list) : bool =
- (* The question of filtering the forward functions arises only if we split
- the forward/backward functions *)
- if !Config.return_back_funs then true
- else if
- (* Note that at this point, the output types are no longer seen as tuples:
- * they should be lists of length 1. *)
- !Config.filter_useless_functions
- && fwd.f.signature.output = mk_result_ty mk_unit_ty
- && backs <> []
- then false
- else true
-
(** Convert the unit variables to [()] if they are used as right-values or
[_] if they are used as left values in patterns. *)
let unit_vars_to_unit (def : fun_decl) : fun_decl =
@@ -1724,19 +1502,17 @@ let eliminate_box_functions (_ctx : trans_ctx) (def : fun_decl) : fun_decl =
* could have: [box_new f x])
* *)
match fun_id with
- | Fun (FromLlbc (FunId (FAssumed aid), _lp_id, rg_id)) -> (
- match (aid, rg_id) with
- | BoxNew, _ ->
- assert (rg_id = None);
+ | Fun (FromLlbc (FunId (FAssumed aid), _lp_id)) -> (
+ match aid with
+ | BoxNew ->
let arg, args = Collections.List.pop args in
mk_apps arg args
- | BoxFree, _ ->
+ | BoxFree ->
assert (args = []);
mk_unit_rvalue
- | ( ( SliceIndexShared | SliceIndexMut | ArrayIndexShared
- | ArrayIndexMut | ArrayToSliceShared | ArrayToSliceMut
- | ArrayRepeat ),
- _ ) ->
+ | SliceIndexShared | SliceIndexMut | ArrayIndexShared
+ | ArrayIndexMut | ArrayToSliceShared | ArrayToSliceMut
+ | ArrayRepeat ->
super#visit_texpression env e)
| _ -> super#visit_texpression env e)
| _ -> super#visit_texpression env e
@@ -1989,7 +1765,7 @@ let apply_end_passes_to_def (ctx : trans_ctx) (def : fun_decl) : fun_decl =
(lazy ("eliminate_box_functions:\n\n" ^ fun_decl_to_string ctx def ^ "\n"));
(* Filter the useless variables, assignments, function calls, etc. *)
- let def = filter_useless !Config.filter_useless_monadic_calls ctx def in
+ let def = filter_useless ctx def in
log#ldebug (lazy ("filter_useless:\n\n" ^ fun_decl_to_string ctx def ^ "\n"));
(* Simplify the lets immediately followed by a return.
@@ -2130,16 +1906,7 @@ let filter_loop_inputs (transl : pure_fun_translation list) :
*)
let all_decls =
List.concat
- (List.concat
- (List.concat
- (List.map
- (fun { fwd; backs; _ } ->
- [ fwd.f :: fwd.loops ]
- :: List.map
- (fun { f = back; loops = loops_back } ->
- [ back :: loops_back ])
- backs)
- transl)))
+ (List.concat (List.map (fun { f; loops } -> [ f :: loops ]) transl))
in
let subgroups = ReorderDecls.group_reorder_fun_decls all_decls in
@@ -2207,7 +1974,7 @@ let filter_loop_inputs (transl : pure_fun_translation list) :
match e_app.e with
| Qualif qualif -> (
match qualif.id with
- | FunOrOp (Fun (FromLlbc (FunId fun_id', loop_id', _))) ->
+ | FunOrOp (Fun (FromLlbc (FunId fun_id', loop_id'))) ->
if (fun_id', loop_id') = fun_id then (
(* For each argument, check if it is exactly the original
input parameter. Note that there shouldn't be partial
@@ -2357,8 +2124,7 @@ let filter_loop_inputs (transl : pure_fun_translation list) :
match e_app.e with
| Qualif qualif -> (
match qualif.id with
- | FunOrOp (Fun (FromLlbc (FunId fun_id, loop_id, _)))
- -> (
+ | FunOrOp (Fun (FromLlbc (FunId fun_id, loop_id))) -> (
match
FunLoopIdMap.find_opt (fun_id, loop_id) !used_map
with
@@ -2400,13 +2166,8 @@ let filter_loop_inputs (transl : pure_fun_translation list) :
in
let transl =
List.map
- (fun trans ->
- let filter_fun_and_loops f =
- { f = filter_in_one f.f; loops = List.map filter_in_one f.loops }
- in
- let fwd = filter_fun_and_loops trans.fwd in
- let backs = List.map filter_fun_and_loops trans.backs in
- { trans with fwd; backs })
+ (fun f ->
+ { f = filter_in_one f.f; loops = List.map filter_in_one f.loops })
transl
in
@@ -2420,18 +2181,11 @@ let filter_loop_inputs (transl : pure_fun_translation list) :
it thus returns the pair: (function def, loop defs). See {!decompose_loops}
for more information.
- Will return [None] if the function is a backward function with no outputs.
-
[ctx]: used only for printing.
*)
-let apply_passes_to_def (ctx : trans_ctx) (def : fun_decl) :
- fun_and_loops option =
+let apply_passes_to_def (ctx : trans_ctx) (def : fun_decl) : fun_and_loops =
(* Debug *)
- log#ldebug
- (lazy
- ("PureMicroPasses.apply_passes_to_def: " ^ def.name ^ " ("
- ^ Print.option_to_string T.RegionGroupId.to_string def.back_id
- ^ ")"));
+ log#ldebug (lazy ("PureMicroPasses.apply_passes_to_def: " ^ def.name));
log#ldebug (lazy ("original decl:\n\n" ^ fun_decl_to_string ctx def ^ "\n"));
@@ -2451,29 +2205,13 @@ let apply_passes_to_def (ctx : trans_ctx) (def : fun_decl) :
let def = remove_meta def in
log#ldebug (lazy ("remove_meta:\n\n" ^ fun_decl_to_string ctx def ^ "\n"));
- (* Remove the backward functions with no outputs.
+ (* Extract the loop definitions by removing the {!Loop} node *)
+ let def, loops = decompose_loops ctx def in
- Note that the *calls* to those functions should already have been removed,
- when translating from symbolic to pure. Here, we remove the definitions
- altogether, because they are now useless *)
- let name = def.name ^ PrintPure.fun_suffix def.loop_id def.back_id in
- let opt_def = filter_if_backward_with_no_outputs def in
-
- match opt_def with
- | None ->
- log#ldebug (lazy ("filtered (backward with no outputs): " ^ name ^ "\n"));
- None
- | Some def ->
- log#ldebug
- (lazy ("not filtered (not backward with no outputs): " ^ name ^ "\n"));
-
- (* Extract the loop definitions by removing the {!Loop} node *)
- let def, loops = decompose_loops ctx def in
-
- (* Apply the remaining passes *)
- let f = apply_end_passes_to_def ctx def in
- let loops = List.map (apply_end_passes_to_def ctx) loops in
- Some { f; loops }
+ (* Apply the remaining passes *)
+ let f = apply_end_passes_to_def ctx def in
+ let loops = List.map (apply_end_passes_to_def ctx) loops in
+ { f; loops }
(** Apply the micro-passes to a list of forward/backward translations.
@@ -2489,18 +2227,11 @@ let apply_passes_to_def (ctx : trans_ctx) (def : fun_decl) :
but convenient.
*)
let apply_passes_to_pure_fun_translations (ctx : trans_ctx)
- (transl : (fun_decl * fun_decl list) list) : pure_fun_translation list =
- let apply_to_one (trans : fun_decl * fun_decl list) : pure_fun_translation =
- (* Apply the passes to the individual functions *)
- let fwd, backs = trans in
- let fwd = Option.get (apply_passes_to_def ctx fwd) in
- let backs = List.filter_map (apply_passes_to_def ctx) backs in
- (* Compute whether we need to filter the forward function or not *)
- let keep_fwd = keep_forward fwd backs in
- { keep_fwd; fwd; backs }
- in
-
- let transl = List.map apply_to_one transl in
+ (transl : fun_decl list) : pure_fun_translation list =
+ (* Apply the micro-passes *)
+ let transl = List.map (apply_passes_to_def ctx) transl in
- (* Filter the useless inputs in the loop functions *)
+ (* Filter the useless inputs in the loop functions (loops are initially
+ parameterized by *all* the symbolic values in the context, because
+ they may access any of them). *)
filter_loop_inputs transl
diff --git a/compiler/ReorderDecls.ml b/compiler/ReorderDecls.ml
index 53c94ff4..f5443e03 100644
--- a/compiler/ReorderDecls.ml
+++ b/compiler/ReorderDecls.ml
@@ -5,11 +5,7 @@ open Pure
(** The local logger *)
let log = Logging.reorder_decls_log
-type fun_id = {
- def_id : FunDeclId.id;
- lp_id : LoopId.id option;
- rg_id : T.RegionGroupId.id option;
-}
+type fun_id = { def_id : FunDeclId.id; lp_id : LoopId.id option }
[@@deriving show, ord]
module FunIdOrderedType : OrderedType with type t = fun_id = struct
@@ -43,11 +39,11 @@ let compute_body_fun_deps (e : texpression) : FunIdSet.t =
| FunOrOp (Fun fid) -> (
match fid with
| Pure _ -> ()
- | FromLlbc (fid, lp_id, rg_id) -> (
+ | FromLlbc (fid, lp_id) -> (
match fid with
| FunId (FAssumed _) -> ()
| TraitMethod (_, _, fid) | FunId (FRegular fid) ->
- let id = { def_id = fid; lp_id; rg_id } in
+ let id = { def_id = fid; lp_id } in
ids := FunIdSet.add id !ids))
end
in
@@ -71,7 +67,7 @@ let group_reorder_fun_decls (decls : fun_decl list) :
(bool * fun_decl list) list =
let module IntMap = MakeMap (OrderedInt) in
let get_fun_id (decl : fun_decl) : fun_id =
- { def_id = decl.def_id; lp_id = decl.loop_id; rg_id = decl.back_id }
+ { def_id = decl.def_id; lp_id = decl.loop_id }
in
(* Compute the list/set of identifiers *)
let idl = List.map get_fun_id decls in
diff --git a/compiler/SymbolicToPure.ml b/compiler/SymbolicToPure.ml
index 3a50e495..2db5f66c 100644
--- a/compiler/SymbolicToPure.ml
+++ b/compiler/SymbolicToPure.ml
@@ -805,11 +805,9 @@ let bs_ctx_register_forward_call (call_id : V.FunCallId.id) (forward : S.call)
that we need to call. This function may be [None] if it has to be ignored
(because it does nothing).
*)
-let bs_ctx_register_backward_call (abs : V.abs) (effect_info : fun_effect_info)
- (call_id : V.FunCallId.id) (back_id : T.RegionGroupId.id)
- (inherited_args : texpression list) (back_args : texpression list)
- (generics : generic_args) (output_ty : ty) (ctx : bs_ctx) :
- bs_ctx * texpression option =
+let bs_ctx_register_backward_call (abs : V.abs) (call_id : V.FunCallId.id)
+ (back_id : T.RegionGroupId.id) (back_args : texpression list) (ctx : bs_ctx)
+ : bs_ctx * texpression option =
(* Insert the abstraction in the call informations *)
let info = V.FunCallId.Map.find call_id ctx.calls in
let calls = V.FunCallId.Map.add call_id info ctx.calls in
@@ -819,29 +817,9 @@ let bs_ctx_register_backward_call (abs : V.abs) (effect_info : fun_effect_info)
let abstractions =
V.AbstractionId.Map.add abs.abs_id (abs, back_args) abstractions
in
- (* Compute the expression corresponding to the function *)
- let func =
- if !Config.return_back_funs then
- (* Lookup the variable introduced for the backward function *)
- RegionGroupId.Map.find back_id (Option.get info.back_funs)
- else
- (* Retrieve the fun_id *)
- let fun_id =
- match info.forward.call_id with
- | S.Fun (fid, _) ->
- let fid = translate_fun_id_or_trait_method_ref ctx fid in
- Fun (FromLlbc (fid, None, Some back_id))
- | S.Unop _ | S.Binop _ -> raise (Failure "Unreachable")
- in
- let args = List.append inherited_args back_args in
- let input_tys = (List.map (fun (x : texpression) -> x.ty)) args in
- let ret_ty =
- if effect_info.can_fail then mk_result_ty output_ty else output_ty
- in
- let func_ty = mk_arrows input_tys ret_ty in
- let func = { id = FunOrOp fun_id; generics } in
- Some { e = Qualif func; ty = func_ty }
- in
+ (* Compute the expression corresponding to the function.
+ We simply lookup the variable introduced for the backward function. *)
+ let func = RegionGroupId.Map.find back_id (Option.get info.back_funs) in
(* Update the context and return *)
({ ctx with calls; abstractions }, func)
@@ -1124,20 +1102,34 @@ let translate_fun_sig_with_regions_hierarchy_to_decomposed
let inputs_no_state =
List.map (fun ty -> (Some "ret", ty)) inputs_no_state
in
- (* In case we merge the forward/backward functions:
- we consider the backward function as stateful and potentially failing
+ (* We consider a backward function as stateful and potentially failing
**only if it has inputs** (for the "potentially failing": if it has
not inputs, we directly evaluate it in the body of the forward function).
+
+ For instance, we do the following:
+ {[
+ // Rust
+ fn push<T, 'a>(v : &mut Vec<T>, x : T) { ... }
+
+ (* Generated code: before doing unit elimination.
+ We return (), as well as the backward function; as the backward
+ function doesn't consume any inputs, it is a value that we compute
+ directly in the body of [push].
+ *)
+ let push T (v : Vec T) (x : T) : Result (() * Vec T) = ...
+
+ (* Generated code: after doing unit elimination, if we simplify the merged
+ fwd/back functions (see below). *)
+ let push T (v : Vec T) (x : T) : Result (Vec T) = ...
+ ]}
*)
let back_effect_info =
- if !Config.return_back_funs then
- let b = inputs_no_state <> [] in
- {
- back_effect_info with
- stateful = back_effect_info.stateful && b;
- can_fail = back_effect_info.can_fail && b;
- }
- else back_effect_info
+ let b = inputs_no_state <> [] in
+ {
+ back_effect_info with
+ stateful = back_effect_info.stateful && b;
+ can_fail = back_effect_info.can_fail && b;
+ }
in
let state =
if back_effect_info.stateful then [ (None, mk_state_ty) ] else []
@@ -1145,8 +1137,7 @@ let translate_fun_sig_with_regions_hierarchy_to_decomposed
let inputs = inputs_no_state @ state in
let output_names, outputs = compute_back_outputs_for_gid gid in
let filter =
- !Config.simplify_merged_fwd_backs
- && !Config.return_back_funs && inputs = [] && outputs = []
+ !Config.simplify_merged_fwd_backs && inputs = [] && outputs = []
in
let info =
{
@@ -1186,7 +1177,7 @@ let translate_fun_sig_with_regions_hierarchy_to_decomposed
}
in
let ignore_output =
- if !Config.return_back_funs && !Config.simplify_merged_fwd_backs then
+ if !Config.simplify_merged_fwd_backs then
ty_is_unit fwd_output
&& List.exists
(fun (info : back_sg_info) -> not info.filter)
@@ -1296,10 +1287,10 @@ let compute_back_tys (dsg : Pure.decomposed_fun_sig)
(subst : (generic_args * trait_instance_id) option) : ty option list =
List.map (Option.map snd) (compute_back_tys_with_info dsg subst)
-(** In case we merge the fwd/back functions: compute the output type of
- a function, from a decomposed signature. *)
+(** Compute the output type of a function, from a decomposed signature
+ (the output type contains the type of the value returned by the forward
+ function as well as the types of the returned backward functions). *)
let compute_output_ty_from_decomposed (dsg : Pure.decomposed_fun_sig) : ty =
- assert !Config.return_back_funs;
(* Compute the arrow types for all the backward functions *)
let back_tys = List.filter_map (fun x -> x) (compute_back_tys dsg None) in
(* Group the forward output and the types of the backward functions *)
@@ -1315,8 +1306,8 @@ let compute_output_ty_from_decomposed (dsg : Pure.decomposed_fun_sig) : ty =
in
mk_output_ty_from_effect_info effect_info output
-let translate_fun_sig_from_decomposed (dsg : Pure.decomposed_fun_sig)
- (gid : RegionGroupId.id option) : fun_sig =
+let translate_fun_sig_from_decomposed (dsg : Pure.decomposed_fun_sig) : fun_sig
+ =
let generics = dsg.generics in
let llbc_generics = dsg.llbc_generics in
let preds = dsg.preds in
@@ -1329,27 +1320,10 @@ let translate_fun_sig_from_decomposed (dsg : Pure.decomposed_fun_sig)
(gid, info.effect_info))
(RegionGroupId.Map.bindings dsg.back_sg))
in
- let mk_output_ty = mk_output_ty_from_effect_info in
let inputs, output =
- (* Two cases depending on whether we split the forward/backward functions or not *)
- if !Config.return_back_funs then (
- assert (gid = None);
- let output = compute_output_ty_from_decomposed dsg in
- let inputs = dsg.fwd_inputs in
- (inputs, output))
- else
- match gid with
- | None ->
- let effect_info = dsg.fwd_info.effect_info in
- let output = mk_output_ty effect_info dsg.fwd_output in
- (dsg.fwd_inputs, output)
- | Some gid ->
- let back_sg = RegionGroupId.Map.find gid dsg.back_sg in
- let effect_info = back_sg.effect_info in
- let inputs = dsg.fwd_inputs @ List.map snd back_sg.inputs in
- let output = mk_simpl_tuple_ty back_sg.outputs in
- let output = mk_output_ty effect_info output in
- (inputs, output)
+ let output = compute_output_ty_from_decomposed dsg in
+ let inputs = dsg.fwd_inputs in
+ (inputs, output)
in
{ generics; llbc_generics; preds; inputs; output; fwd_info; back_effect_info }
@@ -1933,16 +1907,14 @@ and translate_panic (ctx : bs_ctx) : texpression =
*)
match ctx.bid with
| None ->
- if !Config.return_back_funs then
- let back_tys = compute_back_tys ctx.sg None in
- let back_tys = List.filter_map (fun x -> x) back_tys in
- let tys =
- if ctx.sg.fwd_info.ignore_output then back_tys
- else ctx.sg.fwd_output :: back_tys
- in
- let output = mk_simpl_tuple_ty tys in
- mk_output output
- else mk_output ctx.sg.fwd_output
+ let back_tys = compute_back_tys ctx.sg None in
+ let back_tys = List.filter_map (fun x -> x) back_tys in
+ let tys =
+ if ctx.sg.fwd_info.ignore_output then back_tys
+ else ctx.sg.fwd_output :: back_tys
+ in
+ let output = mk_simpl_tuple_ty tys in
+ mk_output output
| Some bid ->
let output =
mk_simpl_tuple_ty (RegionGroupId.Map.find bid ctx.sg.back_sg).outputs
@@ -2063,7 +2035,7 @@ and translate_function_call (call : S.call) (e : S.expression) (ctx : bs_ctx) :
| S.Fun (fid, call_id) ->
(* Regular function call *)
let fid_t = translate_fun_id_or_trait_method_ref ctx fid in
- let func = Fun (FromLlbc (fid_t, None, None)) in
+ let func = Fun (FromLlbc (fid_t, None)) in
(* Retrieve the effect information about this function (can fail,
* takes a state as input, etc.) *)
let effect_info = get_fun_effect_info ctx fid None None in
@@ -2080,107 +2052,103 @@ and translate_function_call (call : S.call) (e : S.expression) (ctx : bs_ctx) :
(List.concat [ fuel; args; [ state_var ] ], ctx, Some nstate_var)
else (List.concat [ fuel; args ], ctx, None)
in
- (* If we do not split the forward/backward functions: generate the
- variables for the backward functions returned by the forward
+ (* Generate the variables for the backward functions returned by the forward
function. *)
let ctx, ignore_fwd_output, back_funs_map, back_funs =
- if !Config.return_back_funs then (
- (* We need to compute the signatures of the backward functions. *)
- let sg = Option.get call.sg in
- let decls_ctx = ctx.decls_ctx in
- let dsg =
- translate_fun_sig_with_regions_hierarchy_to_decomposed decls_ctx
- fid call.regions_hierarchy sg
- (List.map (fun _ -> None) sg.inputs)
- in
- log#ldebug
- (lazy ("dsg.generics:\n" ^ show_generic_params dsg.generics));
- let tr_self, all_generics =
- match call.trait_method_generics with
- | None -> (UnknownTrait __FUNCTION__, generics)
- | Some (all_generics, tr_self) ->
- let all_generics =
- ctx_translate_fwd_generic_args ctx all_generics
- in
- let tr_self =
- translate_fwd_trait_instance_id ctx.type_ctx.type_infos
- tr_self
+ (* We need to compute the signatures of the backward functions. *)
+ let sg = Option.get call.sg in
+ let decls_ctx = ctx.decls_ctx in
+ let dsg =
+ translate_fun_sig_with_regions_hierarchy_to_decomposed decls_ctx fid
+ call.regions_hierarchy sg
+ (List.map (fun _ -> None) sg.inputs)
+ in
+ log#ldebug
+ (lazy ("dsg.generics:\n" ^ show_generic_params dsg.generics));
+ let tr_self, all_generics =
+ match call.trait_method_generics with
+ | None -> (UnknownTrait __FUNCTION__, generics)
+ | Some (all_generics, tr_self) ->
+ let all_generics =
+ ctx_translate_fwd_generic_args ctx all_generics
+ in
+ let tr_self =
+ translate_fwd_trait_instance_id ctx.type_ctx.type_infos
+ tr_self
+ in
+ (tr_self, all_generics)
+ in
+ let back_tys =
+ compute_back_tys_with_info dsg (Some (all_generics, tr_self))
+ in
+ (* Introduce variables for the backward functions *)
+ (* Compute a proper basename for the variables *)
+ let back_fun_name =
+ let name =
+ match fid with
+ | FunId (FAssumed fid) -> (
+ match fid with
+ | BoxNew -> "box_new"
+ | BoxFree -> "box_free"
+ | ArrayRepeat -> "array_repeat"
+ | ArrayIndexShared -> "index_shared"
+ | ArrayIndexMut -> "index_mut"
+ | ArrayToSliceShared -> "to_slice_shared"
+ | ArrayToSliceMut -> "to_slice_mut"
+ | SliceIndexShared -> "index_shared"
+ | SliceIndexMut -> "index_mut")
+ | FunId (FRegular fid) | TraitMethod (_, _, fid) -> (
+ let decl =
+ FunDeclId.Map.find fid ctx.fun_ctx.llbc_fun_decls
in
- (tr_self, all_generics)
+ match Collections.List.last decl.name with
+ | PeIdent (s, _) -> s
+ | PeImpl _ ->
+ (* We shouldn't get there *)
+ raise (Failure "Unexpected"))
in
- let back_tys =
- compute_back_tys_with_info dsg (Some (all_generics, tr_self))
- in
- (* Introduce variables for the backward functions *)
- (* Compute a proper basename for the variables *)
- let back_fun_name =
- let name =
- match fid with
- | FunId (FAssumed fid) -> (
- match fid with
- | BoxNew -> "box_new"
- | BoxFree -> "box_free"
- | ArrayRepeat -> "array_repeat"
- | ArrayIndexShared -> "index_shared"
- | ArrayIndexMut -> "index_mut"
- | ArrayToSliceShared -> "to_slice_shared"
- | ArrayToSliceMut -> "to_slice_mut"
- | SliceIndexShared -> "index_shared"
- | SliceIndexMut -> "index_mut")
- | FunId (FRegular fid) | TraitMethod (_, _, fid) -> (
- let decl =
- FunDeclId.Map.find fid ctx.fun_ctx.llbc_fun_decls
- in
- match Collections.List.last decl.name with
- | PeIdent (s, _) -> s
- | PeImpl _ ->
- (* We shouldn't get there *)
- raise (Failure "Unexpected"))
- in
- name ^ "_back"
- in
- let ctx, back_vars =
- fresh_opt_vars
- (List.map
- (fun ty ->
- match ty with
- | None -> None
- | Some (back_sg, ty) ->
- (* We insert a name for the variable only if the function
- can fail: if it can fail, it means the call returns a backward
- function. Otherwise, we it directly returns the value given
- back by the backward function, which means we shouldn't
- give it a name like "back..." (it doesn't make sense) *)
- let name =
- if back_sg.effect_info.can_fail then
- Some back_fun_name
- else None
- in
- Some (name, ty))
- back_tys)
- ctx
- in
- let back_funs =
- List.filter_map
- (fun v ->
- match v with
- | None -> None
- | Some v -> Some (mk_typed_pattern_from_var v None))
- back_vars
- in
- let gids =
- List.map
- (fun (g : T.region_var_group) -> g.id)
- call.regions_hierarchy
- in
- let back_vars =
- List.map (Option.map mk_texpression_from_var) back_vars
- in
- let back_funs_map =
- RegionGroupId.Map.of_list (List.combine gids back_vars)
- in
- (ctx, dsg.fwd_info.ignore_output, Some back_funs_map, back_funs))
- else (ctx, false, None, [])
+ name ^ "_back"
+ in
+ let ctx, back_vars =
+ fresh_opt_vars
+ (List.map
+ (fun ty ->
+ match ty with
+ | None -> None
+ | Some (back_sg, ty) ->
+ (* We insert a name for the variable only if the function
+ can fail: if it can fail, it means the call returns a backward
+ function. Otherwise, we it directly returns the value given
+ back by the backward function, which means we shouldn't
+ give it a name like "back..." (it doesn't make sense) *)
+ let name =
+ if back_sg.effect_info.can_fail then Some back_fun_name
+ else None
+ in
+ Some (name, ty))
+ back_tys)
+ ctx
+ in
+ let back_funs =
+ List.filter_map
+ (fun v ->
+ match v with
+ | None -> None
+ | Some v -> Some (mk_typed_pattern_from_var v None))
+ back_vars
+ in
+ let gids =
+ List.map
+ (fun (g : T.region_var_group) -> g.id)
+ call.regions_hierarchy
+ in
+ let back_vars =
+ List.map (Option.map mk_texpression_from_var) back_vars
+ in
+ let back_funs_map =
+ RegionGroupId.Map.of_list (List.combine gids back_vars)
+ in
+ (ctx, dsg.fwd_info.ignore_output, Some back_funs_map, back_funs)
in
(* Compute the pattern for the destination *)
let ctx, dest = fresh_var_for_symbolic_value call.dest ctx in
@@ -2407,19 +2375,6 @@ and translate_end_abstraction_fun_call (ectx : C.eval_ctx) (abs : V.abs)
raise (Failure "Unreachable")
in
let effect_info = get_fun_effect_info ctx fun_id None (Some rg_id) in
- let generics = ctx_translate_fwd_generic_args ctx call.generics in
- (* Retrieve the original call and the parent abstractions *)
- let _forward, backwards = get_abs_ancestors ctx abs call_id in
- (* Retrieve the values consumed when we called the forward function and
- * ended the parent backward functions: those give us part of the input
- * values (rem: for now, as we disallow nested lifetimes, there can't be
- * parent backward functions).
- * Note that the forward inputs **include the fuel and the input state**
- * (if we use those). *)
- let fwd_inputs = call_info.forward_inputs in
- let back_ancestors_inputs =
- List.concat (List.map (fun (_abs, args) -> args) backwards)
- in
(* Retrieve the values consumed upon ending the loans inside this
* abstraction: those give us the remaining input values *)
let back_inputs = abs_to_consumed ctx ectx abs in
@@ -2434,11 +2389,6 @@ and translate_end_abstraction_fun_call (ectx : C.eval_ctx) (abs : V.abs)
([ back_state ], ctx, Some nstate)
else ([], ctx, None)
in
- (* Concatenate all the inpus *)
- let inherited_inputs =
- if !Config.return_back_funs then []
- else List.concat [ fwd_inputs; back_ancestors_inputs ]
- in
let back_inputs = List.append back_inputs back_state in
(* Retrieve the values given back by this function: those are the output
* values. We rely on the fact that there are no nested borrows to use the
@@ -2459,58 +2409,33 @@ and translate_end_abstraction_fun_call (ectx : C.eval_ctx) (abs : V.abs)
(* Retrieve the function id, and register the function call in the context
if necessary.Arith_status *)
let ctx, func =
- bs_ctx_register_backward_call abs effect_info call_id rg_id inherited_inputs
- back_inputs generics output.ty ctx
+ bs_ctx_register_backward_call abs call_id rg_id back_inputs ctx
in
(* Translate the next expression *)
let next_e = translate_expression e ctx in
(* Put everything together *)
- let inputs = List.append inherited_inputs back_inputs in
+ let inputs = back_inputs in
let args_mplaces = List.map (fun _ -> None) inputs in
let args =
List.map
(fun (arg, mp) -> mk_opt_mplace_texpression mp arg)
(List.combine inputs args_mplaces)
in
- (* **Optimization**:
- =================
- We do a small optimization here if we split the forward/backward functions.
- If the backward function doesn't have any output, we don't introduce any function
- call.
- See the comment in {!Config.filter_useless_monadic_calls}.
-
- TODO: use an option to disallow backward functions from updating the state.
- TODO: a backward function which only gives back shared borrows shouldn't
- update the state (state updates should only be used for mutable borrows,
- with objects like Rc for instance).
- *)
- if
- (not !Config.return_back_funs)
- && !Config.filter_useless_monadic_calls
- && outputs = [] && nstate = None
- then (
- (* No outputs - we do a small sanity check: the backward function
- should have exactly the same number of inputs as the forward:
- this number can be different only if the forward function returned
- a value containing mutable borrows, which can't be the case... *)
- assert (List.length inputs = List.length fwd_inputs);
- next_e)
- else
- (* The backward function might also have been filtered if we do not
- split the forward/backward functions *)
- match func with
- | None -> next_e
- | Some func ->
- log#ldebug
- (lazy
- (let args = List.map (texpression_to_string ctx) args in
- "func: "
- ^ texpression_to_string ctx func
- ^ "\nfunc type: "
- ^ pure_ty_to_string ctx func.ty
- ^ "\n\nargs:\n" ^ String.concat "\n" args));
- let call = mk_apps func args in
- mk_let effect_info.can_fail output call next_e
+ (* The backward function might have been filtered it does nothing
+ (consumes unit and returns unit). *)
+ match func with
+ | None -> next_e
+ | Some func ->
+ log#ldebug
+ (lazy
+ (let args = List.map (texpression_to_string ctx) args in
+ "func: "
+ ^ texpression_to_string ctx func
+ ^ "\nfunc type: "
+ ^ pure_ty_to_string ctx func.ty
+ ^ "\n\nargs:\n" ^ String.concat "\n" args));
+ let call = mk_apps func args in
+ mk_let effect_info.can_fail output call next_e
and translate_end_abstraction_identity (ectx : C.eval_ctx) (abs : V.abs)
(e : S.expression) (ctx : bs_ctx) : texpression =
@@ -2614,8 +2539,6 @@ and translate_end_abstraction_loop (ectx : C.eval_ctx) (abs : V.abs)
get_fun_effect_info ctx (FunId fun_id) (Some vloop_id) (Some rg_id)
in
let loop_info = LoopId.Map.find loop_id ctx.loops in
- let generics = loop_info.generics in
- let fwd_inputs = Option.get loop_info.forward_inputs in
(* Retrieve the additional backward inputs. Note that those are actually
the backward inputs of the function we are synthesizing (and that we
need to *transmit* to the loop backward function): they are not the
@@ -2637,10 +2560,7 @@ and translate_end_abstraction_loop (ectx : C.eval_ctx) (abs : V.abs)
else ([], ctx, None)
in
(* Concatenate all the inputs *)
- let inputs =
- if !Config.return_back_funs then List.concat [ back_inputs; back_state ]
- else List.concat [ fwd_inputs; back_inputs; back_state ]
- in
+ let inputs = List.concat [ back_inputs; back_state ] in
(* Retrieve the values given back by this function *)
let ctx, outputs = abs_to_given_back None abs ctx in
(* Group the output values together: first the updated inputs *)
@@ -2660,87 +2580,52 @@ and translate_end_abstraction_loop (ectx : C.eval_ctx) (abs : V.abs)
(fun (arg, mp) -> mk_opt_mplace_texpression mp arg)
(List.combine inputs args_mplaces)
in
- let input_tys = (List.map (fun (x : texpression) -> x.ty)) args in
- let ret_ty =
- if effect_info.can_fail then mk_result_ty output.ty else output.ty
- in
(* Create the expression for the function:
- it is either a call to a top-level function, if we split the
forward/backward functions
- or a call to the variable we introduced for the backward function,
if we merge the forward/backward functions *)
let func =
- if !Config.return_back_funs then
- RegionGroupId.Map.find rg_id (Option.get loop_info.back_funs)
- else
- let func_ty = mk_arrows input_tys ret_ty in
- let func = Fun (FromLlbc (FunId fun_id, Some loop_id, Some rg_id)) in
- let func = { id = FunOrOp func; generics } in
- Some { e = Qualif func; ty = func_ty }
+ RegionGroupId.Map.find rg_id (Option.get loop_info.back_funs)
in
- (* **Optimization**:
- =================
- We do a small optimization here in case we split the forward/backward
- functions.
- If the backward function doesn't have any output, we don't introduce
- any function call.
- See the comment in {!Config.filter_useless_monadic_calls}.
-
- TODO: use an option to disallow backward functions from updating the state.
- TODO: a backward function which only gives back shared borrows shouldn't
- update the state (state updates should only be used for mutable borrows,
- with objects like Rc for instance).
- *)
- if
- (not !Config.return_back_funs)
- && !Config.filter_useless_monadic_calls
- && outputs = [] && nstate = None
- then (
- (* No outputs - we do a small sanity check: the backward function
- should have exactly the same number of inputs as the forward:
- this number can be different only if the forward function returned
- a value containing mutable borrows, which can't be the case... *)
- assert (List.length inputs = List.length fwd_inputs);
- next_e)
- else
- (* In case we merge the fwd/back functions we filter the backward
- functions elsewhere *)
- match func with
- | None -> next_e
- | Some func ->
- let call = mk_apps func args in
- (* Add meta-information - this is slightly hacky: we look at the
- values consumed by the abstraction (note that those come from
- *before* we applied the fixed-point context) and use them to
- guide the naming of the output vars.
-
- Also, we need to convert the backward outputs from patterns to
- variables.
-
- Finally, in practice, this works well only for loop bodies:
- we do this only in this case.
- TODO: improve the heuristics, to give weight to the hints for
- instance.
- *)
- let next_e =
- if ctx.inside_loop then
- let consumed_values = abs_to_consumed ctx ectx abs in
- let var_values = List.combine outputs consumed_values in
- let var_values =
- List.filter_map
- (fun (var, v) ->
- match var.Pure.value with
- | PatVar (var, _) -> Some (var, v)
- | _ -> None)
- var_values
- in
- let vars, values = List.split var_values in
- mk_emeta_symbolic_assignments vars values next_e
- else next_e
- in
+ (* We may have filtered the backward function elsewhere if it doesn't
+ do anything (doesn't consume anything and doesn't return anything) *)
+ match func with
+ | None -> next_e
+ | Some func ->
+ let call = mk_apps func args in
+ (* Add meta-information - this is slightly hacky: we look at the
+ values consumed by the abstraction (note that those come from
+ *before* we applied the fixed-point context) and use them to
+ guide the naming of the output vars.
+
+ Also, we need to convert the backward outputs from patterns to
+ variables.
+
+ Finally, in practice, this works well only for loop bodies:
+ we do this only in this case.
+ TODO: improve the heuristics, to give weight to the hints for
+ instance.
+ *)
+ let next_e =
+ if ctx.inside_loop then
+ let consumed_values = abs_to_consumed ctx ectx abs in
+ let var_values = List.combine outputs consumed_values in
+ let var_values =
+ List.filter_map
+ (fun (var, v) ->
+ match var.Pure.value with
+ | PatVar (var, _) -> Some (var, v)
+ | _ -> None)
+ var_values
+ in
+ let vars, values = List.split var_values in
+ mk_emeta_symbolic_assignments vars values next_e
+ else next_e
+ in
- (* Create the let-binding *)
- mk_let effect_info.can_fail output call next_e)
+ (* Create the let-binding *)
+ mk_let effect_info.can_fail output call next_e)
and translate_global_eval (gid : A.GlobalDeclId.id) (sval : V.symbolic_value)
(e : S.expression) (ctx : bs_ctx) : texpression =
@@ -3068,48 +2953,40 @@ and translate_forward_end (ectx : C.eval_ctx)
*)
let ctx =
(* Introduce variables for the inputs and the state variable
- and update the context. *)
- if !Config.return_back_funs then
- (* If the forward/backward functions are not split, we need
- to introduce fresh variables for the additional inputs,
- because they are locally introduced in a lambda *)
- let back_sg = RegionGroupId.Map.find bid ctx.sg.back_sg in
- let ctx, backward_inputs_no_state =
- fresh_vars back_sg.inputs_no_state ctx
- in
- let ctx, backward_inputs_with_state =
- if back_sg.effect_info.stateful then
- let ctx, var, _ = bs_ctx_fresh_state_var ctx in
- (ctx, backward_inputs_no_state @ [ var ])
- else (ctx, backward_inputs_no_state)
- in
- {
- ctx with
- backward_inputs_no_state =
- RegionGroupId.Map.add bid backward_inputs_no_state
- ctx.backward_inputs_no_state;
- backward_inputs_with_state =
- RegionGroupId.Map.add bid backward_inputs_with_state
- ctx.backward_inputs_with_state;
- }
- else
- (* Update the state variable *)
- let back_state_var =
- RegionGroupId.Map.find bid ctx.back_state_vars
- in
- { ctx with state_var = back_state_var }
+ and update the context.
+
+ We need to introduce fresh variables for the additional inputs,
+ because they are locally introduced in a lambda.
+ *)
+ let back_sg = RegionGroupId.Map.find bid ctx.sg.back_sg in
+ let ctx, backward_inputs_no_state =
+ fresh_vars back_sg.inputs_no_state ctx
+ in
+ let ctx, backward_inputs_with_state =
+ if back_sg.effect_info.stateful then
+ let ctx, var, _ = bs_ctx_fresh_state_var ctx in
+ (ctx, backward_inputs_no_state @ [ var ])
+ else (ctx, backward_inputs_no_state)
+ in
+ {
+ ctx with
+ backward_inputs_no_state =
+ RegionGroupId.Map.add bid backward_inputs_no_state
+ ctx.backward_inputs_no_state;
+ backward_inputs_with_state =
+ RegionGroupId.Map.add bid backward_inputs_with_state
+ ctx.backward_inputs_with_state;
+ }
in
let e = T.RegionGroupId.Map.find bid back_e in
let finish e =
(* Wrap in lambdas if necessary *)
- if !Config.return_back_funs then
- let inputs =
- RegionGroupId.Map.find bid ctx.backward_inputs_with_state
- in
- let places = List.map (fun _ -> None) inputs in
- mk_lambdas_from_vars inputs places e
- else e
+ let inputs =
+ RegionGroupId.Map.find bid ctx.backward_inputs_with_state
+ in
+ let places = List.map (fun _ -> None) inputs in
+ mk_lambdas_from_vars inputs places e
in
(ctx, e, finish)
in
@@ -3131,85 +3008,83 @@ and translate_forward_end (ectx : C.eval_ctx)
function, if needs be, and lookup the proper expression.
*)
let translate_end ctx =
- if !Config.return_back_funs then
- (* Compute the output of the forward function *)
- let fwd_effect_info = ctx.sg.fwd_info.effect_info in
- let ctx, pure_fwd_var = fresh_var None ctx.sg.fwd_output ctx in
- let fwd_e = translate_one_end ctx None in
-
- (* Introduce the backward functions. *)
- let back_el =
- List.map
- (fun ((gid, _) : RegionGroupId.id * back_sg_info) ->
- translate_one_end ctx (Some gid))
- (RegionGroupId.Map.bindings ctx.sg.back_sg)
- in
+ (* Compute the output of the forward function *)
+ let fwd_effect_info = ctx.sg.fwd_info.effect_info in
+ let ctx, pure_fwd_var = fresh_var None ctx.sg.fwd_output ctx in
+ let fwd_e = translate_one_end ctx None in
- (* Compute whether the backward expressions should be evaluated straight
- away or not (i.e., if we should bind them with monadic let-bindings
- or not). We evaluate them straight away if they can fail and have no
- inputs. *)
- let evaluate_backs =
- List.map
- (fun (sg : back_sg_info) ->
- if !Config.simplify_merged_fwd_backs then
- sg.inputs = [] && sg.effect_info.can_fail
- else false)
- (RegionGroupId.Map.values ctx.sg.back_sg)
- in
+ (* Introduce the backward functions. *)
+ let back_el =
+ List.map
+ (fun ((gid, _) : RegionGroupId.id * back_sg_info) ->
+ translate_one_end ctx (Some gid))
+ (RegionGroupId.Map.bindings ctx.sg.back_sg)
+ in
- (* Introduce variables for the backward functions.
- We lookup the LLBC definition in an attempt to derive pretty names
- for those functions. *)
- let _, back_vars = fresh_back_vars_for_current_fun ctx in
+ (* Compute whether the backward expressions should be evaluated straight
+ away or not (i.e., if we should bind them with monadic let-bindings
+ or not). We evaluate them straight away if they can fail and have no
+ inputs. *)
+ let evaluate_backs =
+ List.map
+ (fun (sg : back_sg_info) ->
+ if !Config.simplify_merged_fwd_backs then
+ sg.inputs = [] && sg.effect_info.can_fail
+ else false)
+ (RegionGroupId.Map.values ctx.sg.back_sg)
+ in
- (* Create the return expressions *)
- let vars =
- let back_vars = List.filter_map (fun x -> x) back_vars in
- if ctx.sg.fwd_info.ignore_output then back_vars
- else pure_fwd_var :: back_vars
- in
- let vars = List.map mk_texpression_from_var vars in
- let ret = mk_simpl_tuple_texpression vars in
-
- (* Introduce a fresh input state variable for the forward expression *)
- let _ctx, state_var, state_pat =
- if fwd_effect_info.stateful then
- let ctx, var, pat = bs_ctx_fresh_state_var ctx in
- (ctx, [ var ], [ pat ])
- else (ctx, [], [])
- in
+ (* Introduce variables for the backward functions.
+ We lookup the LLBC definition in an attempt to derive pretty names
+ for those functions. *)
+ let _, back_vars = fresh_back_vars_for_current_fun ctx in
- let state_var = List.map mk_texpression_from_var state_var in
- let ret = mk_simpl_tuple_texpression (state_var @ [ ret ]) in
- let ret = mk_result_return_texpression ret in
+ (* Create the return expressions *)
+ let vars =
+ let back_vars = List.filter_map (fun x -> x) back_vars in
+ if ctx.sg.fwd_info.ignore_output then back_vars
+ else pure_fwd_var :: back_vars
+ in
+ let vars = List.map mk_texpression_from_var vars in
+ let ret = mk_simpl_tuple_texpression vars in
+
+ (* Introduce a fresh input state variable for the forward expression *)
+ let _ctx, state_var, state_pat =
+ if fwd_effect_info.stateful then
+ let ctx, var, pat = bs_ctx_fresh_state_var ctx in
+ (ctx, [ var ], [ pat ])
+ else (ctx, [], [])
+ in
- (* Introduce all the let-bindings *)
+ let state_var = List.map mk_texpression_from_var state_var in
+ let ret = mk_simpl_tuple_texpression (state_var @ [ ret ]) in
+ let ret = mk_result_return_texpression ret in
- (* Combine:
- - the backward variables
- - whether we should evaluate the expression for the backward function
- (i.e., should we use a monadic let-binding or not - we do if the
- backward functions don't have inputs and can fail)
- - the expressions for the backward functions
- *)
- let back_vars_els =
- List.filter_map
- (fun (v, (eval, el)) ->
- match v with None -> None | Some v -> Some (v, eval, el))
- (List.combine back_vars (List.combine evaluate_backs back_el))
- in
- let e =
- List.fold_right
- (fun (var, evaluate, back_e) e ->
- mk_let evaluate (mk_typed_pattern_from_var var None) back_e e)
- back_vars_els ret
- in
- (* Bind the expression for the forward output *)
- let fwd_var = mk_typed_pattern_from_var pure_fwd_var None in
- let pat = mk_simpl_tuple_pattern (state_pat @ [ fwd_var ]) in
- mk_let fwd_effect_info.can_fail pat fwd_e e
- else translate_one_end ctx ctx.bid
+ (* Introduce all the let-bindings *)
+
+ (* Combine:
+ - the backward variables
+ - whether we should evaluate the expression for the backward function
+ (i.e., should we use a monadic let-binding or not - we do if the
+ backward functions don't have inputs and can fail)
+ - the expressions for the backward functions
+ *)
+ let back_vars_els =
+ List.filter_map
+ (fun (v, (eval, el)) ->
+ match v with None -> None | Some v -> Some (v, eval, el))
+ (List.combine back_vars (List.combine evaluate_backs back_el))
+ in
+ let e =
+ List.fold_right
+ (fun (var, evaluate, back_e) e ->
+ mk_let evaluate (mk_typed_pattern_from_var var None) back_e e)
+ back_vars_els ret
+ in
+ (* Bind the expression for the forward output *)
+ let fwd_var = mk_typed_pattern_from_var pure_fwd_var None in
+ let pat = mk_simpl_tuple_pattern (state_pat @ [ fwd_var ]) in
+ mk_let fwd_effect_info.can_fail pat fwd_e e
in
(* If we are (re-)entering a loop, we need to introduce a call to the
@@ -3279,24 +3154,22 @@ and translate_forward_end (ectx : C.eval_ctx)
backward functions of the outer function.
*)
let ctx, back_funs_map, back_funs =
- if !Config.return_back_funs then
- let ctx, back_vars = fresh_back_vars_for_current_fun ctx in
- let back_funs =
- List.filter_map
- (fun v ->
- match v with
- | None -> None
- | Some v -> Some (mk_typed_pattern_from_var v None))
- back_vars
- in
- let gids = RegionGroupId.Map.keys ctx.sg.back_sg in
- let back_funs_map =
- RegionGroupId.Map.of_list
- (List.combine gids
- (List.map (Option.map mk_texpression_from_var) back_vars))
- in
- (ctx, Some back_funs_map, back_funs)
- else (ctx, None, [])
+ let ctx, back_vars = fresh_back_vars_for_current_fun ctx in
+ let back_funs =
+ List.filter_map
+ (fun v ->
+ match v with
+ | None -> None
+ | Some v -> Some (mk_typed_pattern_from_var v None))
+ back_vars
+ in
+ let gids = RegionGroupId.Map.keys ctx.sg.back_sg in
+ let back_funs_map =
+ RegionGroupId.Map.of_list
+ (List.combine gids
+ (List.map (Option.map mk_texpression_from_var) back_vars))
+ in
+ (ctx, Some back_funs_map, back_funs)
in
(* Introduce patterns *)
@@ -3339,7 +3212,7 @@ and translate_forward_end (ectx : C.eval_ctx)
let out_pat = mk_simpl_tuple_pattern out_pats in
let loop_call =
- let fun_id = Fun (FromLlbc (FunId fid, Some loop_id, None)) in
+ let fun_id = Fun (FromLlbc (FunId fid, Some loop_id)) in
let func = { id = FunOrOp fun_id; generics = loop_info.generics } in
let input_tys = (List.map (fun (x : texpression) -> x.ty)) args in
let ret_ty =
@@ -3438,91 +3311,58 @@ and translate_loop (loop : S.loop) (ctx : bs_ctx) : texpression =
(* The output type of the loop function *)
let fwd_effect_info = { ctx.sg.fwd_info.effect_info with is_rec = true } in
let back_effect_infos, output_ty =
- if !Config.return_back_funs then
- (* The loop backward functions consume the same additional inputs as the parent
- function, but have custom outputs *)
- let back_sgs = RegionGroupId.Map.bindings ctx.sg.back_sg in
- let given_back_tys = RegionGroupId.Map.values rg_to_given_back_tys in
- let back_info_tys =
- List.map
- (fun (((id, back_sg), given_back) : (_ * back_sg_info) * ty list) ->
- (* Remark: the effect info of the backward function for the loop
- is almost the same as for the backward function of the parent function.
- Quite importantly, the fact that the function is stateful and/or can fail
- mostly depends on whether it has inputs or not, and the backward functions
- for the loops have the same inputs as the backward functions for the parent
- function.
- *)
- let effect_info = back_sg.effect_info in
- let effect_info = { effect_info with is_rec = true } in
- (* Compute the input/output types *)
- let inputs = List.map snd back_sg.inputs in
- let outputs = given_back in
- (* Filter if necessary *)
- let ty =
- if
- !Config.simplify_merged_fwd_backs && inputs = [] && outputs = []
- then None
- else
- let output = mk_simpl_tuple_ty outputs in
- let output =
- mk_back_output_ty_from_effect_info effect_info inputs output
- in
- let ty = mk_arrows inputs output in
- Some ty
- in
- ((id, effect_info), ty))
- (List.combine back_sgs given_back_tys)
- in
- let back_info = List.map fst back_info_tys in
- let back_info = RegionGroupId.Map.of_list back_info in
- let back_tys = List.filter_map snd back_info_tys in
- let output =
- if ctx.sg.fwd_info.ignore_output then back_tys
- else ctx.sg.fwd_output :: back_tys
- in
- let output = mk_simpl_tuple_ty output in
- let effect_info = ctx.sg.fwd_info.effect_info in
- let output =
- if effect_info.stateful then mk_simpl_tuple_ty [ mk_state_ty; output ]
- else output
- in
- let output =
- if effect_info.can_fail && inputs <> [] then mk_result_ty output
- else output
- in
- (back_info, output)
- else
- let back_info =
- RegionGroupId.Map.of_list
- (List.map
- (fun ((id, back_sg) : _ * back_sg_info) ->
- (id, { back_sg.effect_info with is_rec = true }))
- (RegionGroupId.Map.bindings ctx.sg.back_sg))
- in
- let output =
- match ctx.bid with
- | None ->
- (* Forward function: same type as the parent function *)
- (translate_fun_sig_from_decomposed ctx.sg None).output
- | Some rg_id ->
- (* Backward function: custom return type *)
- let doutputs =
- T.RegionGroupId.Map.find rg_id rg_to_given_back_tys
- in
- let output = mk_simpl_tuple_ty doutputs in
- let fwd_effect_info = ctx.sg.fwd_info.effect_info in
- let output =
- if fwd_effect_info.stateful then
- mk_simpl_tuple_ty [ mk_state_ty; output ]
- else output
- in
- let output =
- if fwd_effect_info.can_fail then mk_result_ty output else output
- in
- output
- in
- (back_info, output)
+ (* The loop backward functions consume the same additional inputs as the parent
+ function, but have custom outputs *)
+ let back_sgs = RegionGroupId.Map.bindings ctx.sg.back_sg in
+ let given_back_tys = RegionGroupId.Map.values rg_to_given_back_tys in
+ let back_info_tys =
+ List.map
+ (fun (((id, back_sg), given_back) : (_ * back_sg_info) * ty list) ->
+ (* Remark: the effect info of the backward function for the loop
+ is almost the same as for the backward function of the parent function.
+ Quite importantly, the fact that the function is stateful and/or can fail
+ mostly depends on whether it has inputs or not, and the backward functions
+ for the loops have the same inputs as the backward functions for the parent
+ function.
+ *)
+ let effect_info = back_sg.effect_info in
+ let effect_info = { effect_info with is_rec = true } in
+ (* Compute the input/output types *)
+ let inputs = List.map snd back_sg.inputs in
+ let outputs = given_back in
+ (* Filter if necessary *)
+ let ty =
+ if !Config.simplify_merged_fwd_backs && inputs = [] && outputs = []
+ then None
+ else
+ let output = mk_simpl_tuple_ty outputs in
+ let output =
+ mk_back_output_ty_from_effect_info effect_info inputs output
+ in
+ let ty = mk_arrows inputs output in
+ Some ty
+ in
+ ((id, effect_info), ty))
+ (List.combine back_sgs given_back_tys)
+ in
+ let back_info = List.map fst back_info_tys in
+ let back_info = RegionGroupId.Map.of_list back_info in
+ let back_tys = List.filter_map snd back_info_tys in
+ let output =
+ if ctx.sg.fwd_info.ignore_output then back_tys
+ else ctx.sg.fwd_output :: back_tys
+ in
+ let output = mk_simpl_tuple_ty output in
+ let effect_info = ctx.sg.fwd_info.effect_info in
+ let output =
+ if effect_info.stateful then mk_simpl_tuple_ty [ mk_state_ty; output ]
+ else output
+ in
+ let output =
+ if effect_info.can_fail && inputs <> [] then mk_result_ty output
+ else output
+ in
+ (back_info, output)
in
(* Add the loop information in the context *)
@@ -3708,31 +3548,26 @@ let wrap_in_match_fuel (fuel0 : VarId.id) (fuel : VarId.id) (body : texpression)
let translate_fun_decl (ctx : bs_ctx) (body : S.expression option) : fun_decl =
(* Translate *)
let def = ctx.fun_decl in
- let bid = ctx.bid in
+ assert (ctx.bid = None);
log#ldebug
(lazy
("SymbolicToPure.translate_fun_decl: "
^ name_to_string ctx def.name
- ^ " ("
- ^ Print.option_to_string T.RegionGroupId.to_string bid
- ^ ")\n"));
+ ^ "\n"));
(* Translate the declaration *)
let def_id = def.def_id in
let llbc_name = def.name in
let name = name_to_string ctx llbc_name in
(* Translate the signature *)
- let signature = translate_fun_sig_from_decomposed ctx.sg ctx.bid in
- let regions_hierarchy =
- FunIdMap.find (FRegular def_id) ctx.fun_ctx.regions_hierarchies
- in
+ let signature = translate_fun_sig_from_decomposed ctx.sg in
(* Translate the body, if there is *)
let body =
match body with
| None -> None
| Some body ->
let effect_info =
- get_fun_effect_info ctx (FunId (FRegular def_id)) None bid
+ get_fun_effect_info ctx (FunId (FRegular def_id)) None None
in
let body = translate_expression body ctx in
(* Add a match over the fuel, if necessary *)
@@ -3760,37 +3595,8 @@ let translate_fun_decl (ctx : bs_ctx) (body : S.expression option) : fun_decl =
if effect_info.stateful_group then [ mk_state_var ctx.state_var ]
else []
in
- (* Compute the list of (properly ordered) backward input variables *)
- let backward_inputs : var list =
- match bid with
- | None -> []
- | Some back_id ->
- assert (not !Config.return_back_funs);
- let parents_ids =
- list_ordered_ancestor_region_groups regions_hierarchy back_id
- in
- let backward_ids = List.append parents_ids [ back_id ] in
- List.concat
- (List.map
- (fun id ->
- T.RegionGroupId.Map.find id ctx.backward_inputs_no_state)
- backward_ids)
- in
- (* Introduce the backward input state (the state at call site of the
- * *backward* function), if necessary *)
- let back_state =
- if effect_info.stateful && Option.is_some bid then
- let state_var =
- RegionGroupId.Map.find (Option.get bid) ctx.back_state_vars
- in
- [ mk_state_var state_var ]
- else []
- in
(* Group the inputs together *)
- let inputs =
- List.concat
- [ fuel; ctx.forward_inputs; fwd_state; backward_inputs; back_state ]
- in
+ let inputs = List.concat [ fuel; ctx.forward_inputs; fwd_state ] in
let inputs_lvs =
List.map (fun v -> mk_typed_pattern_from_var v None) inputs
in
@@ -3799,16 +3605,10 @@ let translate_fun_decl (ctx : bs_ctx) (body : S.expression option) : fun_decl =
(lazy
("SymbolicToPure.translate_fun_decl: "
^ name_to_string ctx def.name
- ^ " ("
- ^ Print.option_to_string T.RegionGroupId.to_string bid
- ^ ")" ^ "\n- forward_inputs: "
+ ^ "\n- inputs: "
^ String.concat ", " (List.map show_var ctx.forward_inputs)
- ^ "\n- fwd_state: "
+ ^ "\n- state: "
^ String.concat ", " (List.map show_var fwd_state)
- ^ "\n- backward_inputs: "
- ^ String.concat ", " (List.map show_var backward_inputs)
- ^ "\n- back_state: "
- ^ String.concat ", " (List.map show_var back_state)
^ "\n- signature.inputs: "
^ String.concat ", "
(List.map (pure_ty_to_string ctx) signature.inputs)));
@@ -3837,7 +3637,6 @@ let translate_fun_decl (ctx : bs_ctx) (body : S.expression option) : fun_decl =
kind = def.kind;
num_loops;
loop_id;
- back_id = bid;
llbc_name;
name;
signature;
diff --git a/compiler/Translate.ml b/compiler/Translate.ml
index 55a94302..c12de045 100644
--- a/compiler/Translate.ml
+++ b/compiler/Translate.ml
@@ -1,5 +1,4 @@
open Interpreter
-open Expressions
open Types
open Values
open LlbcAst
@@ -49,8 +48,6 @@ let translate_function_to_pure (trans_ctx : trans_ctx)
log#ldebug
(lazy ("translate_function_to_pure: " ^ name_to_string trans_ctx fdef.name));
- let def_id = fdef.def_id in
-
(* Compute the symbolic ASTs, if the function is transparent *)
let symbolic_trans = translate_function_to_symbolics trans_ctx fdef in
@@ -124,20 +121,7 @@ let translate_function_to_pure (trans_ctx : trans_ctx)
SymbolicToPure.translate_fun_sig_from_decl_to_decomposed trans_ctx fdef
in
- let regions_hierarchy =
- LlbcAstUtils.FunIdMap.find (FRegular def_id) fun_ctx.regions_hierarchies
- in
-
- let var_counter, back_state_vars =
- if !Config.return_back_funs then (var_counter, [])
- else
- List.fold_left_map
- (fun var_counter (region_vars : region_var_group) ->
- let gid = region_vars.id in
- let var, var_counter = Pure.VarId.fresh var_counter in
- (var_counter, (gid, var)))
- var_counter regions_hierarchy
- in
+ let var_counter, back_state_vars = (var_counter, []) in
let back_state_vars = RegionGroupId.Map.of_list back_state_vars in
let ctx =
@@ -195,28 +179,7 @@ let translate_function_to_pure (trans_ctx : trans_ctx)
in
(* Add the backward inputs *)
- let ctx, backward_inputs_no_state, backward_inputs_with_state =
- if !Config.return_back_funs then (ctx, [], [])
- else
- let ctx, inputs_no_with_state =
- List.fold_left_map
- (fun ctx (region_vars : region_var_group) ->
- let gid = region_vars.id in
- let back_sg = RegionGroupId.Map.find gid sg.back_sg in
- let ctx, no_state =
- SymbolicToPure.fresh_vars back_sg.inputs_no_state ctx
- in
- let ctx, with_state =
- SymbolicToPure.fresh_vars back_sg.inputs ctx
- in
- (ctx, ((gid, no_state), (gid, with_state))))
- ctx regions_hierarchy
- in
- let inputs_no_state, inputs_with_state =
- List.split inputs_no_with_state
- in
- (ctx, inputs_no_state, inputs_with_state)
- in
+ let backward_inputs_no_state, backward_inputs_with_state = ([], []) in
let backward_inputs_no_state =
RegionGroupId.Map.of_list backward_inputs_no_state
in
@@ -225,40 +188,10 @@ let translate_function_to_pure (trans_ctx : trans_ctx)
in
let ctx = { ctx with backward_inputs_no_state; backward_inputs_with_state } in
- (* Translate the forward function *)
- let pure_forward =
- match symbolic_trans with
- | None -> SymbolicToPure.translate_fun_decl ctx None
- | Some (_, ast) -> SymbolicToPure.translate_fun_decl ctx (Some ast)
- in
-
- (* Translate the backward functions, if we split the forward and backward functions *)
- let translate_backward (rg : region_var_group) : Pure.fun_decl =
- (* For the backward inputs/outputs initialization: we use the fact that
- * there are no nested borrows for now, and so that the region groups
- * can't have parents *)
- assert (rg.parents = []);
- let back_id = rg.id in
-
- match symbolic_trans with
- | None ->
- (* Initialize the context *)
- let ctx = { ctx with bid = Some back_id } in
- (* Translate *)
- SymbolicToPure.translate_fun_decl ctx None
- | Some (_, symbolic) ->
- (* Initialize the context *)
- let ctx = { ctx with bid = Some back_id } in
- (* Translate *)
- SymbolicToPure.translate_fun_decl ctx (Some symbolic)
- in
- let pure_backwards =
- if !Config.return_back_funs then []
- else List.map translate_backward regions_hierarchy
- in
-
- (* Return *)
- (pure_forward, pure_backwards)
+ (* Translate the function *)
+ match symbolic_trans with
+ | None -> SymbolicToPure.translate_fun_decl ctx None
+ | Some (_, ast) -> SymbolicToPure.translate_fun_decl ctx (Some ast)
(* TODO: factor out the return type *)
let translate_crate_to_pure (crate : crate) :
@@ -513,9 +446,8 @@ let export_global (fmt : Format.formatter) (config : gen_config) (ctx : gen_ctx)
let global_decls = ctx.trans_ctx.global_ctx.global_decls in
let global = GlobalDeclId.Map.find id global_decls in
let trans = FunDeclId.Map.find global.body ctx.trans_funs in
- assert (trans.fwd.loops = []);
- assert (trans.backs = []);
- let body = trans.fwd.f in
+ assert (trans.loops = []);
+ let body = trans.f in
let is_opaque = Option.is_none body.Pure.body in
(* Check if we extract the global *)
@@ -643,7 +575,7 @@ let export_functions_group (fmt : Format.formatter) (config : gen_config)
let funs_map = builtin_funs_map () in
List.map
(fun (trans : pure_fun_translation) ->
- match_name_find_opt ctx.trans_ctx trans.fwd.f.llbc_name funs_map <> None)
+ match_name_find_opt ctx.trans_ctx trans.f.llbc_name funs_map <> None)
pure_ls
in
@@ -660,7 +592,7 @@ let export_functions_group (fmt : Format.formatter) (config : gen_config)
(* Extract the decrease clauses template bodies *)
if config.extract_template_decreases_clauses then
List.iter
- (fun { fwd; _ } ->
+ (fun f ->
(* We only generate decreases clauses for the forward functions, because
the termination argument should only depend on the forward inputs.
The backward functions thus use the same decreases clauses as the
@@ -687,27 +619,14 @@ let export_functions_group (fmt : Format.formatter) (config : gen_config)
raise
(Failure "HOL4 doesn't have decreases/termination clauses")
in
- extract_decrease fwd.f;
- List.iter extract_decrease fwd.loops)
+ extract_decrease f.f;
+ List.iter extract_decrease f.loops)
pure_ls;
- (* Concatenate the function definitions, filtering the useless forward
- * functions. *)
+ (* Flatten the translated functions (concatenate the functions with
+ the declarations introduced for the loops) *)
let decls =
- List.concat
- (List.map
- (fun { keep_fwd; fwd; backs } ->
- let fwd =
- if keep_fwd then List.append fwd.loops [ fwd.f ] else []
- in
- let backs : Pure.fun_decl list =
- List.concat
- (List.map
- (fun back -> List.append back.loops [ back.f ])
- backs)
- in
- List.append fwd backs)
- pure_ls)
+ List.concat (List.map (fun f -> List.append f.loops [ f.f ]) pure_ls)
in
(* Extract the function definitions *)
@@ -724,9 +643,7 @@ let export_functions_group (fmt : Format.formatter) (config : gen_config)
(* Insert unit tests if necessary *)
if config.test_trans_unit_functions then
List.iter
- (fun trans ->
- if trans.keep_fwd then
- Extract.extract_unit_test_if_unit_fun ctx fmt trans.fwd.f)
+ (fun trans -> Extract.extract_unit_test_if_unit_fun ctx fmt trans.f)
pure_ls
(** Export a trait declaration. *)
@@ -812,7 +729,7 @@ let extract_definitions (fmt : Format.formatter) (config : gen_config)
extract their type directly in the records we generate for
the trait declarations themselves, there is no point in having
separate type definitions) *)
- match pure_fun.fwd.f.Pure.kind with
+ match pure_fun.f.Pure.kind with
| TraitMethodDecl _ -> ()
| _ ->
(* Translate *)
@@ -1001,18 +918,18 @@ let translate_crate (filename : string) (dest_dir : string) (crate : crate) :
* whether we should generate a decrease clause or not. *)
let rec_functions =
List.map
- (fun { fwd; _ } ->
- let fwd_f =
- if fwd.f.Pure.signature.fwd_info.effect_info.is_rec then
- [ (fwd.f.def_id, None) ]
+ (fun trans ->
+ let f =
+ if trans.f.Pure.signature.fwd_info.effect_info.is_rec then
+ [ (trans.f.def_id, None) ]
else []
in
- let loop_fwds =
+ let loops =
List.map
(fun (def : Pure.fun_decl) -> [ (def.def_id, def.loop_id) ])
- fwd.loops
+ trans.loops
in
- fwd_f :: loop_fwds)
+ f :: loops)
trans_funs
in
let rec_functions : PureUtils.fun_loop_id list =
@@ -1028,7 +945,7 @@ let translate_crate (filename : string) (dest_dir : string) (crate : crate) :
let trans_funs : pure_fun_translation FunDeclId.Map.t =
FunDeclId.Map.of_list
(List.map
- (fun (trans : pure_fun_translation) -> (trans.fwd.f.def_id, trans))
+ (fun (trans : pure_fun_translation) -> (trans.f.def_id, trans))
trans_funs)
in
@@ -1052,7 +969,6 @@ let translate_crate (filename : string) (dest_dir : string) (crate : crate) :
names_maps;
indent_incr = 2;
use_dep_ite = !Config.backend = Lean && !Config.extract_decreases_clauses;
- fun_name_info = PureUtils.RegularFunIdMap.empty;
trait_decl_id = None (* None by default *);
is_provided_method = false (* false by default *);
trans_trait_decls;
@@ -1082,7 +998,6 @@ let translate_crate (filename : string) (dest_dir : string) (crate : crate) :
(fun ctx (trans : pure_fun_translation) ->
(* If requested by the user, register termination measures and decreases
proofs for all the recursive functions *)
- let fwd_def = trans.fwd.f in
let gen_decr_clause (def : Pure.fun_decl) =
!Config.extract_decreases_clauses
&& PureUtils.FunLoopIdSet.mem
@@ -1091,7 +1006,7 @@ let translate_crate (filename : string) (dest_dir : string) (crate : crate) :
in
(* Register the names, only if the function is not a global body -
* those are handled later *)
- let is_global = fwd_def.Pure.is_global_decl_body in
+ let is_global = trans.f.Pure.is_global_decl_body in
if is_global then ctx
else Extract.extract_fun_decl_register_names ctx gen_decr_clause trans)
ctx
@@ -1171,13 +1086,7 @@ let translate_crate (filename : string) (dest_dir : string) (crate : crate) :
let exe_dir = Filename.dirname Sys.argv.(0) in
let primitives_src_dest =
match !Config.backend with
- | FStar ->
- let src =
- if !Config.return_back_funs then
- "/backends/fstar/merge/Primitives.fst"
- else "/backends/fstar/split/Primitives.fst"
- in
- Some (src, "Primitives.fst")
+ | FStar -> Some ("/backends/fstar/merge/Primitives.fst", "Primitives.fst")
| Coq -> Some ("/backends/coq/Primitives.v", "Primitives.v")
| Lean -> None
| HOL4 -> None
diff --git a/compiler/TranslateCore.ml b/compiler/TranslateCore.ml
index 88438872..05877b5a 100644
--- a/compiler/TranslateCore.ml
+++ b/compiler/TranslateCore.ml
@@ -8,19 +8,8 @@ let log = Logging.translate_log
type trans_ctx = decls_ctx [@@deriving show]
type fun_and_loops = { f : Pure.fun_decl; loops : Pure.fun_decl list }
-type pure_fun_translation_no_loops = Pure.fun_decl * Pure.fun_decl list
-
-type pure_fun_translation = {
- keep_fwd : bool;
- (** Should we extract the forward function?
-
- If the forward function returns `()` and there is exactly one
- backward function, we may merge the forward into the backward
- function and thus don't extract the forward function)?
- *)
- fwd : fun_and_loops;
- backs : fun_and_loops list;
-}
+type pure_fun_translation_no_loops = Pure.fun_decl
+type pure_fun_translation = fun_and_loops
let trans_ctx_to_fmt_env (ctx : trans_ctx) : Print.fmt_env =
Print.Contexts.decls_ctx_to_fmt_env ctx
diff --git a/flake.nix b/flake.nix
index 82179fcb..cfeb5188 100644
--- a/flake.nix
+++ b/flake.nix
@@ -114,18 +114,6 @@
# The tests don't generate anything - TODO: actually they do
installPhase = "touch $out";
};
- # Replay the F* proofs for the cases where we split the fwd/back functions.
- aeneas-verify-fstar-split = pkgs.stdenv.mkDerivation {
- name = "aeneas_verify_fstar_split";
- src = ./tests/fstar-split;
- FSTAR_EXE = "${hacl-nix.packages.${system}.fstar}/bin/fstar.exe";
- buildPhase= ''
- make prepare-projects
- make verify -j $NIX_BUILD_CORES
- '';
- # The tests don't generate anything - TODO: actually they do
- installPhase = "touch $out";
- };
# Replay the Coq proofs.
aeneas-verify-coq = pkgs.stdenv.mkDerivation {
name = "aeneas_verify_coq";
@@ -183,7 +171,10 @@
default = aeneas;
};
checks = {
- inherit aeneas aeneas-tests aeneas-verify-fstar aeneas-verify-fstar-split
- aeneas-verify-coq aeneas-verify-lean aeneas-verify-hol4; };
+ inherit aeneas aeneas-tests
+ aeneas-verify-fstar
+ aeneas-verify-coq
+ aeneas-verify-lean
+ aeneas-verify-hol4; };
});
}
diff --git a/tests/fstar-split/.gitignore b/tests/fstar-split/.gitignore
deleted file mode 100644
index 28a11147..00000000
--- a/tests/fstar-split/.gitignore
+++ /dev/null
@@ -1 +0,0 @@
-*/obj \ No newline at end of file
diff --git a/tests/fstar-split/Makefile b/tests/fstar-split/Makefile
deleted file mode 100644
index 6cf03386..00000000
--- a/tests/fstar-split/Makefile
+++ /dev/null
@@ -1,33 +0,0 @@
-ALL_DIRS ?= $(filter-out Makefile%, $(wildcard *))
-
-VERIFY_DIRS = $(addprefix verif-,$(ALL_DIRS))
-
-CLEAN_DIRS = $(addprefix clean-,$(ALL_DIRS))
-
-COPY_MAKEFILES = $(addprefix copy-makefile-,$(ALL_DIRS))
-
-.PHONY: all
-all: prepare-projects verify
-
-.PHONY: prepare-projects
-prepare-projects: $(COPY_MAKEFILES)
-
-.PHONY: verify
-verify: $(VERIFY_DIRS)
-
-.PHONY: verif-%
-verif-%:
- cd $* && make all
-
-.PHONY: copy-makefile-%
-copy-makefile-%:
- rm -f $*/Makefile
- echo "# This file was automatically generated - modify ../Makefile.template instead" >> $*/Makefile
- cat Makefile.template >> $*/Makefile
-
-.PHONY: clean
-clean: $(CLEAN_DIRS)
-
-.PHONY: clean-%
-clean-%:
- cd $* && make clean
diff --git a/tests/fstar-split/Makefile.template b/tests/fstar-split/Makefile.template
deleted file mode 100644
index 14790d6d..00000000
--- a/tests/fstar-split/Makefile.template
+++ /dev/null
@@ -1,48 +0,0 @@
-INCLUDE_DIRS = .
-
-FSTAR_INCLUDES = $(addprefix --include ,$(INCLUDE_DIRS))
-
-FSTAR_HINTS ?= --use_hints --use_hint_hashes --record_hints
-
-FSTAR_OPTIONS = $(FSTAR_HINTS) \
- --cache_checked_modules $(FSTAR_INCLUDES) --cmi \
- --warn_error '+241@247+285-274' \
-
-FSTAR_EXE ?= fstar.exe
-FSTAR_NO_FLAGS = $(FSTAR_EXE) --already_cached 'Prims FStar LowStar Steel' --odir obj --cache_dir obj
-
-FSTAR = $(FSTAR_NO_FLAGS) $(FSTAR_OPTIONS)
-
-# The F* roots are used to compute the dependency graph, and generate the .depend file
-FSTAR_ROOTS ?= $(wildcard *.fst *.fsti)
-
-# Build all the files
-all: $(addprefix obj/,$(addsuffix .checked,$(FSTAR_ROOTS)))
-
-# This is the right way to ensure the .depend file always gets re-built.
-ifeq (,$(filter %-in,$(MAKECMDGOALS)))
-ifndef NODEPEND
-ifndef MAKE_RESTARTS
-.depend: .FORCE
- $(FSTAR_NO_FLAGS) --dep full $(notdir $(FSTAR_ROOTS)) > $@
-
-.PHONY: .FORCE
-.FORCE:
-endif
-endif
-
-include .depend
-endif
-
-# For the interactive mode
-%.fst-in %.fsti-in:
- @echo $(FSTAR_OPTIONS)
-
-# Generete the .checked files in batch mode
-%.checked:
- $(FSTAR) $(FSTAR_OPTIONS) $< && \
- touch -c $@
-
-.PHONY: clean
-clean:
- rm -f obj/*
diff --git a/tests/fstar-split/arrays/Arrays.Clauses.Template.fst b/tests/fstar-split/arrays/Arrays.Clauses.Template.fst
deleted file mode 100644
index 8cc32583..00000000
--- a/tests/fstar-split/arrays/Arrays.Clauses.Template.fst
+++ /dev/null
@@ -1,21 +0,0 @@
-(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)
-(** [arrays]: templates for the decreases clauses *)
-module Arrays.Clauses.Template
-open Primitives
-open Arrays.Types
-
-#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
-
-(** [arrays::sum]: decreases clause
- Source: 'src/arrays.rs', lines 242:0-250:1 *)
-unfold
-let sum_loop_decreases (s : slice u32) (sum1 : u32) (i : usize) : nat =
- admit ()
-
-(** [arrays::sum2]: decreases clause
- Source: 'src/arrays.rs', lines 252:0-261:1 *)
-unfold
-let sum2_loop_decreases (s : slice u32) (s2 : slice u32) (sum1 : u32)
- (i : usize) : nat =
- admit ()
-
diff --git a/tests/fstar-split/arrays/Arrays.Clauses.fst b/tests/fstar-split/arrays/Arrays.Clauses.fst
deleted file mode 100644
index aca328c2..00000000
--- a/tests/fstar-split/arrays/Arrays.Clauses.fst
+++ /dev/null
@@ -1,19 +0,0 @@
-(** [arrays]: decreases clauses *)
-module Arrays.Clauses
-open Primitives
-open Arrays.Types
-open FStar.List.Tot
-
-#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
-
-(** [arrays::sum]: decreases clause *)
-unfold
-let sum_loop_decreases (s : slice u32) (sum : u32) (i : usize) : nat =
- if i < length s then length s - i else 0
-
-(** [arrays::sum2]: decreases clause *)
-unfold
-let sum2_loop_decreases (s : slice u32) (s2 : slice u32) (sum : u32)
- (i : usize) : nat =
- if i < length s then length s - i else 0
-
diff --git a/tests/fstar-split/arrays/Arrays.Funs.fst b/tests/fstar-split/arrays/Arrays.Funs.fst
deleted file mode 100644
index 3efe7789..00000000
--- a/tests/fstar-split/arrays/Arrays.Funs.fst
+++ /dev/null
@@ -1,445 +0,0 @@
-(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)
-(** [arrays]: function definitions *)
-module Arrays.Funs
-open Primitives
-include Arrays.Types
-include Arrays.Clauses
-
-#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
-
-(** [arrays::incr]: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/arrays.rs', lines 8:0-8:24 *)
-let incr (x : u32) : result u32 =
- u32_add x 1
-
-(** [arrays::array_to_shared_slice_]: forward function
- Source: 'src/arrays.rs', lines 16:0-16:53 *)
-let array_to_shared_slice_ (t : Type0) (s : array t 32) : result (slice t) =
- array_to_slice t 32 s
-
-(** [arrays::array_to_mut_slice_]: forward function
- Source: 'src/arrays.rs', lines 21:0-21:58 *)
-let array_to_mut_slice_ (t : Type0) (s : array t 32) : result (slice t) =
- array_to_slice t 32 s
-
-(** [arrays::array_to_mut_slice_]: backward function 0
- Source: 'src/arrays.rs', lines 21:0-21:58 *)
-let array_to_mut_slice__back
- (t : Type0) (s : array t 32) (ret : slice t) : result (array t 32) =
- array_from_slice t 32 s ret
-
-(** [arrays::array_len]: forward function
- Source: 'src/arrays.rs', lines 25:0-25:40 *)
-let array_len (t : Type0) (s : array t 32) : result usize =
- let* s1 = array_to_slice t 32 s in let i = slice_len t s1 in Return i
-
-(** [arrays::shared_array_len]: forward function
- Source: 'src/arrays.rs', lines 29:0-29:48 *)
-let shared_array_len (t : Type0) (s : array t 32) : result usize =
- let* s1 = array_to_slice t 32 s in let i = slice_len t s1 in Return i
-
-(** [arrays::shared_slice_len]: forward function
- Source: 'src/arrays.rs', lines 33:0-33:44 *)
-let shared_slice_len (t : Type0) (s : slice t) : result usize =
- let i = slice_len t s in Return i
-
-(** [arrays::index_array_shared]: forward function
- Source: 'src/arrays.rs', lines 37:0-37:57 *)
-let index_array_shared (t : Type0) (s : array t 32) (i : usize) : result t =
- array_index_usize t 32 s i
-
-(** [arrays::index_array_u32]: forward function
- Source: 'src/arrays.rs', lines 44:0-44:53 *)
-let index_array_u32 (s : array u32 32) (i : usize) : result u32 =
- array_index_usize u32 32 s i
-
-(** [arrays::index_array_copy]: forward function
- Source: 'src/arrays.rs', lines 48:0-48:45 *)
-let index_array_copy (x : array u32 32) : result u32 =
- array_index_usize u32 32 x 0
-
-(** [arrays::index_mut_array]: forward function
- Source: 'src/arrays.rs', lines 52:0-52:62 *)
-let index_mut_array (t : Type0) (s : array t 32) (i : usize) : result t =
- array_index_usize t 32 s i
-
-(** [arrays::index_mut_array]: backward function 0
- Source: 'src/arrays.rs', lines 52:0-52:62 *)
-let index_mut_array_back
- (t : Type0) (s : array t 32) (i : usize) (ret : t) : result (array t 32) =
- array_update_usize t 32 s i ret
-
-(** [arrays::index_slice]: forward function
- Source: 'src/arrays.rs', lines 56:0-56:46 *)
-let index_slice (t : Type0) (s : slice t) (i : usize) : result t =
- slice_index_usize t s i
-
-(** [arrays::index_mut_slice]: forward function
- Source: 'src/arrays.rs', lines 60:0-60:58 *)
-let index_mut_slice (t : Type0) (s : slice t) (i : usize) : result t =
- slice_index_usize t s i
-
-(** [arrays::index_mut_slice]: backward function 0
- Source: 'src/arrays.rs', lines 60:0-60:58 *)
-let index_mut_slice_back
- (t : Type0) (s : slice t) (i : usize) (ret : t) : result (slice t) =
- slice_update_usize t s i ret
-
-(** [arrays::slice_subslice_shared_]: forward function
- Source: 'src/arrays.rs', lines 64:0-64:70 *)
-let slice_subslice_shared_
- (x : slice u32) (y : usize) (z : usize) : result (slice u32) =
- core_slice_index_Slice_index u32 (core_ops_range_Range usize)
- (core_slice_index_SliceIndexRangeUsizeSliceTInst u32) x
- { start = y; end_ = z }
-
-(** [arrays::slice_subslice_mut_]: forward function
- Source: 'src/arrays.rs', lines 68:0-68:75 *)
-let slice_subslice_mut_
- (x : slice u32) (y : usize) (z : usize) : result (slice u32) =
- core_slice_index_Slice_index_mut u32 (core_ops_range_Range usize)
- (core_slice_index_SliceIndexRangeUsizeSliceTInst u32) x
- { start = y; end_ = z }
-
-(** [arrays::slice_subslice_mut_]: backward function 0
- Source: 'src/arrays.rs', lines 68:0-68:75 *)
-let slice_subslice_mut__back
- (x : slice u32) (y : usize) (z : usize) (ret : slice u32) :
- result (slice u32)
- =
- core_slice_index_Slice_index_mut_back u32 (core_ops_range_Range usize)
- (core_slice_index_SliceIndexRangeUsizeSliceTInst u32) x
- { start = y; end_ = z } ret
-
-(** [arrays::array_to_slice_shared_]: forward function
- Source: 'src/arrays.rs', lines 72:0-72:54 *)
-let array_to_slice_shared_ (x : array u32 32) : result (slice u32) =
- array_to_slice u32 32 x
-
-(** [arrays::array_to_slice_mut_]: forward function
- Source: 'src/arrays.rs', lines 76:0-76:59 *)
-let array_to_slice_mut_ (x : array u32 32) : result (slice u32) =
- array_to_slice u32 32 x
-
-(** [arrays::array_to_slice_mut_]: backward function 0
- Source: 'src/arrays.rs', lines 76:0-76:59 *)
-let array_to_slice_mut__back
- (x : array u32 32) (ret : slice u32) : result (array u32 32) =
- array_from_slice u32 32 x ret
-
-(** [arrays::array_subslice_shared_]: forward function
- Source: 'src/arrays.rs', lines 80:0-80:74 *)
-let array_subslice_shared_
- (x : array u32 32) (y : usize) (z : usize) : result (slice u32) =
- core_array_Array_index u32 (core_ops_range_Range usize) 32
- (core_ops_index_IndexSliceTIInst u32 (core_ops_range_Range usize)
- (core_slice_index_SliceIndexRangeUsizeSliceTInst u32)) x
- { start = y; end_ = z }
-
-(** [arrays::array_subslice_mut_]: forward function
- Source: 'src/arrays.rs', lines 84:0-84:79 *)
-let array_subslice_mut_
- (x : array u32 32) (y : usize) (z : usize) : result (slice u32) =
- core_array_Array_index_mut u32 (core_ops_range_Range usize) 32
- (core_ops_index_IndexMutSliceTIInst u32 (core_ops_range_Range usize)
- (core_slice_index_SliceIndexRangeUsizeSliceTInst u32)) x
- { start = y; end_ = z }
-
-(** [arrays::array_subslice_mut_]: backward function 0
- Source: 'src/arrays.rs', lines 84:0-84:79 *)
-let array_subslice_mut__back
- (x : array u32 32) (y : usize) (z : usize) (ret : slice u32) :
- result (array u32 32)
- =
- core_array_Array_index_mut_back u32 (core_ops_range_Range usize) 32
- (core_ops_index_IndexMutSliceTIInst u32 (core_ops_range_Range usize)
- (core_slice_index_SliceIndexRangeUsizeSliceTInst u32)) x
- { start = y; end_ = z } ret
-
-(** [arrays::index_slice_0]: forward function
- Source: 'src/arrays.rs', lines 88:0-88:38 *)
-let index_slice_0 (t : Type0) (s : slice t) : result t =
- slice_index_usize t s 0
-
-(** [arrays::index_array_0]: forward function
- Source: 'src/arrays.rs', lines 92:0-92:42 *)
-let index_array_0 (t : Type0) (s : array t 32) : result t =
- array_index_usize t 32 s 0
-
-(** [arrays::index_index_array]: forward function
- Source: 'src/arrays.rs', lines 103:0-103:71 *)
-let index_index_array
- (s : array (array u32 32) 32) (i : usize) (j : usize) : result u32 =
- let* a = array_index_usize (array u32 32) 32 s i in
- array_index_usize u32 32 a j
-
-(** [arrays::update_update_array]: forward function
- Source: 'src/arrays.rs', lines 114:0-114:70 *)
-let update_update_array
- (s : array (array u32 32) 32) (i : usize) (j : usize) : result unit =
- let* a = array_index_usize (array u32 32) 32 s i in
- let* a1 = array_update_usize u32 32 a j 0 in
- let* _ = array_update_usize (array u32 32) 32 s i a1 in
- Return ()
-
-(** [arrays::array_local_deep_copy]: forward function
- Source: 'src/arrays.rs', lines 118:0-118:43 *)
-let array_local_deep_copy (x : array u32 32) : result unit =
- Return ()
-
-(** [arrays::take_array]: forward function
- Source: 'src/arrays.rs', lines 122:0-122:30 *)
-let take_array (a : array u32 2) : result unit =
- Return ()
-
-(** [arrays::take_array_borrow]: forward function
- Source: 'src/arrays.rs', lines 123:0-123:38 *)
-let take_array_borrow (a : array u32 2) : result unit =
- Return ()
-
-(** [arrays::take_slice]: forward function
- Source: 'src/arrays.rs', lines 124:0-124:28 *)
-let take_slice (s : slice u32) : result unit =
- Return ()
-
-(** [arrays::take_mut_slice]: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/arrays.rs', lines 125:0-125:36 *)
-let take_mut_slice (s : slice u32) : result (slice u32) =
- Return s
-
-(** [arrays::const_array]: forward function
- Source: 'src/arrays.rs', lines 127:0-127:32 *)
-let const_array : result (array u32 2) =
- Return (mk_array u32 2 [ 0; 0 ])
-
-(** [arrays::const_slice]: forward function
- Source: 'src/arrays.rs', lines 131:0-131:20 *)
-let const_slice : result unit =
- let* _ = array_to_slice u32 2 (mk_array u32 2 [ 0; 0 ]) in Return ()
-
-(** [arrays::take_all]: forward function
- Source: 'src/arrays.rs', lines 141:0-141:17 *)
-let take_all : result unit =
- let* _ = take_array (mk_array u32 2 [ 0; 0 ]) in
- let* _ = take_array_borrow (mk_array u32 2 [ 0; 0 ]) in
- let* s = array_to_slice u32 2 (mk_array u32 2 [ 0; 0 ]) in
- let* _ = take_slice s in
- let* s1 = array_to_slice u32 2 (mk_array u32 2 [ 0; 0 ]) in
- let* s2 = take_mut_slice s1 in
- let* _ = array_from_slice u32 2 (mk_array u32 2 [ 0; 0 ]) s2 in
- Return ()
-
-(** [arrays::index_array]: forward function
- Source: 'src/arrays.rs', lines 155:0-155:38 *)
-let index_array (x : array u32 2) : result u32 =
- array_index_usize u32 2 x 0
-
-(** [arrays::index_array_borrow]: forward function
- Source: 'src/arrays.rs', lines 158:0-158:46 *)
-let index_array_borrow (x : array u32 2) : result u32 =
- array_index_usize u32 2 x 0
-
-(** [arrays::index_slice_u32_0]: forward function
- Source: 'src/arrays.rs', lines 162:0-162:42 *)
-let index_slice_u32_0 (x : slice u32) : result u32 =
- slice_index_usize u32 x 0
-
-(** [arrays::index_mut_slice_u32_0]: forward function
- Source: 'src/arrays.rs', lines 166:0-166:50 *)
-let index_mut_slice_u32_0 (x : slice u32) : result u32 =
- slice_index_usize u32 x 0
-
-(** [arrays::index_mut_slice_u32_0]: backward function 0
- Source: 'src/arrays.rs', lines 166:0-166:50 *)
-let index_mut_slice_u32_0_back (x : slice u32) : result (slice u32) =
- let* _ = slice_index_usize u32 x 0 in Return x
-
-(** [arrays::index_all]: forward function
- Source: 'src/arrays.rs', lines 170:0-170:25 *)
-let index_all : result u32 =
- let* i = index_array (mk_array u32 2 [ 0; 0 ]) in
- let* i1 = index_array (mk_array u32 2 [ 0; 0 ]) in
- let* i2 = u32_add i i1 in
- let* i3 = index_array_borrow (mk_array u32 2 [ 0; 0 ]) in
- let* i4 = u32_add i2 i3 in
- let* s = array_to_slice u32 2 (mk_array u32 2 [ 0; 0 ]) in
- let* i5 = index_slice_u32_0 s in
- let* i6 = u32_add i4 i5 in
- let* s1 = array_to_slice u32 2 (mk_array u32 2 [ 0; 0 ]) in
- let* i7 = index_mut_slice_u32_0 s1 in
- let* i8 = u32_add i6 i7 in
- let* s2 = index_mut_slice_u32_0_back s1 in
- let* _ = array_from_slice u32 2 (mk_array u32 2 [ 0; 0 ]) s2 in
- Return i8
-
-(** [arrays::update_array]: forward function
- Source: 'src/arrays.rs', lines 184:0-184:36 *)
-let update_array (x : array u32 2) : result unit =
- let* _ = array_update_usize u32 2 x 0 1 in Return ()
-
-(** [arrays::update_array_mut_borrow]: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/arrays.rs', lines 187:0-187:48 *)
-let update_array_mut_borrow (x : array u32 2) : result (array u32 2) =
- array_update_usize u32 2 x 0 1
-
-(** [arrays::update_mut_slice]: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/arrays.rs', lines 190:0-190:38 *)
-let update_mut_slice (x : slice u32) : result (slice u32) =
- slice_update_usize u32 x 0 1
-
-(** [arrays::update_all]: forward function
- Source: 'src/arrays.rs', lines 194:0-194:19 *)
-let update_all : result unit =
- let* _ = update_array (mk_array u32 2 [ 0; 0 ]) in
- let* x = update_array_mut_borrow (mk_array u32 2 [ 0; 0 ]) in
- let* s = array_to_slice u32 2 x in
- let* s1 = update_mut_slice s in
- let* _ = array_from_slice u32 2 x s1 in
- Return ()
-
-(** [arrays::range_all]: forward function
- Source: 'src/arrays.rs', lines 205:0-205:18 *)
-let range_all : result unit =
- let* s =
- core_array_Array_index_mut u32 (core_ops_range_Range usize) 4
- (core_ops_index_IndexMutSliceTIInst u32 (core_ops_range_Range usize)
- (core_slice_index_SliceIndexRangeUsizeSliceTInst u32))
- (mk_array u32 4 [ 0; 0; 0; 0 ]) { start = 1; end_ = 3 } in
- let* s1 = update_mut_slice s in
- let* _ =
- core_array_Array_index_mut_back u32 (core_ops_range_Range usize) 4
- (core_ops_index_IndexMutSliceTIInst u32 (core_ops_range_Range usize)
- (core_slice_index_SliceIndexRangeUsizeSliceTInst u32))
- (mk_array u32 4 [ 0; 0; 0; 0 ]) { start = 1; end_ = 3 } s1 in
- Return ()
-
-(** [arrays::deref_array_borrow]: forward function
- Source: 'src/arrays.rs', lines 214:0-214:46 *)
-let deref_array_borrow (x : array u32 2) : result u32 =
- array_index_usize u32 2 x 0
-
-(** [arrays::deref_array_mut_borrow]: forward function
- Source: 'src/arrays.rs', lines 219:0-219:54 *)
-let deref_array_mut_borrow (x : array u32 2) : result u32 =
- array_index_usize u32 2 x 0
-
-(** [arrays::deref_array_mut_borrow]: backward function 0
- Source: 'src/arrays.rs', lines 219:0-219:54 *)
-let deref_array_mut_borrow_back (x : array u32 2) : result (array u32 2) =
- let* _ = array_index_usize u32 2 x 0 in Return x
-
-(** [arrays::take_array_t]: forward function
- Source: 'src/arrays.rs', lines 227:0-227:31 *)
-let take_array_t (a : array aB_t 2) : result unit =
- Return ()
-
-(** [arrays::non_copyable_array]: forward function
- Source: 'src/arrays.rs', lines 229:0-229:27 *)
-let non_copyable_array : result unit =
- let* _ = take_array_t (mk_array aB_t 2 [ AB_A; AB_B ]) in Return ()
-
-(** [arrays::sum]: loop 0: forward function
- Source: 'src/arrays.rs', lines 242:0-250:1 *)
-let rec sum_loop
- (s : slice u32) (sum1 : u32) (i : usize) :
- Tot (result u32) (decreases (sum_loop_decreases s sum1 i))
- =
- let i1 = slice_len u32 s in
- if i < i1
- then
- let* i2 = slice_index_usize u32 s i in
- let* sum3 = u32_add sum1 i2 in
- let* i3 = usize_add i 1 in
- sum_loop s sum3 i3
- else Return sum1
-
-(** [arrays::sum]: forward function
- Source: 'src/arrays.rs', lines 242:0-242:28 *)
-let sum (s : slice u32) : result u32 =
- sum_loop s 0 0
-
-(** [arrays::sum2]: loop 0: forward function
- Source: 'src/arrays.rs', lines 252:0-261:1 *)
-let rec sum2_loop
- (s : slice u32) (s2 : slice u32) (sum1 : u32) (i : usize) :
- Tot (result u32) (decreases (sum2_loop_decreases s s2 sum1 i))
- =
- let i1 = slice_len u32 s in
- if i < i1
- then
- let* i2 = slice_index_usize u32 s i in
- let* i3 = slice_index_usize u32 s2 i in
- let* i4 = u32_add i2 i3 in
- let* sum3 = u32_add sum1 i4 in
- let* i5 = usize_add i 1 in
- sum2_loop s s2 sum3 i5
- else Return sum1
-
-(** [arrays::sum2]: forward function
- Source: 'src/arrays.rs', lines 252:0-252:41 *)
-let sum2 (s : slice u32) (s2 : slice u32) : result u32 =
- let i = slice_len u32 s in
- let i1 = slice_len u32 s2 in
- if not (i = i1) then Fail Failure else sum2_loop s s2 0 0
-
-(** [arrays::f0]: forward function
- Source: 'src/arrays.rs', lines 263:0-263:11 *)
-let f0 : result unit =
- let* s = array_to_slice u32 2 (mk_array u32 2 [ 1; 2 ]) in
- let* s1 = slice_update_usize u32 s 0 1 in
- let* _ = array_from_slice u32 2 (mk_array u32 2 [ 1; 2 ]) s1 in
- Return ()
-
-(** [arrays::f1]: forward function
- Source: 'src/arrays.rs', lines 268:0-268:11 *)
-let f1 : result unit =
- let* _ = array_update_usize u32 2 (mk_array u32 2 [ 1; 2 ]) 0 1 in Return ()
-
-(** [arrays::f2]: forward function
- Source: 'src/arrays.rs', lines 273:0-273:17 *)
-let f2 (i : u32) : result unit =
- Return ()
-
-(** [arrays::f4]: forward function
- Source: 'src/arrays.rs', lines 282:0-282:54 *)
-let f4 (x : array u32 32) (y : usize) (z : usize) : result (slice u32) =
- core_array_Array_index u32 (core_ops_range_Range usize) 32
- (core_ops_index_IndexSliceTIInst u32 (core_ops_range_Range usize)
- (core_slice_index_SliceIndexRangeUsizeSliceTInst u32)) x
- { start = y; end_ = z }
-
-(** [arrays::f3]: forward function
- Source: 'src/arrays.rs', lines 275:0-275:18 *)
-let f3 : result u32 =
- let* i = array_index_usize u32 2 (mk_array u32 2 [ 1; 2 ]) 0 in
- let* _ = f2 i in
- let b = array_repeat u32 32 0 in
- let* s = array_to_slice u32 2 (mk_array u32 2 [ 1; 2 ]) in
- let* s1 = f4 b 16 18 in
- sum2 s s1
-
-(** [arrays::SZ]
- Source: 'src/arrays.rs', lines 286:0-286:19 *)
-let sz_body : result usize = Return 32
-let sz_c : usize = eval_global sz_body
-
-(** [arrays::f5]: forward function
- Source: 'src/arrays.rs', lines 289:0-289:31 *)
-let f5 (x : array u32 32) : result u32 =
- array_index_usize u32 32 x 0
-
-(** [arrays::ite]: forward function
- Source: 'src/arrays.rs', lines 294:0-294:12 *)
-let ite : result unit =
- let* s = array_to_slice u32 2 (mk_array u32 2 [ 0; 0 ]) in
- let* s1 = array_to_slice u32 2 (mk_array u32 2 [ 0; 0 ]) in
- let* s2 = index_mut_slice_u32_0_back s1 in
- let* _ = array_from_slice u32 2 (mk_array u32 2 [ 0; 0 ]) s2 in
- let* s3 = index_mut_slice_u32_0_back s in
- let* _ = array_from_slice u32 2 (mk_array u32 2 [ 0; 0 ]) s3 in
- Return ()
-
diff --git a/tests/fstar-split/arrays/Arrays.Types.fst b/tests/fstar-split/arrays/Arrays.Types.fst
deleted file mode 100644
index d3596e92..00000000
--- a/tests/fstar-split/arrays/Arrays.Types.fst
+++ /dev/null
@@ -1,11 +0,0 @@
-(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)
-(** [arrays]: type definitions *)
-module Arrays.Types
-open Primitives
-
-#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
-
-(** [arrays::AB]
- Source: 'src/arrays.rs', lines 3:0-3:11 *)
-type aB_t = | AB_A : aB_t | AB_B : aB_t
-
diff --git a/tests/fstar-split/arrays/Makefile b/tests/fstar-split/arrays/Makefile
deleted file mode 100644
index fa7d1f36..00000000
--- a/tests/fstar-split/arrays/Makefile
+++ /dev/null
@@ -1,49 +0,0 @@
-# This file was automatically generated - modify ../Makefile.template instead
-INCLUDE_DIRS = .
-
-FSTAR_INCLUDES = $(addprefix --include ,$(INCLUDE_DIRS))
-
-FSTAR_HINTS ?= --use_hints --use_hint_hashes --record_hints
-
-FSTAR_OPTIONS = $(FSTAR_HINTS) \
- --cache_checked_modules $(FSTAR_INCLUDES) --cmi \
- --warn_error '+241@247+285-274' \
-
-FSTAR_EXE ?= fstar.exe
-FSTAR_NO_FLAGS = $(FSTAR_EXE) --already_cached 'Prims FStar LowStar Steel' --odir obj --cache_dir obj
-
-FSTAR = $(FSTAR_NO_FLAGS) $(FSTAR_OPTIONS)
-
-# The F* roots are used to compute the dependency graph, and generate the .depend file
-FSTAR_ROOTS ?= $(wildcard *.fst *.fsti)
-
-# Build all the files
-all: $(addprefix obj/,$(addsuffix .checked,$(FSTAR_ROOTS)))
-
-# This is the right way to ensure the .depend file always gets re-built.
-ifeq (,$(filter %-in,$(MAKECMDGOALS)))
-ifndef NODEPEND
-ifndef MAKE_RESTARTS
-.depend: .FORCE
- $(FSTAR_NO_FLAGS) --dep full $(notdir $(FSTAR_ROOTS)) > $@
-
-.PHONY: .FORCE
-.FORCE:
-endif
-endif
-
-include .depend
-endif
-
-# For the interactive mode
-%.fst-in %.fsti-in:
- @echo $(FSTAR_OPTIONS)
-
-# Generete the .checked files in batch mode
-%.checked:
- $(FSTAR) $(FSTAR_OPTIONS) $< && \
- touch -c $@
-
-.PHONY: clean
-clean:
- rm -f obj/*
diff --git a/tests/fstar-split/arrays/Primitives.fst b/tests/fstar-split/arrays/Primitives.fst
deleted file mode 100644
index a3ffbde4..00000000
--- a/tests/fstar-split/arrays/Primitives.fst
+++ /dev/null
@@ -1,884 +0,0 @@
-/// This file lists primitive and assumed functions and types
-module Primitives
-open FStar.Mul
-open FStar.List.Tot
-
-#set-options "--z3rlimit 15 --fuel 0 --ifuel 1"
-
-(*** Utilities *)
-val list_update (#a : Type0) (ls : list a) (i : nat{i < length ls}) (x : a) :
- ls':list a{
- length ls' = length ls /\
- index ls' i == x
- }
-#push-options "--fuel 1"
-let rec list_update #a ls i x =
- match ls with
- | x' :: ls -> if i = 0 then x :: ls else x' :: list_update ls (i-1) x
-#pop-options
-
-(*** Result *)
-type error : Type0 =
-| Failure
-| OutOfFuel
-
-type result (a : Type0) : Type0 =
-| Return : v:a -> result a
-| Fail : e:error -> result a
-
-// Monadic return operator
-unfold let return (#a : Type0) (x : a) : result a = Return x
-
-// Monadic bind operator.
-// Allows to use the notation:
-// ```
-// let* x = y in
-// ...
-// ```
-unfold let (let*) (#a #b : Type0) (m: result a)
- (f: (x:a) -> Pure (result b) (requires (m == Return x)) (ensures fun _ -> True)) :
- result b =
- match m with
- | Return x -> f x
- | Fail e -> Fail e
-
-// Monadic assert(...)
-let massert (b:bool) : result unit = if b then Return () else Fail Failure
-
-// Normalize and unwrap a successful result (used for globals).
-let eval_global (#a : Type0) (x : result a{Return? (normalize_term x)}) : a = Return?.v x
-
-(*** Misc *)
-type char = FStar.Char.char
-type string = string
-
-let is_zero (n: nat) : bool = n = 0
-let decrease (n: nat{n > 0}) : nat = n - 1
-
-let core_mem_replace (a : Type0) (x : a) (y : a) : a = x
-let core_mem_replace_back (a : Type0) (x : a) (y : a) : a = y
-
-// We don't really use raw pointers for now
-type mut_raw_ptr (t : Type0) = { v : t }
-type const_raw_ptr (t : Type0) = { v : t }
-
-(*** Scalars *)
-/// Rem.: most of the following code was partially generated
-
-assume val size_numbits : pos
-
-// TODO: we could use FStar.Int.int_t and FStar.UInt.int_t
-
-let isize_min : int = -9223372036854775808 // TODO: should be opaque
-let isize_max : int = 9223372036854775807 // TODO: should be opaque
-let i8_min : int = -128
-let i8_max : int = 127
-let i16_min : int = -32768
-let i16_max : int = 32767
-let i32_min : int = -2147483648
-let i32_max : int = 2147483647
-let i64_min : int = -9223372036854775808
-let i64_max : int = 9223372036854775807
-let i128_min : int = -170141183460469231731687303715884105728
-let i128_max : int = 170141183460469231731687303715884105727
-let usize_min : int = 0
-let usize_max : int = 4294967295 // TODO: should be opaque
-let u8_min : int = 0
-let u8_max : int = 255
-let u16_min : int = 0
-let u16_max : int = 65535
-let u32_min : int = 0
-let u32_max : int = 4294967295
-let u64_min : int = 0
-let u64_max : int = 18446744073709551615
-let u128_min : int = 0
-let u128_max : int = 340282366920938463463374607431768211455
-
-type scalar_ty =
-| Isize
-| I8
-| I16
-| I32
-| I64
-| I128
-| Usize
-| U8
-| U16
-| U32
-| U64
-| U128
-
-let is_unsigned = function
- | Isize | I8 | I16 | I32 | I64 | I128 -> false
- | Usize | U8 | U16 | U32 | U64 | U128 -> true
-
-let scalar_min (ty : scalar_ty) : int =
- match ty with
- | Isize -> isize_min
- | I8 -> i8_min
- | I16 -> i16_min
- | I32 -> i32_min
- | I64 -> i64_min
- | I128 -> i128_min
- | Usize -> usize_min
- | U8 -> u8_min
- | U16 -> u16_min
- | U32 -> u32_min
- | U64 -> u64_min
- | U128 -> u128_min
-
-let scalar_max (ty : scalar_ty) : int =
- match ty with
- | Isize -> isize_max
- | I8 -> i8_max
- | I16 -> i16_max
- | I32 -> i32_max
- | I64 -> i64_max
- | I128 -> i128_max
- | Usize -> usize_max
- | U8 -> u8_max
- | U16 -> u16_max
- | U32 -> u32_max
- | U64 -> u64_max
- | U128 -> u128_max
-
-type scalar (ty : scalar_ty) : eqtype = x:int{scalar_min ty <= x && x <= scalar_max ty}
-
-let mk_scalar (ty : scalar_ty) (x : int) : result (scalar ty) =
- if scalar_min ty <= x && scalar_max ty >= x then Return x else Fail Failure
-
-let scalar_neg (#ty : scalar_ty) (x : scalar ty) : result (scalar ty) = mk_scalar ty (-x)
-
-let scalar_div (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- if y <> 0 then mk_scalar ty (x / y) else Fail Failure
-
-/// The remainder operation
-let int_rem (x : int) (y : int{y <> 0}) : int =
- if x >= 0 then (x % y) else -(x % y)
-
-(* Checking consistency with Rust *)
-let _ = assert_norm(int_rem 1 2 = 1)
-let _ = assert_norm(int_rem (-1) 2 = -1)
-let _ = assert_norm(int_rem 1 (-2) = 1)
-let _ = assert_norm(int_rem (-1) (-2) = -1)
-
-let scalar_rem (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- if y <> 0 then mk_scalar ty (int_rem x y) else Fail Failure
-
-let scalar_add (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- mk_scalar ty (x + y)
-
-let scalar_sub (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- mk_scalar ty (x - y)
-
-let scalar_mul (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- mk_scalar ty (x * y)
-
-let scalar_xor (#ty : scalar_ty)
- (x : scalar ty) (y : scalar ty) : scalar ty =
- match ty with
- | U8 -> FStar.UInt.logxor #8 x y
- | U16 -> FStar.UInt.logxor #16 x y
- | U32 -> FStar.UInt.logxor #32 x y
- | U64 -> FStar.UInt.logxor #64 x y
- | U128 -> FStar.UInt.logxor #128 x y
- | Usize -> admit() // TODO
- | I8 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 8);
- normalize_spec (scalar I8);
- FStar.Int.logxor #8 x y
- | I16 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 16);
- normalize_spec (scalar I16);
- FStar.Int.logxor #16 x y
- | I32 -> FStar.Int.logxor #32 x y
- | I64 -> FStar.Int.logxor #64 x y
- | I128 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 128);
- normalize_spec (scalar I128);
- FStar.Int.logxor #128 x y
- | Isize -> admit() // TODO
-
-let scalar_or (#ty : scalar_ty)
- (x : scalar ty) (y : scalar ty) : scalar ty =
- match ty with
- | U8 -> FStar.UInt.logor #8 x y
- | U16 -> FStar.UInt.logor #16 x y
- | U32 -> FStar.UInt.logor #32 x y
- | U64 -> FStar.UInt.logor #64 x y
- | U128 -> FStar.UInt.logor #128 x y
- | Usize -> admit() // TODO
- | I8 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 8);
- normalize_spec (scalar I8);
- FStar.Int.logor #8 x y
- | I16 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 16);
- normalize_spec (scalar I16);
- FStar.Int.logor #16 x y
- | I32 -> FStar.Int.logor #32 x y
- | I64 -> FStar.Int.logor #64 x y
- | I128 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 128);
- normalize_spec (scalar I128);
- FStar.Int.logor #128 x y
- | Isize -> admit() // TODO
-
-let scalar_and (#ty : scalar_ty)
- (x : scalar ty) (y : scalar ty) : scalar ty =
- match ty with
- | U8 -> FStar.UInt.logand #8 x y
- | U16 -> FStar.UInt.logand #16 x y
- | U32 -> FStar.UInt.logand #32 x y
- | U64 -> FStar.UInt.logand #64 x y
- | U128 -> FStar.UInt.logand #128 x y
- | Usize -> admit() // TODO
- | I8 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 8);
- normalize_spec (scalar I8);
- FStar.Int.logand #8 x y
- | I16 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 16);
- normalize_spec (scalar I16);
- FStar.Int.logand #16 x y
- | I32 -> FStar.Int.logand #32 x y
- | I64 -> FStar.Int.logand #64 x y
- | I128 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 128);
- normalize_spec (scalar I128);
- FStar.Int.logand #128 x y
- | Isize -> admit() // TODO
-
-// Shift left
-let scalar_shl (#ty0 #ty1 : scalar_ty)
- (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) =
- admit()
-
-// Shift right
-let scalar_shr (#ty0 #ty1 : scalar_ty)
- (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) =
- admit()
-
-(** Cast an integer from a [src_ty] to a [tgt_ty] *)
-// TODO: check the semantics of casts in Rust
-let scalar_cast (src_ty : scalar_ty) (tgt_ty : scalar_ty) (x : scalar src_ty) : result (scalar tgt_ty) =
- mk_scalar tgt_ty x
-
-// This can't fail, but for now we make all casts faillible (easier for the translation)
-let scalar_cast_bool (tgt_ty : scalar_ty) (x : bool) : result (scalar tgt_ty) =
- mk_scalar tgt_ty (if x then 1 else 0)
-
-/// The scalar types
-type isize : eqtype = scalar Isize
-type i8 : eqtype = scalar I8
-type i16 : eqtype = scalar I16
-type i32 : eqtype = scalar I32
-type i64 : eqtype = scalar I64
-type i128 : eqtype = scalar I128
-type usize : eqtype = scalar Usize
-type u8 : eqtype = scalar U8
-type u16 : eqtype = scalar U16
-type u32 : eqtype = scalar U32
-type u64 : eqtype = scalar U64
-type u128 : eqtype = scalar U128
-
-
-let core_isize_min : isize = isize_min
-let core_isize_max : isize = isize_max
-let core_i8_min : i8 = i8_min
-let core_i8_max : i8 = i8_max
-let core_i16_min : i16 = i16_min
-let core_i16_max : i16 = i16_max
-let core_i32_min : i32 = i32_min
-let core_i32_max : i32 = i32_max
-let core_i64_min : i64 = i64_min
-let core_i64_max : i64 = i64_max
-let core_i128_min : i128 = i128_min
-let core_i128_max : i128 = i128_max
-
-let core_usize_min : usize = usize_min
-let core_usize_max : usize = usize_max
-let core_u8_min : u8 = u8_min
-let core_u8_max : u8 = u8_max
-let core_u16_min : u16 = u16_min
-let core_u16_max : u16 = u16_max
-let core_u32_min : u32 = u32_min
-let core_u32_max : u32 = u32_max
-let core_u64_min : u64 = u64_min
-let core_u64_max : u64 = u64_max
-let core_u128_min : u128 = u128_min
-let core_u128_max : u128 = u128_max
-
-/// Negation
-let isize_neg = scalar_neg #Isize
-let i8_neg = scalar_neg #I8
-let i16_neg = scalar_neg #I16
-let i32_neg = scalar_neg #I32
-let i64_neg = scalar_neg #I64
-let i128_neg = scalar_neg #I128
-
-/// Division
-let isize_div = scalar_div #Isize
-let i8_div = scalar_div #I8
-let i16_div = scalar_div #I16
-let i32_div = scalar_div #I32
-let i64_div = scalar_div #I64
-let i128_div = scalar_div #I128
-let usize_div = scalar_div #Usize
-let u8_div = scalar_div #U8
-let u16_div = scalar_div #U16
-let u32_div = scalar_div #U32
-let u64_div = scalar_div #U64
-let u128_div = scalar_div #U128
-
-/// Remainder
-let isize_rem = scalar_rem #Isize
-let i8_rem = scalar_rem #I8
-let i16_rem = scalar_rem #I16
-let i32_rem = scalar_rem #I32
-let i64_rem = scalar_rem #I64
-let i128_rem = scalar_rem #I128
-let usize_rem = scalar_rem #Usize
-let u8_rem = scalar_rem #U8
-let u16_rem = scalar_rem #U16
-let u32_rem = scalar_rem #U32
-let u64_rem = scalar_rem #U64
-let u128_rem = scalar_rem #U128
-
-/// Addition
-let isize_add = scalar_add #Isize
-let i8_add = scalar_add #I8
-let i16_add = scalar_add #I16
-let i32_add = scalar_add #I32
-let i64_add = scalar_add #I64
-let i128_add = scalar_add #I128
-let usize_add = scalar_add #Usize
-let u8_add = scalar_add #U8
-let u16_add = scalar_add #U16
-let u32_add = scalar_add #U32
-let u64_add = scalar_add #U64
-let u128_add = scalar_add #U128
-
-/// Subtraction
-let isize_sub = scalar_sub #Isize
-let i8_sub = scalar_sub #I8
-let i16_sub = scalar_sub #I16
-let i32_sub = scalar_sub #I32
-let i64_sub = scalar_sub #I64
-let i128_sub = scalar_sub #I128
-let usize_sub = scalar_sub #Usize
-let u8_sub = scalar_sub #U8
-let u16_sub = scalar_sub #U16
-let u32_sub = scalar_sub #U32
-let u64_sub = scalar_sub #U64
-let u128_sub = scalar_sub #U128
-
-/// Multiplication
-let isize_mul = scalar_mul #Isize
-let i8_mul = scalar_mul #I8
-let i16_mul = scalar_mul #I16
-let i32_mul = scalar_mul #I32
-let i64_mul = scalar_mul #I64
-let i128_mul = scalar_mul #I128
-let usize_mul = scalar_mul #Usize
-let u8_mul = scalar_mul #U8
-let u16_mul = scalar_mul #U16
-let u32_mul = scalar_mul #U32
-let u64_mul = scalar_mul #U64
-let u128_mul = scalar_mul #U128
-
-/// Xor
-let u8_xor = scalar_xor #U8
-let u16_xor = scalar_xor #U16
-let u32_xor = scalar_xor #U32
-let u64_xor = scalar_xor #U64
-let u128_xor = scalar_xor #U128
-let usize_xor = scalar_xor #Usize
-let i8_xor = scalar_xor #I8
-let i16_xor = scalar_xor #I16
-let i32_xor = scalar_xor #I32
-let i64_xor = scalar_xor #I64
-let i128_xor = scalar_xor #I128
-let isize_xor = scalar_xor #Isize
-
-/// Or
-let u8_or = scalar_or #U8
-let u16_or = scalar_or #U16
-let u32_or = scalar_or #U32
-let u64_or = scalar_or #U64
-let u128_or = scalar_or #U128
-let usize_or = scalar_or #Usize
-let i8_or = scalar_or #I8
-let i16_or = scalar_or #I16
-let i32_or = scalar_or #I32
-let i64_or = scalar_or #I64
-let i128_or = scalar_or #I128
-let isize_or = scalar_or #Isize
-
-/// And
-let u8_and = scalar_and #U8
-let u16_and = scalar_and #U16
-let u32_and = scalar_and #U32
-let u64_and = scalar_and #U64
-let u128_and = scalar_and #U128
-let usize_and = scalar_and #Usize
-let i8_and = scalar_and #I8
-let i16_and = scalar_and #I16
-let i32_and = scalar_and #I32
-let i64_and = scalar_and #I64
-let i128_and = scalar_and #I128
-let isize_and = scalar_and #Isize
-
-/// Shift left
-let u8_shl #ty = scalar_shl #U8 #ty
-let u16_shl #ty = scalar_shl #U16 #ty
-let u32_shl #ty = scalar_shl #U32 #ty
-let u64_shl #ty = scalar_shl #U64 #ty
-let u128_shl #ty = scalar_shl #U128 #ty
-let usize_shl #ty = scalar_shl #Usize #ty
-let i8_shl #ty = scalar_shl #I8 #ty
-let i16_shl #ty = scalar_shl #I16 #ty
-let i32_shl #ty = scalar_shl #I32 #ty
-let i64_shl #ty = scalar_shl #I64 #ty
-let i128_shl #ty = scalar_shl #I128 #ty
-let isize_shl #ty = scalar_shl #Isize #ty
-
-/// Shift right
-let u8_shr #ty = scalar_shr #U8 #ty
-let u16_shr #ty = scalar_shr #U16 #ty
-let u32_shr #ty = scalar_shr #U32 #ty
-let u64_shr #ty = scalar_shr #U64 #ty
-let u128_shr #ty = scalar_shr #U128 #ty
-let usize_shr #ty = scalar_shr #Usize #ty
-let i8_shr #ty = scalar_shr #I8 #ty
-let i16_shr #ty = scalar_shr #I16 #ty
-let i32_shr #ty = scalar_shr #I32 #ty
-let i64_shr #ty = scalar_shr #I64 #ty
-let i128_shr #ty = scalar_shr #I128 #ty
-let isize_shr #ty = scalar_shr #Isize #ty
-
-(*** core::ops *)
-
-// Trait declaration: [core::ops::index::Index]
-noeq type core_ops_index_Index (self idx : Type0) = {
- output : Type0;
- index : self → idx → result output
-}
-
-// Trait declaration: [core::ops::index::IndexMut]
-noeq type core_ops_index_IndexMut (self idx : Type0) = {
- indexInst : core_ops_index_Index self idx;
- index_mut : self → idx → result indexInst.output;
- index_mut_back : self → idx → indexInst.output → result self;
-}
-
-// Trait declaration [core::ops::deref::Deref]
-noeq type core_ops_deref_Deref (self : Type0) = {
- target : Type0;
- deref : self → result target;
-}
-
-// Trait declaration [core::ops::deref::DerefMut]
-noeq type core_ops_deref_DerefMut (self : Type0) = {
- derefInst : core_ops_deref_Deref self;
- deref_mut : self → result derefInst.target;
- deref_mut_back : self → derefInst.target → result self;
-}
-
-type core_ops_range_Range (a : Type0) = {
- start : a;
- end_ : a;
-}
-
-(*** [alloc] *)
-
-let alloc_boxed_Box_deref (t : Type0) (x : t) : result t = Return x
-let alloc_boxed_Box_deref_mut (t : Type0) (x : t) : result t = Return x
-let alloc_boxed_Box_deref_mut_back (t : Type) (_ : t) (x : t) : result t = Return x
-
-// Trait instance
-let alloc_boxed_Box_coreopsDerefInst (self : Type0) : core_ops_deref_Deref self = {
- target = self;
- deref = alloc_boxed_Box_deref self;
-}
-
-// Trait instance
-let alloc_boxed_Box_coreopsDerefMutInst (self : Type0) : core_ops_deref_DerefMut self = {
- derefInst = alloc_boxed_Box_coreopsDerefInst self;
- deref_mut = alloc_boxed_Box_deref_mut self;
- deref_mut_back = alloc_boxed_Box_deref_mut_back self;
-}
-
-(*** Array *)
-type array (a : Type0) (n : usize) = s:list a{length s = n}
-
-// We tried putting the normalize_term condition as a refinement on the list
-// but it didn't work. It works with the requires clause.
-let mk_array (a : Type0) (n : usize)
- (l : list a) :
- Pure (array a n)
- (requires (normalize_term(FStar.List.Tot.length l) = n))
- (ensures (fun _ -> True)) =
- normalize_term_spec (FStar.List.Tot.length l);
- l
-
-let array_index_usize (a : Type0) (n : usize) (x : array a n) (i : usize) : result a =
- if i < length x then Return (index x i)
- else Fail Failure
-
-let array_update_usize (a : Type0) (n : usize) (x : array a n) (i : usize) (nx : a) : result (array a n) =
- if i < length x then Return (list_update x i nx)
- else Fail Failure
-
-(*** Slice *)
-type slice (a : Type0) = s:list a{length s <= usize_max}
-
-let slice_len (a : Type0) (s : slice a) : usize = length s
-
-let slice_index_usize (a : Type0) (x : slice a) (i : usize) : result a =
- if i < length x then Return (index x i)
- else Fail Failure
-
-let slice_update_usize (a : Type0) (x : slice a) (i : usize) (nx : a) : result (slice a) =
- if i < length x then Return (list_update x i nx)
- else Fail Failure
-
-(*** Subslices *)
-
-let array_to_slice (a : Type0) (n : usize) (x : array a n) : result (slice a) = Return x
-let array_from_slice (a : Type0) (n : usize) (x : array a n) (s : slice a) : result (array a n) =
- if length s = n then Return s
- else Fail Failure
-
-// TODO: finish the definitions below (there lacks [List.drop] and [List.take] in the standard library *)
-let array_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) : result (slice a) =
- admit()
-
-let array_update_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) (ns : slice a) : result (array a n) =
- admit()
-
-let array_repeat (a : Type0) (n : usize) (x : a) : array a n =
- admit()
-
-let slice_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) : result (slice a) =
- admit()
-
-let slice_update_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) (ns : slice a) : result (slice a) =
- admit()
-
-(*** Vector *)
-type alloc_vec_Vec (a : Type0) = v:list a{length v <= usize_max}
-
-let alloc_vec_Vec_new (a : Type0) : alloc_vec_Vec a = assert_norm(length #a [] == 0); []
-let alloc_vec_Vec_len (a : Type0) (v : alloc_vec_Vec a) : usize = length v
-
-// Helper
-let alloc_vec_Vec_index_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : result a =
- if i < length v then Return (index v i) else Fail Failure
-// Helper
-let alloc_vec_Vec_update_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) =
- if i < length v then Return (list_update v i x) else Fail Failure
-
-// The **forward** function shouldn't be used
-let alloc_vec_Vec_push_fwd (a : Type0) (v : alloc_vec_Vec a) (x : a) : unit = ()
-let alloc_vec_Vec_push (a : Type0) (v : alloc_vec_Vec a) (x : a) :
- Pure (result (alloc_vec_Vec a))
- (requires True)
- (ensures (fun res ->
- match res with
- | Fail e -> e == Failure
- | Return v' -> length v' = length v + 1)) =
- if length v < usize_max then begin
- (**) assert_norm(length [x] == 1);
- (**) append_length v [x];
- (**) assert(length (append v [x]) = length v + 1);
- Return (append v [x])
- end
- else Fail Failure
-
-// The **forward** function shouldn't be used
-let alloc_vec_Vec_insert_fwd (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result unit =
- if i < length v then Return () else Fail Failure
-let alloc_vec_Vec_insert (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) =
- if i < length v then Return (list_update v i x) else Fail Failure
-
-// Trait declaration: [core::slice::index::private_slice_index::Sealed]
-type core_slice_index_private_slice_index_Sealed (self : Type0) = unit
-
-// Trait declaration: [core::slice::index::SliceIndex]
-noeq type core_slice_index_SliceIndex (self t : Type0) = {
- sealedInst : core_slice_index_private_slice_index_Sealed self;
- output : Type0;
- get : self → t → result (option output);
- get_mut : self → t → result (option output);
- get_mut_back : self → t → option output → result t;
- get_unchecked : self → const_raw_ptr t → result (const_raw_ptr output);
- get_unchecked_mut : self → mut_raw_ptr t → result (mut_raw_ptr output);
- index : self → t → result output;
- index_mut : self → t → result output;
- index_mut_back : self → t → output → result t;
-}
-
-// [core::slice::index::[T]::index]: forward function
-let core_slice_index_Slice_index
- (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
- (s : slice t) (i : idx) : result inst.output =
- let* x = inst.get i s in
- match x with
- | None -> Fail Failure
- | Some x -> Return x
-
-// [core::slice::index::Range:::get]: forward function
-let core_slice_index_RangeUsize_get (t : Type0) (i : core_ops_range_Range usize) (s : slice t) :
- result (option (slice t)) =
- admit () // TODO
-
-// [core::slice::index::Range::get_mut]: forward function
-let core_slice_index_RangeUsize_get_mut
- (t : Type0) : core_ops_range_Range usize → slice t → result (option (slice t)) =
- admit () // TODO
-
-// [core::slice::index::Range::get_mut]: backward function 0
-let core_slice_index_RangeUsize_get_mut_back
- (t : Type0) :
- core_ops_range_Range usize → slice t → option (slice t) → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::Range::get_unchecked]: forward function
-let core_slice_index_RangeUsize_get_unchecked
- (t : Type0) :
- core_ops_range_Range usize → const_raw_ptr (slice t) → result (const_raw_ptr (slice t)) =
- // Don't know what the model should be - for now we always fail to make
- // sure code which uses it fails
- fun _ _ -> Fail Failure
-
-// [core::slice::index::Range::get_unchecked_mut]: forward function
-let core_slice_index_RangeUsize_get_unchecked_mut
- (t : Type0) :
- core_ops_range_Range usize → mut_raw_ptr (slice t) → result (mut_raw_ptr (slice t)) =
- // Don't know what the model should be - for now we always fail to make
- // sure code which uses it fails
- fun _ _ -> Fail Failure
-
-// [core::slice::index::Range::index]: forward function
-let core_slice_index_RangeUsize_index
- (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::Range::index_mut]: forward function
-let core_slice_index_RangeUsize_index_mut
- (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::Range::index_mut]: backward function 0
-let core_slice_index_RangeUsize_index_mut_back
- (t : Type0) : core_ops_range_Range usize → slice t → slice t → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::[T]::index_mut]: forward function
-let core_slice_index_Slice_index_mut
- (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) :
- slice t → idx → result inst.output =
- admit () //
-
-// [core::slice::index::[T]::index_mut]: backward function 0
-let core_slice_index_Slice_index_mut_back
- (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) :
- slice t → idx → inst.output → result (slice t) =
- admit () // TODO
-
-// [core::array::[T; N]::index]: forward function
-let core_array_Array_index
- (t idx : Type0) (n : usize) (inst : core_ops_index_Index (slice t) idx)
- (a : array t n) (i : idx) : result inst.output =
- admit () // TODO
-
-// [core::array::[T; N]::index_mut]: forward function
-let core_array_Array_index_mut
- (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx)
- (a : array t n) (i : idx) : result inst.indexInst.output =
- admit () // TODO
-
-// [core::array::[T; N]::index_mut]: backward function 0
-let core_array_Array_index_mut_back
- (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx)
- (a : array t n) (i : idx) (x : inst.indexInst.output) : result (array t n) =
- admit () // TODO
-
-// Trait implementation: [core::slice::index::private_slice_index::Range]
-let core_slice_index_private_slice_index_SealedRangeUsizeInst
- : core_slice_index_private_slice_index_Sealed (core_ops_range_Range usize) = ()
-
-// Trait implementation: [core::slice::index::Range]
-let core_slice_index_SliceIndexRangeUsizeSliceTInst (t : Type0) :
- core_slice_index_SliceIndex (core_ops_range_Range usize) (slice t) = {
- sealedInst = core_slice_index_private_slice_index_SealedRangeUsizeInst;
- output = slice t;
- get = core_slice_index_RangeUsize_get t;
- get_mut = core_slice_index_RangeUsize_get_mut t;
- get_mut_back = core_slice_index_RangeUsize_get_mut_back t;
- get_unchecked = core_slice_index_RangeUsize_get_unchecked t;
- get_unchecked_mut = core_slice_index_RangeUsize_get_unchecked_mut t;
- index = core_slice_index_RangeUsize_index t;
- index_mut = core_slice_index_RangeUsize_index_mut t;
- index_mut_back = core_slice_index_RangeUsize_index_mut_back t;
-}
-
-// Trait implementation: [core::slice::index::[T]]
-let core_ops_index_IndexSliceTIInst (t idx : Type0)
- (inst : core_slice_index_SliceIndex idx (slice t)) :
- core_ops_index_Index (slice t) idx = {
- output = inst.output;
- index = core_slice_index_Slice_index t idx inst;
-}
-
-// Trait implementation: [core::slice::index::[T]]
-let core_ops_index_IndexMutSliceTIInst (t idx : Type0)
- (inst : core_slice_index_SliceIndex idx (slice t)) :
- core_ops_index_IndexMut (slice t) idx = {
- indexInst = core_ops_index_IndexSliceTIInst t idx inst;
- index_mut = core_slice_index_Slice_index_mut t idx inst;
- index_mut_back = core_slice_index_Slice_index_mut_back t idx inst;
-}
-
-// Trait implementation: [core::array::[T; N]]
-let core_ops_index_IndexArrayInst (t idx : Type0) (n : usize)
- (inst : core_ops_index_Index (slice t) idx) :
- core_ops_index_Index (array t n) idx = {
- output = inst.output;
- index = core_array_Array_index t idx n inst;
-}
-
-// Trait implementation: [core::array::[T; N]]
-let core_ops_index_IndexMutArrayIInst (t idx : Type0) (n : usize)
- (inst : core_ops_index_IndexMut (slice t) idx) :
- core_ops_index_IndexMut (array t n) idx = {
- indexInst = core_ops_index_IndexArrayInst t idx n inst.indexInst;
- index_mut = core_array_Array_index_mut t idx n inst;
- index_mut_back = core_array_Array_index_mut_back t idx n inst;
-}
-
-// [core::slice::index::usize::get]: forward function
-let core_slice_index_usize_get
- (t : Type0) : usize → slice t → result (option t) =
- admit () // TODO
-
-// [core::slice::index::usize::get_mut]: forward function
-let core_slice_index_usize_get_mut
- (t : Type0) : usize → slice t → result (option t) =
- admit () // TODO
-
-// [core::slice::index::usize::get_mut]: backward function 0
-let core_slice_index_usize_get_mut_back
- (t : Type0) : usize → slice t → option t → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::usize::get_unchecked]: forward function
-let core_slice_index_usize_get_unchecked
- (t : Type0) : usize → const_raw_ptr (slice t) → result (const_raw_ptr t) =
- admit () // TODO
-
-// [core::slice::index::usize::get_unchecked_mut]: forward function
-let core_slice_index_usize_get_unchecked_mut
- (t : Type0) : usize → mut_raw_ptr (slice t) → result (mut_raw_ptr t) =
- admit () // TODO
-
-// [core::slice::index::usize::index]: forward function
-let core_slice_index_usize_index (t : Type0) : usize → slice t → result t =
- admit () // TODO
-
-// [core::slice::index::usize::index_mut]: forward function
-let core_slice_index_usize_index_mut (t : Type0) : usize → slice t → result t =
- admit () // TODO
-
-// [core::slice::index::usize::index_mut]: backward function 0
-let core_slice_index_usize_index_mut_back
- (t : Type0) : usize → slice t → t → result (slice t) =
- admit () // TODO
-
-// Trait implementation: [core::slice::index::private_slice_index::usize]
-let core_slice_index_private_slice_index_SealedUsizeInst
- : core_slice_index_private_slice_index_Sealed usize = ()
-
-// Trait implementation: [core::slice::index::usize]
-let core_slice_index_SliceIndexUsizeSliceTInst (t : Type0) :
- core_slice_index_SliceIndex usize (slice t) = {
- sealedInst = core_slice_index_private_slice_index_SealedUsizeInst;
- output = t;
- get = core_slice_index_usize_get t;
- get_mut = core_slice_index_usize_get_mut t;
- get_mut_back = core_slice_index_usize_get_mut_back t;
- get_unchecked = core_slice_index_usize_get_unchecked t;
- get_unchecked_mut = core_slice_index_usize_get_unchecked_mut t;
- index = core_slice_index_usize_index t;
- index_mut = core_slice_index_usize_index_mut t;
- index_mut_back = core_slice_index_usize_index_mut_back t;
-}
-
-// [alloc::vec::Vec::index]: forward function
-let alloc_vec_Vec_index (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
- (self : alloc_vec_Vec t) (i : idx) : result inst.output =
- admit () // TODO
-
-// [alloc::vec::Vec::index_mut]: forward function
-let alloc_vec_Vec_index_mut (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
- (self : alloc_vec_Vec t) (i : idx) : result inst.output =
- admit () // TODO
-
-// [alloc::vec::Vec::index_mut]: backward function 0
-let alloc_vec_Vec_index_mut_back
- (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
- (self : alloc_vec_Vec t) (i : idx) (x : inst.output) : result (alloc_vec_Vec t) =
- admit () // TODO
-
-// Trait implementation: [alloc::vec::Vec]
-let alloc_vec_Vec_coreopsindexIndexInst (t idx : Type0)
- (inst : core_slice_index_SliceIndex idx (slice t)) :
- core_ops_index_Index (alloc_vec_Vec t) idx = {
- output = inst.output;
- index = alloc_vec_Vec_index t idx inst;
-}
-
-// Trait implementation: [alloc::vec::Vec]
-let alloc_vec_Vec_coreopsindexIndexMutInst (t idx : Type0)
- (inst : core_slice_index_SliceIndex idx (slice t)) :
- core_ops_index_IndexMut (alloc_vec_Vec t) idx = {
- indexInst = alloc_vec_Vec_coreopsindexIndexInst t idx inst;
- index_mut = alloc_vec_Vec_index_mut t idx inst;
- index_mut_back = alloc_vec_Vec_index_mut_back t idx inst;
-}
-
-(*** Theorems *)
-
-let alloc_vec_Vec_index_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) :
- Lemma (
- alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i ==
- alloc_vec_Vec_index_usize v i)
- [SMTPat (alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)]
- =
- admit()
-
-let alloc_vec_Vec_index_mut_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) :
- Lemma (
- alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i ==
- alloc_vec_Vec_index_usize v i)
- [SMTPat (alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)]
- =
- admit()
-
-let alloc_vec_Vec_index_mut_back_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) :
- Lemma (
- alloc_vec_Vec_index_mut_back a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i x ==
- alloc_vec_Vec_update_usize v i x)
- [SMTPat (alloc_vec_Vec_index_mut_back a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i x)]
- =
- admit()
diff --git a/tests/fstar-split/betree/BetreeMain.Clauses.Template.fst b/tests/fstar-split/betree/BetreeMain.Clauses.Template.fst
deleted file mode 100644
index 537705c5..00000000
--- a/tests/fstar-split/betree/BetreeMain.Clauses.Template.fst
+++ /dev/null
@@ -1,117 +0,0 @@
-(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)
-(** [betree_main]: templates for the decreases clauses *)
-module BetreeMain.Clauses.Template
-open Primitives
-open BetreeMain.Types
-
-#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
-
-(** [betree_main::betree::{betree_main::betree::List<T>#1}::len]: decreases clause
- Source: 'src/betree.rs', lines 276:4-276:24 *)
-unfold
-let betree_List_len_decreases (t : Type0) (self : betree_List_t t) : nat =
- admit ()
-
-(** [betree_main::betree::{betree_main::betree::List<T>#1}::split_at]: decreases clause
- Source: 'src/betree.rs', lines 284:4-284:51 *)
-unfold
-let betree_List_split_at_decreases (t : Type0) (self : betree_List_t t)
- (n : u64) : nat =
- admit ()
-
-(** [betree_main::betree::{betree_main::betree::List<(u64, T)>#2}::partition_at_pivot]: decreases clause
- Source: 'src/betree.rs', lines 339:4-339:73 *)
-unfold
-let betree_ListTupleU64T_partition_at_pivot_decreases (t : Type0)
- (self : betree_List_t (u64 & t)) (pivot : u64) : nat =
- admit ()
-
-(** [betree_main::betree::{betree_main::betree::Node#5}::lookup_first_message_for_key]: decreases clause
- Source: 'src/betree.rs', lines 789:4-792:34 *)
-unfold
-let betree_Node_lookup_first_message_for_key_decreases (key : u64)
- (msgs : betree_List_t (u64 & betree_Message_t)) : nat =
- admit ()
-
-(** [betree_main::betree::{betree_main::betree::Node#5}::lookup_in_bindings]: decreases clause
- Source: 'src/betree.rs', lines 636:4-636:80 *)
-unfold
-let betree_Node_lookup_in_bindings_decreases (key : u64)
- (bindings : betree_List_t (u64 & u64)) : nat =
- admit ()
-
-(** [betree_main::betree::{betree_main::betree::Node#5}::apply_upserts]: decreases clause
- Source: 'src/betree.rs', lines 819:4-819:90 *)
-unfold
-let betree_Node_apply_upserts_decreases
- (msgs : betree_List_t (u64 & betree_Message_t)) (prev : option u64)
- (key : u64) (st : state) : nat =
- admit ()
-
-(** [betree_main::betree::{betree_main::betree::Internal#4}::lookup_in_children]: decreases clause
- Source: 'src/betree.rs', lines 395:4-395:63 *)
-unfold
-let betree_Internal_lookup_in_children_decreases (self : betree_Internal_t)
- (key : u64) (st : state) : nat =
- admit ()
-
-(** [betree_main::betree::{betree_main::betree::Node#5}::lookup]: decreases clause
- Source: 'src/betree.rs', lines 709:4-709:58 *)
-unfold
-let betree_Node_lookup_decreases (self : betree_Node_t) (key : u64)
- (st : state) : nat =
- admit ()
-
-(** [betree_main::betree::{betree_main::betree::Node#5}::filter_messages_for_key]: decreases clause
- Source: 'src/betree.rs', lines 674:4-674:77 *)
-unfold
-let betree_Node_filter_messages_for_key_decreases (key : u64)
- (msgs : betree_List_t (u64 & betree_Message_t)) : nat =
- admit ()
-
-(** [betree_main::betree::{betree_main::betree::Node#5}::lookup_first_message_after_key]: decreases clause
- Source: 'src/betree.rs', lines 689:4-692:34 *)
-unfold
-let betree_Node_lookup_first_message_after_key_decreases (key : u64)
- (msgs : betree_List_t (u64 & betree_Message_t)) : nat =
- admit ()
-
-(** [betree_main::betree::{betree_main::betree::Node#5}::apply_messages_to_internal]: decreases clause
- Source: 'src/betree.rs', lines 502:4-505:5 *)
-unfold
-let betree_Node_apply_messages_to_internal_decreases
- (msgs : betree_List_t (u64 & betree_Message_t))
- (new_msgs : betree_List_t (u64 & betree_Message_t)) : nat =
- admit ()
-
-(** [betree_main::betree::{betree_main::betree::Node#5}::lookup_mut_in_bindings]: decreases clause
- Source: 'src/betree.rs', lines 653:4-656:32 *)
-unfold
-let betree_Node_lookup_mut_in_bindings_decreases (key : u64)
- (bindings : betree_List_t (u64 & u64)) : nat =
- admit ()
-
-(** [betree_main::betree::{betree_main::betree::Node#5}::apply_messages_to_leaf]: decreases clause
- Source: 'src/betree.rs', lines 444:4-447:5 *)
-unfold
-let betree_Node_apply_messages_to_leaf_decreases
- (bindings : betree_List_t (u64 & u64))
- (new_msgs : betree_List_t (u64 & betree_Message_t)) : nat =
- admit ()
-
-(** [betree_main::betree::{betree_main::betree::Internal#4}::flush]: decreases clause
- Source: 'src/betree.rs', lines 410:4-415:26 *)
-unfold
-let betree_Internal_flush_decreases (self : betree_Internal_t)
- (params : betree_Params_t) (node_id_cnt : betree_NodeIdCounter_t)
- (content : betree_List_t (u64 & betree_Message_t)) (st : state) : nat =
- admit ()
-
-(** [betree_main::betree::{betree_main::betree::Node#5}::apply_messages]: decreases clause
- Source: 'src/betree.rs', lines 588:4-593:5 *)
-unfold
-let betree_Node_apply_messages_decreases (self : betree_Node_t)
- (params : betree_Params_t) (node_id_cnt : betree_NodeIdCounter_t)
- (msgs : betree_List_t (u64 & betree_Message_t)) (st : state) : nat =
- admit ()
-
diff --git a/tests/fstar-split/betree/BetreeMain.Clauses.fst b/tests/fstar-split/betree/BetreeMain.Clauses.fst
deleted file mode 100644
index 21f953d1..00000000
--- a/tests/fstar-split/betree/BetreeMain.Clauses.fst
+++ /dev/null
@@ -1,210 +0,0 @@
-(** [betree_main]: templates for the decreases clauses *)
-module BetreeMain.Clauses
-open Primitives
-open BetreeMain.Types
-
-#set-options "--z3rlimit 50 --fuel 0 --ifuel 1"
-
-(*** Well-founded relations *)
-
-(* We had a few issues when proving termination of the mutually recursive functions:
- * - betree_Internal_flush
- * - betree_Node_apply_messages
- *
- * The quantity which effectively decreases is:
- * (betree_size, messages_length)
- * where messages_length is 0 when there are no messages
- * (and where we use the lexicographic ordering, of course)
- *
- * However, the `%[...]` and `{:well-founded ...} notations are not available outside
- * of `decrease` clauses.
- *
- * We thus resorted to writing and proving correct a well-founded relation over
- * pairs of natural numbers. The trick is that `<<` can be used outside of decrease
- * clauses, and can be used to trigger SMT patterns.
- *
- * What follows is adapted from:
- * https://www.fstar-lang.org/tutorial/book/part2/part2_well_founded.html
- *
- * Also, the following PR might make things easier:
- * https://github.com/FStarLang/FStar/pull/2561
- *)
-
-module P = FStar.Preorder
-module W = FStar.WellFounded
-module L = FStar.LexicographicOrdering
-
-let lt_nat (x y:nat) : Type = x < y == true
-let rec wf_lt_nat (x:nat)
- : W.acc lt_nat x
- = W.AccIntro (fun y _ -> wf_lt_nat y)
-
-// A type abbreviation for a pair of nats
-let nat_pair = (x:nat & nat)
-
-// Making a lexicographic ordering from a pair of nat ordering
-let lex_order_nat_pair : P.relation nat_pair =
- L.lex_t lt_nat (fun _ -> lt_nat)
-
-// The lex order on nat pairs is well-founded, using our general proof
-// of lexicographic composition of well-founded orders
-let lex_order_nat_pair_wf : W.well_founded lex_order_nat_pair =
- L.lex_t_wf wf_lt_nat (fun _ -> wf_lt_nat)
-
-// A utility to introduce lt_nat
-let mk_lt_nat (x:nat) (y:nat { x < y }) : lt_nat x y =
- let _ : equals (x < y) true = Refl in
- ()
-
-// A utility to make a lex ordering of nat pairs
-let mk_lex_order_nat_pair (xy0:nat_pair)
- (xy1:nat_pair {
- let (|x0, y0|) = xy0 in
- let (|x1, y1|) = xy1 in
- x0 < x1 \/ (x0 == x1 /\ y0 < y1)
- }) : lex_order_nat_pair xy0 xy1 =
- let (|x0, y0|) = xy0 in
- let (|x1, y1|) = xy1 in
- if x0 < x1 then L.Left_lex x0 x1 y0 y1 (mk_lt_nat x0 x1)
- else L.Right_lex x0 y0 y1 (mk_lt_nat y0 y1)
-
-let rec coerce #a #r #x (p:W.acc #a r x) : Tot (W.acc r x) (decreases p) =
- W.AccIntro (fun y r -> coerce (p.access_smaller y r))
-
-let coerce_wf #a #r (p: (x:a -> W.acc r x)) : x:a -> W.acc r x =
- fun x -> coerce (p x)
-
-(* We need this axiom, which comes from the following discussion:
- * https://github.com/FStarLang/FStar/issues/1916
- * An issue here is that the `{well-founded ... }` notation
- *)
-assume
-val axiom_well_founded (a : Type) (rel : a -> a -> Type0)
- (rwf : W.well_founded #a rel) (x y : a) :
- Lemma (requires (rel x y)) (ensures (x << y))
-
-(* This lemma has a pattern (which makes it work) *)
-let wf_nat_pair_lem (p0 p1 : nat_pair) :
- Lemma
- (requires (
- let (|x0, y0|) = p0 in
- let (|x1, y1|) = p1 in
- x0 < x1 || (x0 = x1 && y0 < y1)))
- (ensures (p0 << p1))
- [SMTPat (p0 << p1)] =
- let rel = lex_order_nat_pair in
- let rel_wf = lex_order_nat_pair_wf in
- let _ = mk_lex_order_nat_pair p0 p1 in
- assert(rel p0 p1);
- axiom_well_founded nat_pair rel rel_wf p0 p1
-
-(*** Decrease clauses *)
-/// "Standard" decrease clauses
-
-(** [betree_main::betree::List::{1}::len]: decreases clause *)
-unfold
-let betree_List_len_decreases (t : Type0) (self : betree_List_t t) : betree_List_t t =
- self
-
-(** [betree_main::betree::List::{1}::split_at]: decreases clause *)
-unfold
-let betree_List_split_at_decreases (t : Type0) (self : betree_List_t t)
- (n : u64) : nat =
- n
-
-(** [betree_main::betree::List::{2}::partition_at_pivot]: decreases clause *)
-unfold
-let betree_ListTupleU64T_partition_at_pivot_decreases (t : Type0)
- (self : betree_List_t (u64 & t)) (pivot : u64) : betree_List_t (u64 & t) =
- self
-
-(** [betree_main::betree::Node::{5}::lookup_in_bindings]: decreases clause *)
-unfold
-let betree_Node_lookup_in_bindings_decreases (key : u64)
- (bindings : betree_List_t (u64 & u64)) : betree_List_t (u64 & u64) =
- bindings
-
-(** [betree_main::betree::Node::{5}::lookup_first_message_for_key]: decreases clause *)
-unfold
-let betree_Node_lookup_first_message_for_key_decreases (key : u64)
- (msgs : betree_List_t (u64 & betree_Message_t)) : betree_List_t (u64 & betree_Message_t) =
- msgs
-
-(** [betree_main::betree::Node::{5}::apply_upserts]: decreases clause *)
-unfold
-let betree_Node_apply_upserts_decreases
- (msgs : betree_List_t (u64 & betree_Message_t)) (prev : option u64)
- (key : u64) (st : state) : betree_List_t (u64 & betree_Message_t) =
- msgs
-
-(** [betree_main::betree::Internal::{4}::lookup_in_children]: decreases clause *)
-unfold
-let betree_Internal_lookup_in_children_decreases (self : betree_Internal_t)
- (key : u64) (st : state) : betree_Internal_t =
- self
-
-(** [betree_main::betree::Node::{5}::lookup]: decreases clause *)
-unfold
-let betree_Node_lookup_decreases (self : betree_Node_t) (key : u64)
- (st : state) : betree_Node_t =
- self
-
-(** [betree_main::betree::Node::{5}::lookup_mut_in_bindings]: decreases clause *)
-unfold
-let betree_Node_lookup_mut_in_bindings_decreases (key : u64)
- (bindings : betree_List_t (u64 & u64)) : betree_List_t (u64 & u64) =
- bindings
-
-unfold
-let betree_Node_apply_messages_to_leaf_decreases
- (bindings : betree_List_t (u64 & u64))
- (new_msgs : betree_List_t (u64 & betree_Message_t)) : betree_List_t (u64 & betree_Message_t) =
- new_msgs
-
-(** [betree_main::betree::Node::{5}::filter_messages_for_key]: decreases clause *)
-unfold
-let betree_Node_filter_messages_for_key_decreases (key : u64)
- (msgs : betree_List_t (u64 & betree_Message_t)) : betree_List_t (u64 & betree_Message_t) =
- msgs
-
-(** [betree_main::betree::Node::{5}::lookup_first_message_after_key]: decreases clause *)
-unfold
-let betree_Node_lookup_first_message_after_key_decreases (key : u64)
- (msgs : betree_List_t (u64 & betree_Message_t)) : betree_List_t (u64 & betree_Message_t) =
- msgs
-
-let betree_Node_apply_messages_to_internal_decreases
- (msgs : betree_List_t (u64 & betree_Message_t))
- (new_msgs : betree_List_t (u64 & betree_Message_t)) : betree_List_t (u64 & betree_Message_t) =
- new_msgs
-
-(*** Decrease clauses - nat_pair *)
-/// The following decrease clauses use the [nat_pair] definition and the well-founded
-/// relation proven above.
-
-let rec betree_size (bt : betree_Node_t) : nat =
- match bt with
- | Betree_Node_Internal node -> 1 + betree_Internal_size node
- | Betree_Node_Leaf _ -> 1
-
-and betree_Internal_size (node : betree_Internal_t) : nat =
- 1 + betree_size node.left + betree_size node.right
-
-let rec betree_List_len (#a : Type0) (ls : betree_List_t a) : nat =
- match ls with
- | Betree_List_Cons _ tl -> 1 + betree_List_len tl
- | Betree_List_Nil -> 0
-
-(** [betree_main::betree::Internal::{4}::flush]: decreases clause *)
-unfold
-let betree_Internal_flush_decreases (self : betree_Internal_t)
- (params : betree_Params_t) (node_id_cnt : betree_NodeIdCounter_t)
- (content : betree_List_t (u64 & betree_Message_t)) (st : state) : nat_pair =
- (|betree_Internal_size self, 0|)
-
-(** [betree_main::betree::Node::{5}::apply_messages]: decreases clause *)
-unfold
-let betree_Node_apply_messages_decreases (self : betree_Node_t)
- (params : betree_Params_t) (node_id_cnt : betree_NodeIdCounter_t)
- (msgs : betree_List_t (u64 & betree_Message_t)) (st : state) : nat_pair =
- (|betree_size self, betree_List_len msgs|)
diff --git a/tests/fstar-split/betree/BetreeMain.Funs.fst b/tests/fstar-split/betree/BetreeMain.Funs.fst
deleted file mode 100644
index 33133236..00000000
--- a/tests/fstar-split/betree/BetreeMain.Funs.fst
+++ /dev/null
@@ -1,1006 +0,0 @@
-(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)
-(** [betree_main]: function definitions *)
-module BetreeMain.Funs
-open Primitives
-include BetreeMain.Types
-include BetreeMain.FunsExternal
-include BetreeMain.Clauses
-
-#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
-
-(** [betree_main::betree::load_internal_node]: forward function
- Source: 'src/betree.rs', lines 36:0-36:52 *)
-let betree_load_internal_node
- (id : u64) (st : state) :
- result (state & (betree_List_t (u64 & betree_Message_t)))
- =
- betree_utils_load_internal_node id st
-
-(** [betree_main::betree::store_internal_node]: forward function
- Source: 'src/betree.rs', lines 41:0-41:60 *)
-let betree_store_internal_node
- (id : u64) (content : betree_List_t (u64 & betree_Message_t)) (st : state) :
- result (state & unit)
- =
- let* (st1, _) = betree_utils_store_internal_node id content st in
- Return (st1, ())
-
-(** [betree_main::betree::load_leaf_node]: forward function
- Source: 'src/betree.rs', lines 46:0-46:44 *)
-let betree_load_leaf_node
- (id : u64) (st : state) : result (state & (betree_List_t (u64 & u64))) =
- betree_utils_load_leaf_node id st
-
-(** [betree_main::betree::store_leaf_node]: forward function
- Source: 'src/betree.rs', lines 51:0-51:52 *)
-let betree_store_leaf_node
- (id : u64) (content : betree_List_t (u64 & u64)) (st : state) :
- result (state & unit)
- =
- let* (st1, _) = betree_utils_store_leaf_node id content st in
- Return (st1, ())
-
-(** [betree_main::betree::fresh_node_id]: forward function
- Source: 'src/betree.rs', lines 55:0-55:48 *)
-let betree_fresh_node_id (counter : u64) : result u64 =
- let* _ = u64_add counter 1 in Return counter
-
-(** [betree_main::betree::fresh_node_id]: backward function 0
- Source: 'src/betree.rs', lines 55:0-55:48 *)
-let betree_fresh_node_id_back (counter : u64) : result u64 =
- u64_add counter 1
-
-(** [betree_main::betree::{betree_main::betree::NodeIdCounter}::new]: forward function
- Source: 'src/betree.rs', lines 206:4-206:20 *)
-let betree_NodeIdCounter_new : result betree_NodeIdCounter_t =
- Return { next_node_id = 0 }
-
-(** [betree_main::betree::{betree_main::betree::NodeIdCounter}::fresh_id]: forward function
- Source: 'src/betree.rs', lines 210:4-210:36 *)
-let betree_NodeIdCounter_fresh_id
- (self : betree_NodeIdCounter_t) : result u64 =
- let* _ = u64_add self.next_node_id 1 in Return self.next_node_id
-
-(** [betree_main::betree::{betree_main::betree::NodeIdCounter}::fresh_id]: backward function 0
- Source: 'src/betree.rs', lines 210:4-210:36 *)
-let betree_NodeIdCounter_fresh_id_back
- (self : betree_NodeIdCounter_t) : result betree_NodeIdCounter_t =
- let* i = u64_add self.next_node_id 1 in Return { next_node_id = i }
-
-(** [betree_main::betree::upsert_update]: forward function
- Source: 'src/betree.rs', lines 234:0-234:70 *)
-let betree_upsert_update
- (prev : option u64) (st : betree_UpsertFunState_t) : result u64 =
- begin match prev with
- | None ->
- begin match st with
- | Betree_UpsertFunState_Add v -> Return v
- | Betree_UpsertFunState_Sub _ -> Return 0
- end
- | Some prev1 ->
- begin match st with
- | Betree_UpsertFunState_Add v ->
- let* margin = u64_sub core_u64_max prev1 in
- if margin >= v then u64_add prev1 v else Return core_u64_max
- | Betree_UpsertFunState_Sub v ->
- if prev1 >= v then u64_sub prev1 v else Return 0
- end
- end
-
-(** [betree_main::betree::{betree_main::betree::List<T>#1}::len]: forward function
- Source: 'src/betree.rs', lines 276:4-276:24 *)
-let rec betree_List_len
- (t : Type0) (self : betree_List_t t) :
- Tot (result u64) (decreases (betree_List_len_decreases t self))
- =
- begin match self with
- | Betree_List_Cons _ tl -> let* i = betree_List_len t tl in u64_add 1 i
- | Betree_List_Nil -> Return 0
- end
-
-(** [betree_main::betree::{betree_main::betree::List<T>#1}::split_at]: forward function
- Source: 'src/betree.rs', lines 284:4-284:51 *)
-let rec betree_List_split_at
- (t : Type0) (self : betree_List_t t) (n : u64) :
- Tot (result ((betree_List_t t) & (betree_List_t t)))
- (decreases (betree_List_split_at_decreases t self n))
- =
- if n = 0
- then Return (Betree_List_Nil, self)
- else
- begin match self with
- | Betree_List_Cons hd tl ->
- let* i = u64_sub n 1 in
- let* p = betree_List_split_at t tl i in
- let (ls0, ls1) = p in
- Return (Betree_List_Cons hd ls0, ls1)
- | Betree_List_Nil -> Fail Failure
- end
-
-(** [betree_main::betree::{betree_main::betree::List<T>#1}::push_front]: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/betree.rs', lines 299:4-299:34 *)
-let betree_List_push_front
- (t : Type0) (self : betree_List_t t) (x : t) : result (betree_List_t t) =
- let tl = core_mem_replace (betree_List_t t) self Betree_List_Nil in
- Return (Betree_List_Cons x tl)
-
-(** [betree_main::betree::{betree_main::betree::List<T>#1}::pop_front]: forward function
- Source: 'src/betree.rs', lines 306:4-306:32 *)
-let betree_List_pop_front (t : Type0) (self : betree_List_t t) : result t =
- let ls = core_mem_replace (betree_List_t t) self Betree_List_Nil in
- begin match ls with
- | Betree_List_Cons x _ -> Return x
- | Betree_List_Nil -> Fail Failure
- end
-
-(** [betree_main::betree::{betree_main::betree::List<T>#1}::pop_front]: backward function 0
- Source: 'src/betree.rs', lines 306:4-306:32 *)
-let betree_List_pop_front_back
- (t : Type0) (self : betree_List_t t) : result (betree_List_t t) =
- let ls = core_mem_replace (betree_List_t t) self Betree_List_Nil in
- begin match ls with
- | Betree_List_Cons _ tl -> Return tl
- | Betree_List_Nil -> Fail Failure
- end
-
-(** [betree_main::betree::{betree_main::betree::List<T>#1}::hd]: forward function
- Source: 'src/betree.rs', lines 318:4-318:22 *)
-let betree_List_hd (t : Type0) (self : betree_List_t t) : result t =
- begin match self with
- | Betree_List_Cons hd _ -> Return hd
- | Betree_List_Nil -> Fail Failure
- end
-
-(** [betree_main::betree::{betree_main::betree::List<(u64, T)>#2}::head_has_key]: forward function
- Source: 'src/betree.rs', lines 327:4-327:44 *)
-let betree_ListTupleU64T_head_has_key
- (t : Type0) (self : betree_List_t (u64 & t)) (key : u64) : result bool =
- begin match self with
- | Betree_List_Cons hd _ -> let (i, _) = hd in Return (i = key)
- | Betree_List_Nil -> Return false
- end
-
-(** [betree_main::betree::{betree_main::betree::List<(u64, T)>#2}::partition_at_pivot]: forward function
- Source: 'src/betree.rs', lines 339:4-339:73 *)
-let rec betree_ListTupleU64T_partition_at_pivot
- (t : Type0) (self : betree_List_t (u64 & t)) (pivot : u64) :
- Tot (result ((betree_List_t (u64 & t)) & (betree_List_t (u64 & t))))
- (decreases (betree_ListTupleU64T_partition_at_pivot_decreases t self pivot))
- =
- begin match self with
- | Betree_List_Cons hd tl ->
- let (i, x) = hd in
- if i >= pivot
- then Return (Betree_List_Nil, Betree_List_Cons (i, x) tl)
- else
- let* p = betree_ListTupleU64T_partition_at_pivot t tl pivot in
- let (ls0, ls1) = p in
- Return (Betree_List_Cons (i, x) ls0, ls1)
- | Betree_List_Nil -> Return (Betree_List_Nil, Betree_List_Nil)
- end
-
-(** [betree_main::betree::{betree_main::betree::Leaf#3}::split]: forward function
- Source: 'src/betree.rs', lines 359:4-364:17 *)
-let betree_Leaf_split
- (self : betree_Leaf_t) (content : betree_List_t (u64 & u64))
- (params : betree_Params_t) (node_id_cnt : betree_NodeIdCounter_t)
- (st : state) :
- result (state & betree_Internal_t)
- =
- let* p = betree_List_split_at (u64 & u64) content params.split_size in
- let (content0, content1) = p in
- let* p1 = betree_List_hd (u64 & u64) content1 in
- let (pivot, _) = p1 in
- let* id0 = betree_NodeIdCounter_fresh_id node_id_cnt in
- let* node_id_cnt1 = betree_NodeIdCounter_fresh_id_back node_id_cnt in
- let* id1 = betree_NodeIdCounter_fresh_id node_id_cnt1 in
- let* (st1, _) = betree_store_leaf_node id0 content0 st in
- let* (st2, _) = betree_store_leaf_node id1 content1 st1 in
- let n = Betree_Node_Leaf { id = id0; size = params.split_size } in
- let n1 = Betree_Node_Leaf { id = id1; size = params.split_size } in
- Return (st2, { id = self.id; pivot = pivot; left = n; right = n1 })
-
-(** [betree_main::betree::{betree_main::betree::Leaf#3}::split]: backward function 2
- Source: 'src/betree.rs', lines 359:4-364:17 *)
-let betree_Leaf_split_back
- (self : betree_Leaf_t) (content : betree_List_t (u64 & u64))
- (params : betree_Params_t) (node_id_cnt : betree_NodeIdCounter_t)
- (st : state) :
- result betree_NodeIdCounter_t
- =
- let* p = betree_List_split_at (u64 & u64) content params.split_size in
- let (content0, content1) = p in
- let* _ = betree_List_hd (u64 & u64) content1 in
- let* id0 = betree_NodeIdCounter_fresh_id node_id_cnt in
- let* node_id_cnt1 = betree_NodeIdCounter_fresh_id_back node_id_cnt in
- let* id1 = betree_NodeIdCounter_fresh_id node_id_cnt1 in
- let* (st1, _) = betree_store_leaf_node id0 content0 st in
- let* _ = betree_store_leaf_node id1 content1 st1 in
- betree_NodeIdCounter_fresh_id_back node_id_cnt1
-
-(** [betree_main::betree::{betree_main::betree::Node#5}::lookup_first_message_for_key]: forward function
- Source: 'src/betree.rs', lines 789:4-792:34 *)
-let rec betree_Node_lookup_first_message_for_key
- (key : u64) (msgs : betree_List_t (u64 & betree_Message_t)) :
- Tot (result (betree_List_t (u64 & betree_Message_t)))
- (decreases (betree_Node_lookup_first_message_for_key_decreases key msgs))
- =
- begin match msgs with
- | Betree_List_Cons x next_msgs ->
- let (i, m) = x in
- if i >= key
- then Return (Betree_List_Cons (i, m) next_msgs)
- else betree_Node_lookup_first_message_for_key key next_msgs
- | Betree_List_Nil -> Return Betree_List_Nil
- end
-
-(** [betree_main::betree::{betree_main::betree::Node#5}::lookup_first_message_for_key]: backward function 0
- Source: 'src/betree.rs', lines 789:4-792:34 *)
-let rec betree_Node_lookup_first_message_for_key_back
- (key : u64) (msgs : betree_List_t (u64 & betree_Message_t))
- (ret : betree_List_t (u64 & betree_Message_t)) :
- Tot (result (betree_List_t (u64 & betree_Message_t)))
- (decreases (betree_Node_lookup_first_message_for_key_decreases key msgs))
- =
- begin match msgs with
- | Betree_List_Cons x next_msgs ->
- let (i, m) = x in
- if i >= key
- then Return ret
- else
- let* next_msgs1 =
- betree_Node_lookup_first_message_for_key_back key next_msgs ret in
- Return (Betree_List_Cons (i, m) next_msgs1)
- | Betree_List_Nil -> Return ret
- end
-
-(** [betree_main::betree::{betree_main::betree::Node#5}::lookup_in_bindings]: forward function
- Source: 'src/betree.rs', lines 636:4-636:80 *)
-let rec betree_Node_lookup_in_bindings
- (key : u64) (bindings : betree_List_t (u64 & u64)) :
- Tot (result (option u64))
- (decreases (betree_Node_lookup_in_bindings_decreases key bindings))
- =
- begin match bindings with
- | Betree_List_Cons hd tl ->
- let (i, i1) = hd in
- if i = key
- then Return (Some i1)
- else if i > key then Return None else betree_Node_lookup_in_bindings key tl
- | Betree_List_Nil -> Return None
- end
-
-(** [betree_main::betree::{betree_main::betree::Node#5}::apply_upserts]: forward function
- Source: 'src/betree.rs', lines 819:4-819:90 *)
-let rec betree_Node_apply_upserts
- (msgs : betree_List_t (u64 & betree_Message_t)) (prev : option u64)
- (key : u64) (st : state) :
- Tot (result (state & u64))
- (decreases (betree_Node_apply_upserts_decreases msgs prev key st))
- =
- let* b = betree_ListTupleU64T_head_has_key betree_Message_t msgs key in
- if b
- then
- let* msg = betree_List_pop_front (u64 & betree_Message_t) msgs in
- let (_, m) = msg in
- begin match m with
- | Betree_Message_Insert _ -> Fail Failure
- | Betree_Message_Delete -> Fail Failure
- | Betree_Message_Upsert s ->
- let* v = betree_upsert_update prev s in
- let* msgs1 = betree_List_pop_front_back (u64 & betree_Message_t) msgs in
- betree_Node_apply_upserts msgs1 (Some v) key st
- end
- else
- let* (st1, v) = core_option_Option_unwrap u64 prev st in
- let* _ =
- betree_List_push_front (u64 & betree_Message_t) msgs (key,
- Betree_Message_Insert v) in
- Return (st1, v)
-
-(** [betree_main::betree::{betree_main::betree::Node#5}::apply_upserts]: backward function 0
- Source: 'src/betree.rs', lines 819:4-819:90 *)
-let rec betree_Node_apply_upserts_back
- (msgs : betree_List_t (u64 & betree_Message_t)) (prev : option u64)
- (key : u64) (st : state) :
- Tot (result (betree_List_t (u64 & betree_Message_t)))
- (decreases (betree_Node_apply_upserts_decreases msgs prev key st))
- =
- let* b = betree_ListTupleU64T_head_has_key betree_Message_t msgs key in
- if b
- then
- let* msg = betree_List_pop_front (u64 & betree_Message_t) msgs in
- let (_, m) = msg in
- begin match m with
- | Betree_Message_Insert _ -> Fail Failure
- | Betree_Message_Delete -> Fail Failure
- | Betree_Message_Upsert s ->
- let* v = betree_upsert_update prev s in
- let* msgs1 = betree_List_pop_front_back (u64 & betree_Message_t) msgs in
- betree_Node_apply_upserts_back msgs1 (Some v) key st
- end
- else
- let* (_, v) = core_option_Option_unwrap u64 prev st in
- betree_List_push_front (u64 & betree_Message_t) msgs (key,
- Betree_Message_Insert v)
-
-(** [betree_main::betree::{betree_main::betree::Internal#4}::lookup_in_children]: forward function
- Source: 'src/betree.rs', lines 395:4-395:63 *)
-let rec betree_Internal_lookup_in_children
- (self : betree_Internal_t) (key : u64) (st : state) :
- Tot (result (state & (option u64)))
- (decreases (betree_Internal_lookup_in_children_decreases self key st))
- =
- if key < self.pivot
- then betree_Node_lookup self.left key st
- else betree_Node_lookup self.right key st
-
-(** [betree_main::betree::{betree_main::betree::Internal#4}::lookup_in_children]: backward function 0
- Source: 'src/betree.rs', lines 395:4-395:63 *)
-and betree_Internal_lookup_in_children_back
- (self : betree_Internal_t) (key : u64) (st : state) :
- Tot (result betree_Internal_t)
- (decreases (betree_Internal_lookup_in_children_decreases self key st))
- =
- if key < self.pivot
- then
- let* n = betree_Node_lookup_back self.left key st in
- Return { self with left = n }
- else
- let* n = betree_Node_lookup_back self.right key st in
- Return { self with right = n }
-
-(** [betree_main::betree::{betree_main::betree::Node#5}::lookup]: forward function
- Source: 'src/betree.rs', lines 709:4-709:58 *)
-and betree_Node_lookup
- (self : betree_Node_t) (key : u64) (st : state) :
- Tot (result (state & (option u64)))
- (decreases (betree_Node_lookup_decreases self key st))
- =
- begin match self with
- | Betree_Node_Internal node ->
- let* (st1, msgs) = betree_load_internal_node node.id st in
- let* pending = betree_Node_lookup_first_message_for_key key msgs in
- begin match pending with
- | Betree_List_Cons p l ->
- let (k, msg) = p in
- if k <> key
- then
- let* (st2, o) = betree_Internal_lookup_in_children node key st1 in
- let* _ =
- betree_Node_lookup_first_message_for_key_back key msgs
- (Betree_List_Cons (k, msg) l) in
- Return (st2, o)
- else
- begin match msg with
- | Betree_Message_Insert v ->
- let* _ =
- betree_Node_lookup_first_message_for_key_back key msgs
- (Betree_List_Cons (k, Betree_Message_Insert v) l) in
- Return (st1, Some v)
- | Betree_Message_Delete ->
- let* _ =
- betree_Node_lookup_first_message_for_key_back key msgs
- (Betree_List_Cons (k, Betree_Message_Delete) l) in
- Return (st1, None)
- | Betree_Message_Upsert ufs ->
- let* (st2, v) = betree_Internal_lookup_in_children node key st1 in
- let* (st3, v1) =
- betree_Node_apply_upserts (Betree_List_Cons (k,
- Betree_Message_Upsert ufs) l) v key st2 in
- let* node1 = betree_Internal_lookup_in_children_back node key st1 in
- let* pending1 =
- betree_Node_apply_upserts_back (Betree_List_Cons (k,
- Betree_Message_Upsert ufs) l) v key st2 in
- let* msgs1 =
- betree_Node_lookup_first_message_for_key_back key msgs pending1 in
- let* (st4, _) = betree_store_internal_node node1.id msgs1 st3 in
- Return (st4, Some v1)
- end
- | Betree_List_Nil ->
- let* (st2, o) = betree_Internal_lookup_in_children node key st1 in
- let* _ =
- betree_Node_lookup_first_message_for_key_back key msgs Betree_List_Nil
- in
- Return (st2, o)
- end
- | Betree_Node_Leaf node ->
- let* (st1, bindings) = betree_load_leaf_node node.id st in
- let* o = betree_Node_lookup_in_bindings key bindings in
- Return (st1, o)
- end
-
-(** [betree_main::betree::{betree_main::betree::Node#5}::lookup]: backward function 0
- Source: 'src/betree.rs', lines 709:4-709:58 *)
-and betree_Node_lookup_back
- (self : betree_Node_t) (key : u64) (st : state) :
- Tot (result betree_Node_t)
- (decreases (betree_Node_lookup_decreases self key st))
- =
- begin match self with
- | Betree_Node_Internal node ->
- let* (st1, msgs) = betree_load_internal_node node.id st in
- let* pending = betree_Node_lookup_first_message_for_key key msgs in
- begin match pending with
- | Betree_List_Cons p l ->
- let (k, msg) = p in
- if k <> key
- then
- let* _ =
- betree_Node_lookup_first_message_for_key_back key msgs
- (Betree_List_Cons (k, msg) l) in
- let* node1 = betree_Internal_lookup_in_children_back node key st1 in
- Return (Betree_Node_Internal node1)
- else
- begin match msg with
- | Betree_Message_Insert v ->
- let* _ =
- betree_Node_lookup_first_message_for_key_back key msgs
- (Betree_List_Cons (k, Betree_Message_Insert v) l) in
- Return (Betree_Node_Internal node)
- | Betree_Message_Delete ->
- let* _ =
- betree_Node_lookup_first_message_for_key_back key msgs
- (Betree_List_Cons (k, Betree_Message_Delete) l) in
- Return (Betree_Node_Internal node)
- | Betree_Message_Upsert ufs ->
- let* (st2, v) = betree_Internal_lookup_in_children node key st1 in
- let* (st3, _) =
- betree_Node_apply_upserts (Betree_List_Cons (k,
- Betree_Message_Upsert ufs) l) v key st2 in
- let* node1 = betree_Internal_lookup_in_children_back node key st1 in
- let* pending1 =
- betree_Node_apply_upserts_back (Betree_List_Cons (k,
- Betree_Message_Upsert ufs) l) v key st2 in
- let* msgs1 =
- betree_Node_lookup_first_message_for_key_back key msgs pending1 in
- let* _ = betree_store_internal_node node1.id msgs1 st3 in
- Return (Betree_Node_Internal node1)
- end
- | Betree_List_Nil ->
- let* _ =
- betree_Node_lookup_first_message_for_key_back key msgs Betree_List_Nil
- in
- let* node1 = betree_Internal_lookup_in_children_back node key st1 in
- Return (Betree_Node_Internal node1)
- end
- | Betree_Node_Leaf node ->
- let* (_, bindings) = betree_load_leaf_node node.id st in
- let* _ = betree_Node_lookup_in_bindings key bindings in
- Return (Betree_Node_Leaf node)
- end
-
-(** [betree_main::betree::{betree_main::betree::Node#5}::filter_messages_for_key]: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/betree.rs', lines 674:4-674:77 *)
-let rec betree_Node_filter_messages_for_key
- (key : u64) (msgs : betree_List_t (u64 & betree_Message_t)) :
- Tot (result (betree_List_t (u64 & betree_Message_t)))
- (decreases (betree_Node_filter_messages_for_key_decreases key msgs))
- =
- begin match msgs with
- | Betree_List_Cons p l ->
- let (k, m) = p in
- if k = key
- then
- let* msgs1 =
- betree_List_pop_front_back (u64 & betree_Message_t) (Betree_List_Cons
- (k, m) l) in
- betree_Node_filter_messages_for_key key msgs1
- else Return (Betree_List_Cons (k, m) l)
- | Betree_List_Nil -> Return Betree_List_Nil
- end
-
-(** [betree_main::betree::{betree_main::betree::Node#5}::lookup_first_message_after_key]: forward function
- Source: 'src/betree.rs', lines 689:4-692:34 *)
-let rec betree_Node_lookup_first_message_after_key
- (key : u64) (msgs : betree_List_t (u64 & betree_Message_t)) :
- Tot (result (betree_List_t (u64 & betree_Message_t)))
- (decreases (betree_Node_lookup_first_message_after_key_decreases key msgs))
- =
- begin match msgs with
- | Betree_List_Cons p next_msgs ->
- let (k, m) = p in
- if k = key
- then betree_Node_lookup_first_message_after_key key next_msgs
- else Return (Betree_List_Cons (k, m) next_msgs)
- | Betree_List_Nil -> Return Betree_List_Nil
- end
-
-(** [betree_main::betree::{betree_main::betree::Node#5}::lookup_first_message_after_key]: backward function 0
- Source: 'src/betree.rs', lines 689:4-692:34 *)
-let rec betree_Node_lookup_first_message_after_key_back
- (key : u64) (msgs : betree_List_t (u64 & betree_Message_t))
- (ret : betree_List_t (u64 & betree_Message_t)) :
- Tot (result (betree_List_t (u64 & betree_Message_t)))
- (decreases (betree_Node_lookup_first_message_after_key_decreases key msgs))
- =
- begin match msgs with
- | Betree_List_Cons p next_msgs ->
- let (k, m) = p in
- if k = key
- then
- let* next_msgs1 =
- betree_Node_lookup_first_message_after_key_back key next_msgs ret in
- Return (Betree_List_Cons (k, m) next_msgs1)
- else Return ret
- | Betree_List_Nil -> Return ret
- end
-
-(** [betree_main::betree::{betree_main::betree::Node#5}::apply_to_internal]: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/betree.rs', lines 521:4-521:89 *)
-let betree_Node_apply_to_internal
- (msgs : betree_List_t (u64 & betree_Message_t)) (key : u64)
- (new_msg : betree_Message_t) :
- result (betree_List_t (u64 & betree_Message_t))
- =
- let* msgs1 = betree_Node_lookup_first_message_for_key key msgs in
- let* b = betree_ListTupleU64T_head_has_key betree_Message_t msgs1 key in
- if b
- then
- begin match new_msg with
- | Betree_Message_Insert i ->
- let* msgs2 = betree_Node_filter_messages_for_key key msgs1 in
- let* msgs3 =
- betree_List_push_front (u64 & betree_Message_t) msgs2 (key,
- Betree_Message_Insert i) in
- betree_Node_lookup_first_message_for_key_back key msgs msgs3
- | Betree_Message_Delete ->
- let* msgs2 = betree_Node_filter_messages_for_key key msgs1 in
- let* msgs3 =
- betree_List_push_front (u64 & betree_Message_t) msgs2 (key,
- Betree_Message_Delete) in
- betree_Node_lookup_first_message_for_key_back key msgs msgs3
- | Betree_Message_Upsert s ->
- let* p = betree_List_hd (u64 & betree_Message_t) msgs1 in
- let (_, m) = p in
- begin match m with
- | Betree_Message_Insert prev ->
- let* v = betree_upsert_update (Some prev) s in
- let* msgs2 = betree_List_pop_front_back (u64 & betree_Message_t) msgs1
- in
- let* msgs3 =
- betree_List_push_front (u64 & betree_Message_t) msgs2 (key,
- Betree_Message_Insert v) in
- betree_Node_lookup_first_message_for_key_back key msgs msgs3
- | Betree_Message_Delete ->
- let* v = betree_upsert_update None s in
- let* msgs2 = betree_List_pop_front_back (u64 & betree_Message_t) msgs1
- in
- let* msgs3 =
- betree_List_push_front (u64 & betree_Message_t) msgs2 (key,
- Betree_Message_Insert v) in
- betree_Node_lookup_first_message_for_key_back key msgs msgs3
- | Betree_Message_Upsert _ ->
- let* msgs2 = betree_Node_lookup_first_message_after_key key msgs1 in
- let* msgs3 =
- betree_List_push_front (u64 & betree_Message_t) msgs2 (key,
- Betree_Message_Upsert s) in
- let* msgs4 =
- betree_Node_lookup_first_message_after_key_back key msgs1 msgs3 in
- betree_Node_lookup_first_message_for_key_back key msgs msgs4
- end
- end
- else
- let* msgs2 =
- betree_List_push_front (u64 & betree_Message_t) msgs1 (key, new_msg) in
- betree_Node_lookup_first_message_for_key_back key msgs msgs2
-
-(** [betree_main::betree::{betree_main::betree::Node#5}::apply_messages_to_internal]: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/betree.rs', lines 502:4-505:5 *)
-let rec betree_Node_apply_messages_to_internal
- (msgs : betree_List_t (u64 & betree_Message_t))
- (new_msgs : betree_List_t (u64 & betree_Message_t)) :
- Tot (result (betree_List_t (u64 & betree_Message_t)))
- (decreases (betree_Node_apply_messages_to_internal_decreases msgs new_msgs))
- =
- begin match new_msgs with
- | Betree_List_Cons new_msg new_msgs_tl ->
- let (i, m) = new_msg in
- let* msgs1 = betree_Node_apply_to_internal msgs i m in
- betree_Node_apply_messages_to_internal msgs1 new_msgs_tl
- | Betree_List_Nil -> Return msgs
- end
-
-(** [betree_main::betree::{betree_main::betree::Node#5}::lookup_mut_in_bindings]: forward function
- Source: 'src/betree.rs', lines 653:4-656:32 *)
-let rec betree_Node_lookup_mut_in_bindings
- (key : u64) (bindings : betree_List_t (u64 & u64)) :
- Tot (result (betree_List_t (u64 & u64)))
- (decreases (betree_Node_lookup_mut_in_bindings_decreases key bindings))
- =
- begin match bindings with
- | Betree_List_Cons hd tl ->
- let (i, i1) = hd in
- if i >= key
- then Return (Betree_List_Cons (i, i1) tl)
- else betree_Node_lookup_mut_in_bindings key tl
- | Betree_List_Nil -> Return Betree_List_Nil
- end
-
-(** [betree_main::betree::{betree_main::betree::Node#5}::lookup_mut_in_bindings]: backward function 0
- Source: 'src/betree.rs', lines 653:4-656:32 *)
-let rec betree_Node_lookup_mut_in_bindings_back
- (key : u64) (bindings : betree_List_t (u64 & u64))
- (ret : betree_List_t (u64 & u64)) :
- Tot (result (betree_List_t (u64 & u64)))
- (decreases (betree_Node_lookup_mut_in_bindings_decreases key bindings))
- =
- begin match bindings with
- | Betree_List_Cons hd tl ->
- let (i, i1) = hd in
- if i >= key
- then Return ret
- else
- let* tl1 = betree_Node_lookup_mut_in_bindings_back key tl ret in
- Return (Betree_List_Cons (i, i1) tl1)
- | Betree_List_Nil -> Return ret
- end
-
-(** [betree_main::betree::{betree_main::betree::Node#5}::apply_to_leaf]: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/betree.rs', lines 460:4-460:87 *)
-let betree_Node_apply_to_leaf
- (bindings : betree_List_t (u64 & u64)) (key : u64)
- (new_msg : betree_Message_t) :
- result (betree_List_t (u64 & u64))
- =
- let* bindings1 = betree_Node_lookup_mut_in_bindings key bindings in
- let* b = betree_ListTupleU64T_head_has_key u64 bindings1 key in
- if b
- then
- let* hd = betree_List_pop_front (u64 & u64) bindings1 in
- begin match new_msg with
- | Betree_Message_Insert v ->
- let* bindings2 = betree_List_pop_front_back (u64 & u64) bindings1 in
- let* bindings3 = betree_List_push_front (u64 & u64) bindings2 (key, v) in
- betree_Node_lookup_mut_in_bindings_back key bindings bindings3
- | Betree_Message_Delete ->
- let* bindings2 = betree_List_pop_front_back (u64 & u64) bindings1 in
- betree_Node_lookup_mut_in_bindings_back key bindings bindings2
- | Betree_Message_Upsert s ->
- let (_, i) = hd in
- let* v = betree_upsert_update (Some i) s in
- let* bindings2 = betree_List_pop_front_back (u64 & u64) bindings1 in
- let* bindings3 = betree_List_push_front (u64 & u64) bindings2 (key, v) in
- betree_Node_lookup_mut_in_bindings_back key bindings bindings3
- end
- else
- begin match new_msg with
- | Betree_Message_Insert v ->
- let* bindings2 = betree_List_push_front (u64 & u64) bindings1 (key, v) in
- betree_Node_lookup_mut_in_bindings_back key bindings bindings2
- | Betree_Message_Delete ->
- betree_Node_lookup_mut_in_bindings_back key bindings bindings1
- | Betree_Message_Upsert s ->
- let* v = betree_upsert_update None s in
- let* bindings2 = betree_List_push_front (u64 & u64) bindings1 (key, v) in
- betree_Node_lookup_mut_in_bindings_back key bindings bindings2
- end
-
-(** [betree_main::betree::{betree_main::betree::Node#5}::apply_messages_to_leaf]: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/betree.rs', lines 444:4-447:5 *)
-let rec betree_Node_apply_messages_to_leaf
- (bindings : betree_List_t (u64 & u64))
- (new_msgs : betree_List_t (u64 & betree_Message_t)) :
- Tot (result (betree_List_t (u64 & u64)))
- (decreases (betree_Node_apply_messages_to_leaf_decreases bindings new_msgs))
- =
- begin match new_msgs with
- | Betree_List_Cons new_msg new_msgs_tl ->
- let (i, m) = new_msg in
- let* bindings1 = betree_Node_apply_to_leaf bindings i m in
- betree_Node_apply_messages_to_leaf bindings1 new_msgs_tl
- | Betree_List_Nil -> Return bindings
- end
-
-(** [betree_main::betree::{betree_main::betree::Internal#4}::flush]: forward function
- Source: 'src/betree.rs', lines 410:4-415:26 *)
-let rec betree_Internal_flush
- (self : betree_Internal_t) (params : betree_Params_t)
- (node_id_cnt : betree_NodeIdCounter_t)
- (content : betree_List_t (u64 & betree_Message_t)) (st : state) :
- Tot (result (state & (betree_List_t (u64 & betree_Message_t))))
- (decreases (
- betree_Internal_flush_decreases self params node_id_cnt content st))
- =
- let* p =
- betree_ListTupleU64T_partition_at_pivot betree_Message_t content self.pivot
- in
- let (msgs_left, msgs_right) = p in
- let* len_left = betree_List_len (u64 & betree_Message_t) msgs_left in
- if len_left >= params.min_flush_size
- then
- let* (st1, _) =
- betree_Node_apply_messages self.left params node_id_cnt msgs_left st in
- let* (_, node_id_cnt1) =
- betree_Node_apply_messages_back self.left params node_id_cnt msgs_left st
- in
- let* len_right = betree_List_len (u64 & betree_Message_t) msgs_right in
- if len_right >= params.min_flush_size
- then
- let* (st2, _) =
- betree_Node_apply_messages self.right params node_id_cnt1 msgs_right
- st1 in
- let* _ =
- betree_Node_apply_messages_back self.right params node_id_cnt1
- msgs_right st1 in
- Return (st2, Betree_List_Nil)
- else Return (st1, msgs_right)
- else
- let* (st1, _) =
- betree_Node_apply_messages self.right params node_id_cnt msgs_right st in
- let* _ =
- betree_Node_apply_messages_back self.right params node_id_cnt msgs_right
- st in
- Return (st1, msgs_left)
-
-(** [betree_main::betree::{betree_main::betree::Internal#4}::flush]: backward function 0
- Source: 'src/betree.rs', lines 410:4-415:26 *)
-and betree_Internal_flush_back
- (self : betree_Internal_t) (params : betree_Params_t)
- (node_id_cnt : betree_NodeIdCounter_t)
- (content : betree_List_t (u64 & betree_Message_t)) (st : state) :
- Tot (result (betree_Internal_t & betree_NodeIdCounter_t))
- (decreases (
- betree_Internal_flush_decreases self params node_id_cnt content st))
- =
- let* p =
- betree_ListTupleU64T_partition_at_pivot betree_Message_t content self.pivot
- in
- let (msgs_left, msgs_right) = p in
- let* len_left = betree_List_len (u64 & betree_Message_t) msgs_left in
- if len_left >= params.min_flush_size
- then
- let* (st1, _) =
- betree_Node_apply_messages self.left params node_id_cnt msgs_left st in
- let* (n, node_id_cnt1) =
- betree_Node_apply_messages_back self.left params node_id_cnt msgs_left st
- in
- let* len_right = betree_List_len (u64 & betree_Message_t) msgs_right in
- if len_right >= params.min_flush_size
- then
- let* (n1, node_id_cnt2) =
- betree_Node_apply_messages_back self.right params node_id_cnt1
- msgs_right st1 in
- Return ({ self with left = n; right = n1 }, node_id_cnt2)
- else Return ({ self with left = n }, node_id_cnt1)
- else
- let* (n, node_id_cnt1) =
- betree_Node_apply_messages_back self.right params node_id_cnt msgs_right
- st in
- Return ({ self with right = n }, node_id_cnt1)
-
-(** [betree_main::betree::{betree_main::betree::Node#5}::apply_messages]: forward function
- Source: 'src/betree.rs', lines 588:4-593:5 *)
-and betree_Node_apply_messages
- (self : betree_Node_t) (params : betree_Params_t)
- (node_id_cnt : betree_NodeIdCounter_t)
- (msgs : betree_List_t (u64 & betree_Message_t)) (st : state) :
- Tot (result (state & unit))
- (decreases (
- betree_Node_apply_messages_decreases self params node_id_cnt msgs st))
- =
- begin match self with
- | Betree_Node_Internal node ->
- let* (st1, content) = betree_load_internal_node node.id st in
- let* content1 = betree_Node_apply_messages_to_internal content msgs in
- let* num_msgs = betree_List_len (u64 & betree_Message_t) content1 in
- if num_msgs >= params.min_flush_size
- then
- let* (st2, content2) =
- betree_Internal_flush node params node_id_cnt content1 st1 in
- let* (node1, _) =
- betree_Internal_flush_back node params node_id_cnt content1 st1 in
- let* (st3, _) = betree_store_internal_node node1.id content2 st2 in
- Return (st3, ())
- else
- let* (st2, _) = betree_store_internal_node node.id content1 st1 in
- Return (st2, ())
- | Betree_Node_Leaf node ->
- let* (st1, content) = betree_load_leaf_node node.id st in
- let* content1 = betree_Node_apply_messages_to_leaf content msgs in
- let* len = betree_List_len (u64 & u64) content1 in
- let* i = u64_mul 2 params.split_size in
- if len >= i
- then
- let* (st2, _) = betree_Leaf_split node content1 params node_id_cnt st1 in
- let* (st3, _) = betree_store_leaf_node node.id Betree_List_Nil st2 in
- Return (st3, ())
- else
- let* (st2, _) = betree_store_leaf_node node.id content1 st1 in
- Return (st2, ())
- end
-
-(** [betree_main::betree::{betree_main::betree::Node#5}::apply_messages]: backward function 0
- Source: 'src/betree.rs', lines 588:4-593:5 *)
-and betree_Node_apply_messages_back
- (self : betree_Node_t) (params : betree_Params_t)
- (node_id_cnt : betree_NodeIdCounter_t)
- (msgs : betree_List_t (u64 & betree_Message_t)) (st : state) :
- Tot (result (betree_Node_t & betree_NodeIdCounter_t))
- (decreases (
- betree_Node_apply_messages_decreases self params node_id_cnt msgs st))
- =
- begin match self with
- | Betree_Node_Internal node ->
- let* (st1, content) = betree_load_internal_node node.id st in
- let* content1 = betree_Node_apply_messages_to_internal content msgs in
- let* num_msgs = betree_List_len (u64 & betree_Message_t) content1 in
- if num_msgs >= params.min_flush_size
- then
- let* (st2, content2) =
- betree_Internal_flush node params node_id_cnt content1 st1 in
- let* (node1, node_id_cnt1) =
- betree_Internal_flush_back node params node_id_cnt content1 st1 in
- let* _ = betree_store_internal_node node1.id content2 st2 in
- Return (Betree_Node_Internal node1, node_id_cnt1)
- else
- let* _ = betree_store_internal_node node.id content1 st1 in
- Return (Betree_Node_Internal node, node_id_cnt)
- | Betree_Node_Leaf node ->
- let* (st1, content) = betree_load_leaf_node node.id st in
- let* content1 = betree_Node_apply_messages_to_leaf content msgs in
- let* len = betree_List_len (u64 & u64) content1 in
- let* i = u64_mul 2 params.split_size in
- if len >= i
- then
- let* (st2, new_node) =
- betree_Leaf_split node content1 params node_id_cnt st1 in
- let* _ = betree_store_leaf_node node.id Betree_List_Nil st2 in
- let* node_id_cnt1 =
- betree_Leaf_split_back node content1 params node_id_cnt st1 in
- Return (Betree_Node_Internal new_node, node_id_cnt1)
- else
- let* _ = betree_store_leaf_node node.id content1 st1 in
- Return (Betree_Node_Leaf { node with size = len }, node_id_cnt)
- end
-
-(** [betree_main::betree::{betree_main::betree::Node#5}::apply]: forward function
- Source: 'src/betree.rs', lines 576:4-582:5 *)
-let betree_Node_apply
- (self : betree_Node_t) (params : betree_Params_t)
- (node_id_cnt : betree_NodeIdCounter_t) (key : u64)
- (new_msg : betree_Message_t) (st : state) :
- result (state & unit)
- =
- let* (st1, _) =
- betree_Node_apply_messages self params node_id_cnt (Betree_List_Cons (key,
- new_msg) Betree_List_Nil) st in
- let* _ =
- betree_Node_apply_messages_back self params node_id_cnt (Betree_List_Cons
- (key, new_msg) Betree_List_Nil) st in
- Return (st1, ())
-
-(** [betree_main::betree::{betree_main::betree::Node#5}::apply]: backward function 0
- Source: 'src/betree.rs', lines 576:4-582:5 *)
-let betree_Node_apply_back
- (self : betree_Node_t) (params : betree_Params_t)
- (node_id_cnt : betree_NodeIdCounter_t) (key : u64)
- (new_msg : betree_Message_t) (st : state) :
- result (betree_Node_t & betree_NodeIdCounter_t)
- =
- betree_Node_apply_messages_back self params node_id_cnt (Betree_List_Cons
- (key, new_msg) Betree_List_Nil) st
-
-(** [betree_main::betree::{betree_main::betree::BeTree#6}::new]: forward function
- Source: 'src/betree.rs', lines 849:4-849:60 *)
-let betree_BeTree_new
- (min_flush_size : u64) (split_size : u64) (st : state) :
- result (state & betree_BeTree_t)
- =
- let* node_id_cnt = betree_NodeIdCounter_new in
- let* id = betree_NodeIdCounter_fresh_id node_id_cnt in
- let* (st1, _) = betree_store_leaf_node id Betree_List_Nil st in
- let* node_id_cnt1 = betree_NodeIdCounter_fresh_id_back node_id_cnt in
- Return (st1,
- {
- params = { min_flush_size = min_flush_size; split_size = split_size };
- node_id_cnt = node_id_cnt1;
- root = (Betree_Node_Leaf { id = id; size = 0 })
- })
-
-(** [betree_main::betree::{betree_main::betree::BeTree#6}::apply]: forward function
- Source: 'src/betree.rs', lines 868:4-868:47 *)
-let betree_BeTree_apply
- (self : betree_BeTree_t) (key : u64) (msg : betree_Message_t) (st : state) :
- result (state & unit)
- =
- let* (st1, _) =
- betree_Node_apply self.root self.params self.node_id_cnt key msg st in
- let* _ =
- betree_Node_apply_back self.root self.params self.node_id_cnt key msg st in
- Return (st1, ())
-
-(** [betree_main::betree::{betree_main::betree::BeTree#6}::apply]: backward function 0
- Source: 'src/betree.rs', lines 868:4-868:47 *)
-let betree_BeTree_apply_back
- (self : betree_BeTree_t) (key : u64) (msg : betree_Message_t) (st : state) :
- result betree_BeTree_t
- =
- let* (n, nic) =
- betree_Node_apply_back self.root self.params self.node_id_cnt key msg st in
- Return { self with node_id_cnt = nic; root = n }
-
-(** [betree_main::betree::{betree_main::betree::BeTree#6}::insert]: forward function
- Source: 'src/betree.rs', lines 874:4-874:52 *)
-let betree_BeTree_insert
- (self : betree_BeTree_t) (key : u64) (value : u64) (st : state) :
- result (state & unit)
- =
- let* (st1, _) = betree_BeTree_apply self key (Betree_Message_Insert value) st
- in
- let* _ = betree_BeTree_apply_back self key (Betree_Message_Insert value) st
- in
- Return (st1, ())
-
-(** [betree_main::betree::{betree_main::betree::BeTree#6}::insert]: backward function 0
- Source: 'src/betree.rs', lines 874:4-874:52 *)
-let betree_BeTree_insert_back
- (self : betree_BeTree_t) (key : u64) (value : u64) (st : state) :
- result betree_BeTree_t
- =
- betree_BeTree_apply_back self key (Betree_Message_Insert value) st
-
-(** [betree_main::betree::{betree_main::betree::BeTree#6}::delete]: forward function
- Source: 'src/betree.rs', lines 880:4-880:38 *)
-let betree_BeTree_delete
- (self : betree_BeTree_t) (key : u64) (st : state) : result (state & unit) =
- let* (st1, _) = betree_BeTree_apply self key Betree_Message_Delete st in
- let* _ = betree_BeTree_apply_back self key Betree_Message_Delete st in
- Return (st1, ())
-
-(** [betree_main::betree::{betree_main::betree::BeTree#6}::delete]: backward function 0
- Source: 'src/betree.rs', lines 880:4-880:38 *)
-let betree_BeTree_delete_back
- (self : betree_BeTree_t) (key : u64) (st : state) : result betree_BeTree_t =
- betree_BeTree_apply_back self key Betree_Message_Delete st
-
-(** [betree_main::betree::{betree_main::betree::BeTree#6}::upsert]: forward function
- Source: 'src/betree.rs', lines 886:4-886:59 *)
-let betree_BeTree_upsert
- (self : betree_BeTree_t) (key : u64) (upd : betree_UpsertFunState_t)
- (st : state) :
- result (state & unit)
- =
- let* (st1, _) = betree_BeTree_apply self key (Betree_Message_Upsert upd) st
- in
- let* _ = betree_BeTree_apply_back self key (Betree_Message_Upsert upd) st in
- Return (st1, ())
-
-(** [betree_main::betree::{betree_main::betree::BeTree#6}::upsert]: backward function 0
- Source: 'src/betree.rs', lines 886:4-886:59 *)
-let betree_BeTree_upsert_back
- (self : betree_BeTree_t) (key : u64) (upd : betree_UpsertFunState_t)
- (st : state) :
- result betree_BeTree_t
- =
- betree_BeTree_apply_back self key (Betree_Message_Upsert upd) st
-
-(** [betree_main::betree::{betree_main::betree::BeTree#6}::lookup]: forward function
- Source: 'src/betree.rs', lines 895:4-895:62 *)
-let betree_BeTree_lookup
- (self : betree_BeTree_t) (key : u64) (st : state) :
- result (state & (option u64))
- =
- betree_Node_lookup self.root key st
-
-(** [betree_main::betree::{betree_main::betree::BeTree#6}::lookup]: backward function 0
- Source: 'src/betree.rs', lines 895:4-895:62 *)
-let betree_BeTree_lookup_back
- (self : betree_BeTree_t) (key : u64) (st : state) : result betree_BeTree_t =
- let* n = betree_Node_lookup_back self.root key st in
- Return { self with root = n }
-
-(** [betree_main::main]: forward function
- Source: 'src/betree_main.rs', lines 5:0-5:9 *)
-let main : result unit =
- Return ()
-
-(** Unit test for [betree_main::main] *)
-let _ = assert_norm (main = Return ())
-
diff --git a/tests/fstar-split/betree/BetreeMain.FunsExternal.fsti b/tests/fstar-split/betree/BetreeMain.FunsExternal.fsti
deleted file mode 100644
index cd2f956f..00000000
--- a/tests/fstar-split/betree/BetreeMain.FunsExternal.fsti
+++ /dev/null
@@ -1,35 +0,0 @@
-(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)
-(** [betree_main]: external function declarations *)
-module BetreeMain.FunsExternal
-open Primitives
-include BetreeMain.Types
-
-#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
-
-(** [betree_main::betree_utils::load_internal_node]: forward function
- Source: 'src/betree_utils.rs', lines 98:0-98:63 *)
-val betree_utils_load_internal_node
- : u64 -> state -> result (state & (betree_List_t (u64 & betree_Message_t)))
-
-(** [betree_main::betree_utils::store_internal_node]: forward function
- Source: 'src/betree_utils.rs', lines 115:0-115:71 *)
-val betree_utils_store_internal_node
- :
- u64 -> betree_List_t (u64 & betree_Message_t) -> state -> result (state &
- unit)
-
-(** [betree_main::betree_utils::load_leaf_node]: forward function
- Source: 'src/betree_utils.rs', lines 132:0-132:55 *)
-val betree_utils_load_leaf_node
- : u64 -> state -> result (state & (betree_List_t (u64 & u64)))
-
-(** [betree_main::betree_utils::store_leaf_node]: forward function
- Source: 'src/betree_utils.rs', lines 145:0-145:63 *)
-val betree_utils_store_leaf_node
- : u64 -> betree_List_t (u64 & u64) -> state -> result (state & unit)
-
-(** [core::option::{core::option::Option<T>}::unwrap]: forward function
- Source: '/rustc/d59363ad0b6391b7fc5bbb02c9ccf9300eef3753/library/core/src/option.rs', lines 932:4-932:34 *)
-val core_option_Option_unwrap
- (t : Type0) : option t -> state -> result (state & t)
-
diff --git a/tests/fstar-split/betree/BetreeMain.Types.fst b/tests/fstar-split/betree/BetreeMain.Types.fst
deleted file mode 100644
index b87219b2..00000000
--- a/tests/fstar-split/betree/BetreeMain.Types.fst
+++ /dev/null
@@ -1,61 +0,0 @@
-(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)
-(** [betree_main]: type definitions *)
-module BetreeMain.Types
-open Primitives
-include BetreeMain.TypesExternal
-
-#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
-
-(** [betree_main::betree::List]
- Source: 'src/betree.rs', lines 17:0-17:23 *)
-type betree_List_t (t : Type0) =
-| Betree_List_Cons : t -> betree_List_t t -> betree_List_t t
-| Betree_List_Nil : betree_List_t t
-
-(** [betree_main::betree::UpsertFunState]
- Source: 'src/betree.rs', lines 63:0-63:23 *)
-type betree_UpsertFunState_t =
-| Betree_UpsertFunState_Add : u64 -> betree_UpsertFunState_t
-| Betree_UpsertFunState_Sub : u64 -> betree_UpsertFunState_t
-
-(** [betree_main::betree::Message]
- Source: 'src/betree.rs', lines 69:0-69:23 *)
-type betree_Message_t =
-| Betree_Message_Insert : u64 -> betree_Message_t
-| Betree_Message_Delete : betree_Message_t
-| Betree_Message_Upsert : betree_UpsertFunState_t -> betree_Message_t
-
-(** [betree_main::betree::Leaf]
- Source: 'src/betree.rs', lines 167:0-167:11 *)
-type betree_Leaf_t = { id : u64; size : u64; }
-
-(** [betree_main::betree::Internal]
- Source: 'src/betree.rs', lines 156:0-156:15 *)
-type betree_Internal_t =
-{
- id : u64; pivot : u64; left : betree_Node_t; right : betree_Node_t;
-}
-
-(** [betree_main::betree::Node]
- Source: 'src/betree.rs', lines 179:0-179:9 *)
-and betree_Node_t =
-| Betree_Node_Internal : betree_Internal_t -> betree_Node_t
-| Betree_Node_Leaf : betree_Leaf_t -> betree_Node_t
-
-(** [betree_main::betree::Params]
- Source: 'src/betree.rs', lines 187:0-187:13 *)
-type betree_Params_t = { min_flush_size : u64; split_size : u64; }
-
-(** [betree_main::betree::NodeIdCounter]
- Source: 'src/betree.rs', lines 201:0-201:20 *)
-type betree_NodeIdCounter_t = { next_node_id : u64; }
-
-(** [betree_main::betree::BeTree]
- Source: 'src/betree.rs', lines 218:0-218:17 *)
-type betree_BeTree_t =
-{
- params : betree_Params_t;
- node_id_cnt : betree_NodeIdCounter_t;
- root : betree_Node_t;
-}
-
diff --git a/tests/fstar-split/betree/BetreeMain.TypesExternal.fsti b/tests/fstar-split/betree/BetreeMain.TypesExternal.fsti
deleted file mode 100644
index 1b2c53a6..00000000
--- a/tests/fstar-split/betree/BetreeMain.TypesExternal.fsti
+++ /dev/null
@@ -1,10 +0,0 @@
-(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)
-(** [betree_main]: external type declarations *)
-module BetreeMain.TypesExternal
-open Primitives
-
-#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
-
-(** The state type used in the state-error monad *)
-val state : Type0
-
diff --git a/tests/fstar-split/betree/Makefile b/tests/fstar-split/betree/Makefile
deleted file mode 100644
index fa7d1f36..00000000
--- a/tests/fstar-split/betree/Makefile
+++ /dev/null
@@ -1,49 +0,0 @@
-# This file was automatically generated - modify ../Makefile.template instead
-INCLUDE_DIRS = .
-
-FSTAR_INCLUDES = $(addprefix --include ,$(INCLUDE_DIRS))
-
-FSTAR_HINTS ?= --use_hints --use_hint_hashes --record_hints
-
-FSTAR_OPTIONS = $(FSTAR_HINTS) \
- --cache_checked_modules $(FSTAR_INCLUDES) --cmi \
- --warn_error '+241@247+285-274' \
-
-FSTAR_EXE ?= fstar.exe
-FSTAR_NO_FLAGS = $(FSTAR_EXE) --already_cached 'Prims FStar LowStar Steel' --odir obj --cache_dir obj
-
-FSTAR = $(FSTAR_NO_FLAGS) $(FSTAR_OPTIONS)
-
-# The F* roots are used to compute the dependency graph, and generate the .depend file
-FSTAR_ROOTS ?= $(wildcard *.fst *.fsti)
-
-# Build all the files
-all: $(addprefix obj/,$(addsuffix .checked,$(FSTAR_ROOTS)))
-
-# This is the right way to ensure the .depend file always gets re-built.
-ifeq (,$(filter %-in,$(MAKECMDGOALS)))
-ifndef NODEPEND
-ifndef MAKE_RESTARTS
-.depend: .FORCE
- $(FSTAR_NO_FLAGS) --dep full $(notdir $(FSTAR_ROOTS)) > $@
-
-.PHONY: .FORCE
-.FORCE:
-endif
-endif
-
-include .depend
-endif
-
-# For the interactive mode
-%.fst-in %.fsti-in:
- @echo $(FSTAR_OPTIONS)
-
-# Generete the .checked files in batch mode
-%.checked:
- $(FSTAR) $(FSTAR_OPTIONS) $< && \
- touch -c $@
-
-.PHONY: clean
-clean:
- rm -f obj/*
diff --git a/tests/fstar-split/betree/Primitives.fst b/tests/fstar-split/betree/Primitives.fst
deleted file mode 100644
index a3ffbde4..00000000
--- a/tests/fstar-split/betree/Primitives.fst
+++ /dev/null
@@ -1,884 +0,0 @@
-/// This file lists primitive and assumed functions and types
-module Primitives
-open FStar.Mul
-open FStar.List.Tot
-
-#set-options "--z3rlimit 15 --fuel 0 --ifuel 1"
-
-(*** Utilities *)
-val list_update (#a : Type0) (ls : list a) (i : nat{i < length ls}) (x : a) :
- ls':list a{
- length ls' = length ls /\
- index ls' i == x
- }
-#push-options "--fuel 1"
-let rec list_update #a ls i x =
- match ls with
- | x' :: ls -> if i = 0 then x :: ls else x' :: list_update ls (i-1) x
-#pop-options
-
-(*** Result *)
-type error : Type0 =
-| Failure
-| OutOfFuel
-
-type result (a : Type0) : Type0 =
-| Return : v:a -> result a
-| Fail : e:error -> result a
-
-// Monadic return operator
-unfold let return (#a : Type0) (x : a) : result a = Return x
-
-// Monadic bind operator.
-// Allows to use the notation:
-// ```
-// let* x = y in
-// ...
-// ```
-unfold let (let*) (#a #b : Type0) (m: result a)
- (f: (x:a) -> Pure (result b) (requires (m == Return x)) (ensures fun _ -> True)) :
- result b =
- match m with
- | Return x -> f x
- | Fail e -> Fail e
-
-// Monadic assert(...)
-let massert (b:bool) : result unit = if b then Return () else Fail Failure
-
-// Normalize and unwrap a successful result (used for globals).
-let eval_global (#a : Type0) (x : result a{Return? (normalize_term x)}) : a = Return?.v x
-
-(*** Misc *)
-type char = FStar.Char.char
-type string = string
-
-let is_zero (n: nat) : bool = n = 0
-let decrease (n: nat{n > 0}) : nat = n - 1
-
-let core_mem_replace (a : Type0) (x : a) (y : a) : a = x
-let core_mem_replace_back (a : Type0) (x : a) (y : a) : a = y
-
-// We don't really use raw pointers for now
-type mut_raw_ptr (t : Type0) = { v : t }
-type const_raw_ptr (t : Type0) = { v : t }
-
-(*** Scalars *)
-/// Rem.: most of the following code was partially generated
-
-assume val size_numbits : pos
-
-// TODO: we could use FStar.Int.int_t and FStar.UInt.int_t
-
-let isize_min : int = -9223372036854775808 // TODO: should be opaque
-let isize_max : int = 9223372036854775807 // TODO: should be opaque
-let i8_min : int = -128
-let i8_max : int = 127
-let i16_min : int = -32768
-let i16_max : int = 32767
-let i32_min : int = -2147483648
-let i32_max : int = 2147483647
-let i64_min : int = -9223372036854775808
-let i64_max : int = 9223372036854775807
-let i128_min : int = -170141183460469231731687303715884105728
-let i128_max : int = 170141183460469231731687303715884105727
-let usize_min : int = 0
-let usize_max : int = 4294967295 // TODO: should be opaque
-let u8_min : int = 0
-let u8_max : int = 255
-let u16_min : int = 0
-let u16_max : int = 65535
-let u32_min : int = 0
-let u32_max : int = 4294967295
-let u64_min : int = 0
-let u64_max : int = 18446744073709551615
-let u128_min : int = 0
-let u128_max : int = 340282366920938463463374607431768211455
-
-type scalar_ty =
-| Isize
-| I8
-| I16
-| I32
-| I64
-| I128
-| Usize
-| U8
-| U16
-| U32
-| U64
-| U128
-
-let is_unsigned = function
- | Isize | I8 | I16 | I32 | I64 | I128 -> false
- | Usize | U8 | U16 | U32 | U64 | U128 -> true
-
-let scalar_min (ty : scalar_ty) : int =
- match ty with
- | Isize -> isize_min
- | I8 -> i8_min
- | I16 -> i16_min
- | I32 -> i32_min
- | I64 -> i64_min
- | I128 -> i128_min
- | Usize -> usize_min
- | U8 -> u8_min
- | U16 -> u16_min
- | U32 -> u32_min
- | U64 -> u64_min
- | U128 -> u128_min
-
-let scalar_max (ty : scalar_ty) : int =
- match ty with
- | Isize -> isize_max
- | I8 -> i8_max
- | I16 -> i16_max
- | I32 -> i32_max
- | I64 -> i64_max
- | I128 -> i128_max
- | Usize -> usize_max
- | U8 -> u8_max
- | U16 -> u16_max
- | U32 -> u32_max
- | U64 -> u64_max
- | U128 -> u128_max
-
-type scalar (ty : scalar_ty) : eqtype = x:int{scalar_min ty <= x && x <= scalar_max ty}
-
-let mk_scalar (ty : scalar_ty) (x : int) : result (scalar ty) =
- if scalar_min ty <= x && scalar_max ty >= x then Return x else Fail Failure
-
-let scalar_neg (#ty : scalar_ty) (x : scalar ty) : result (scalar ty) = mk_scalar ty (-x)
-
-let scalar_div (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- if y <> 0 then mk_scalar ty (x / y) else Fail Failure
-
-/// The remainder operation
-let int_rem (x : int) (y : int{y <> 0}) : int =
- if x >= 0 then (x % y) else -(x % y)
-
-(* Checking consistency with Rust *)
-let _ = assert_norm(int_rem 1 2 = 1)
-let _ = assert_norm(int_rem (-1) 2 = -1)
-let _ = assert_norm(int_rem 1 (-2) = 1)
-let _ = assert_norm(int_rem (-1) (-2) = -1)
-
-let scalar_rem (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- if y <> 0 then mk_scalar ty (int_rem x y) else Fail Failure
-
-let scalar_add (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- mk_scalar ty (x + y)
-
-let scalar_sub (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- mk_scalar ty (x - y)
-
-let scalar_mul (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- mk_scalar ty (x * y)
-
-let scalar_xor (#ty : scalar_ty)
- (x : scalar ty) (y : scalar ty) : scalar ty =
- match ty with
- | U8 -> FStar.UInt.logxor #8 x y
- | U16 -> FStar.UInt.logxor #16 x y
- | U32 -> FStar.UInt.logxor #32 x y
- | U64 -> FStar.UInt.logxor #64 x y
- | U128 -> FStar.UInt.logxor #128 x y
- | Usize -> admit() // TODO
- | I8 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 8);
- normalize_spec (scalar I8);
- FStar.Int.logxor #8 x y
- | I16 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 16);
- normalize_spec (scalar I16);
- FStar.Int.logxor #16 x y
- | I32 -> FStar.Int.logxor #32 x y
- | I64 -> FStar.Int.logxor #64 x y
- | I128 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 128);
- normalize_spec (scalar I128);
- FStar.Int.logxor #128 x y
- | Isize -> admit() // TODO
-
-let scalar_or (#ty : scalar_ty)
- (x : scalar ty) (y : scalar ty) : scalar ty =
- match ty with
- | U8 -> FStar.UInt.logor #8 x y
- | U16 -> FStar.UInt.logor #16 x y
- | U32 -> FStar.UInt.logor #32 x y
- | U64 -> FStar.UInt.logor #64 x y
- | U128 -> FStar.UInt.logor #128 x y
- | Usize -> admit() // TODO
- | I8 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 8);
- normalize_spec (scalar I8);
- FStar.Int.logor #8 x y
- | I16 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 16);
- normalize_spec (scalar I16);
- FStar.Int.logor #16 x y
- | I32 -> FStar.Int.logor #32 x y
- | I64 -> FStar.Int.logor #64 x y
- | I128 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 128);
- normalize_spec (scalar I128);
- FStar.Int.logor #128 x y
- | Isize -> admit() // TODO
-
-let scalar_and (#ty : scalar_ty)
- (x : scalar ty) (y : scalar ty) : scalar ty =
- match ty with
- | U8 -> FStar.UInt.logand #8 x y
- | U16 -> FStar.UInt.logand #16 x y
- | U32 -> FStar.UInt.logand #32 x y
- | U64 -> FStar.UInt.logand #64 x y
- | U128 -> FStar.UInt.logand #128 x y
- | Usize -> admit() // TODO
- | I8 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 8);
- normalize_spec (scalar I8);
- FStar.Int.logand #8 x y
- | I16 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 16);
- normalize_spec (scalar I16);
- FStar.Int.logand #16 x y
- | I32 -> FStar.Int.logand #32 x y
- | I64 -> FStar.Int.logand #64 x y
- | I128 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 128);
- normalize_spec (scalar I128);
- FStar.Int.logand #128 x y
- | Isize -> admit() // TODO
-
-// Shift left
-let scalar_shl (#ty0 #ty1 : scalar_ty)
- (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) =
- admit()
-
-// Shift right
-let scalar_shr (#ty0 #ty1 : scalar_ty)
- (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) =
- admit()
-
-(** Cast an integer from a [src_ty] to a [tgt_ty] *)
-// TODO: check the semantics of casts in Rust
-let scalar_cast (src_ty : scalar_ty) (tgt_ty : scalar_ty) (x : scalar src_ty) : result (scalar tgt_ty) =
- mk_scalar tgt_ty x
-
-// This can't fail, but for now we make all casts faillible (easier for the translation)
-let scalar_cast_bool (tgt_ty : scalar_ty) (x : bool) : result (scalar tgt_ty) =
- mk_scalar tgt_ty (if x then 1 else 0)
-
-/// The scalar types
-type isize : eqtype = scalar Isize
-type i8 : eqtype = scalar I8
-type i16 : eqtype = scalar I16
-type i32 : eqtype = scalar I32
-type i64 : eqtype = scalar I64
-type i128 : eqtype = scalar I128
-type usize : eqtype = scalar Usize
-type u8 : eqtype = scalar U8
-type u16 : eqtype = scalar U16
-type u32 : eqtype = scalar U32
-type u64 : eqtype = scalar U64
-type u128 : eqtype = scalar U128
-
-
-let core_isize_min : isize = isize_min
-let core_isize_max : isize = isize_max
-let core_i8_min : i8 = i8_min
-let core_i8_max : i8 = i8_max
-let core_i16_min : i16 = i16_min
-let core_i16_max : i16 = i16_max
-let core_i32_min : i32 = i32_min
-let core_i32_max : i32 = i32_max
-let core_i64_min : i64 = i64_min
-let core_i64_max : i64 = i64_max
-let core_i128_min : i128 = i128_min
-let core_i128_max : i128 = i128_max
-
-let core_usize_min : usize = usize_min
-let core_usize_max : usize = usize_max
-let core_u8_min : u8 = u8_min
-let core_u8_max : u8 = u8_max
-let core_u16_min : u16 = u16_min
-let core_u16_max : u16 = u16_max
-let core_u32_min : u32 = u32_min
-let core_u32_max : u32 = u32_max
-let core_u64_min : u64 = u64_min
-let core_u64_max : u64 = u64_max
-let core_u128_min : u128 = u128_min
-let core_u128_max : u128 = u128_max
-
-/// Negation
-let isize_neg = scalar_neg #Isize
-let i8_neg = scalar_neg #I8
-let i16_neg = scalar_neg #I16
-let i32_neg = scalar_neg #I32
-let i64_neg = scalar_neg #I64
-let i128_neg = scalar_neg #I128
-
-/// Division
-let isize_div = scalar_div #Isize
-let i8_div = scalar_div #I8
-let i16_div = scalar_div #I16
-let i32_div = scalar_div #I32
-let i64_div = scalar_div #I64
-let i128_div = scalar_div #I128
-let usize_div = scalar_div #Usize
-let u8_div = scalar_div #U8
-let u16_div = scalar_div #U16
-let u32_div = scalar_div #U32
-let u64_div = scalar_div #U64
-let u128_div = scalar_div #U128
-
-/// Remainder
-let isize_rem = scalar_rem #Isize
-let i8_rem = scalar_rem #I8
-let i16_rem = scalar_rem #I16
-let i32_rem = scalar_rem #I32
-let i64_rem = scalar_rem #I64
-let i128_rem = scalar_rem #I128
-let usize_rem = scalar_rem #Usize
-let u8_rem = scalar_rem #U8
-let u16_rem = scalar_rem #U16
-let u32_rem = scalar_rem #U32
-let u64_rem = scalar_rem #U64
-let u128_rem = scalar_rem #U128
-
-/// Addition
-let isize_add = scalar_add #Isize
-let i8_add = scalar_add #I8
-let i16_add = scalar_add #I16
-let i32_add = scalar_add #I32
-let i64_add = scalar_add #I64
-let i128_add = scalar_add #I128
-let usize_add = scalar_add #Usize
-let u8_add = scalar_add #U8
-let u16_add = scalar_add #U16
-let u32_add = scalar_add #U32
-let u64_add = scalar_add #U64
-let u128_add = scalar_add #U128
-
-/// Subtraction
-let isize_sub = scalar_sub #Isize
-let i8_sub = scalar_sub #I8
-let i16_sub = scalar_sub #I16
-let i32_sub = scalar_sub #I32
-let i64_sub = scalar_sub #I64
-let i128_sub = scalar_sub #I128
-let usize_sub = scalar_sub #Usize
-let u8_sub = scalar_sub #U8
-let u16_sub = scalar_sub #U16
-let u32_sub = scalar_sub #U32
-let u64_sub = scalar_sub #U64
-let u128_sub = scalar_sub #U128
-
-/// Multiplication
-let isize_mul = scalar_mul #Isize
-let i8_mul = scalar_mul #I8
-let i16_mul = scalar_mul #I16
-let i32_mul = scalar_mul #I32
-let i64_mul = scalar_mul #I64
-let i128_mul = scalar_mul #I128
-let usize_mul = scalar_mul #Usize
-let u8_mul = scalar_mul #U8
-let u16_mul = scalar_mul #U16
-let u32_mul = scalar_mul #U32
-let u64_mul = scalar_mul #U64
-let u128_mul = scalar_mul #U128
-
-/// Xor
-let u8_xor = scalar_xor #U8
-let u16_xor = scalar_xor #U16
-let u32_xor = scalar_xor #U32
-let u64_xor = scalar_xor #U64
-let u128_xor = scalar_xor #U128
-let usize_xor = scalar_xor #Usize
-let i8_xor = scalar_xor #I8
-let i16_xor = scalar_xor #I16
-let i32_xor = scalar_xor #I32
-let i64_xor = scalar_xor #I64
-let i128_xor = scalar_xor #I128
-let isize_xor = scalar_xor #Isize
-
-/// Or
-let u8_or = scalar_or #U8
-let u16_or = scalar_or #U16
-let u32_or = scalar_or #U32
-let u64_or = scalar_or #U64
-let u128_or = scalar_or #U128
-let usize_or = scalar_or #Usize
-let i8_or = scalar_or #I8
-let i16_or = scalar_or #I16
-let i32_or = scalar_or #I32
-let i64_or = scalar_or #I64
-let i128_or = scalar_or #I128
-let isize_or = scalar_or #Isize
-
-/// And
-let u8_and = scalar_and #U8
-let u16_and = scalar_and #U16
-let u32_and = scalar_and #U32
-let u64_and = scalar_and #U64
-let u128_and = scalar_and #U128
-let usize_and = scalar_and #Usize
-let i8_and = scalar_and #I8
-let i16_and = scalar_and #I16
-let i32_and = scalar_and #I32
-let i64_and = scalar_and #I64
-let i128_and = scalar_and #I128
-let isize_and = scalar_and #Isize
-
-/// Shift left
-let u8_shl #ty = scalar_shl #U8 #ty
-let u16_shl #ty = scalar_shl #U16 #ty
-let u32_shl #ty = scalar_shl #U32 #ty
-let u64_shl #ty = scalar_shl #U64 #ty
-let u128_shl #ty = scalar_shl #U128 #ty
-let usize_shl #ty = scalar_shl #Usize #ty
-let i8_shl #ty = scalar_shl #I8 #ty
-let i16_shl #ty = scalar_shl #I16 #ty
-let i32_shl #ty = scalar_shl #I32 #ty
-let i64_shl #ty = scalar_shl #I64 #ty
-let i128_shl #ty = scalar_shl #I128 #ty
-let isize_shl #ty = scalar_shl #Isize #ty
-
-/// Shift right
-let u8_shr #ty = scalar_shr #U8 #ty
-let u16_shr #ty = scalar_shr #U16 #ty
-let u32_shr #ty = scalar_shr #U32 #ty
-let u64_shr #ty = scalar_shr #U64 #ty
-let u128_shr #ty = scalar_shr #U128 #ty
-let usize_shr #ty = scalar_shr #Usize #ty
-let i8_shr #ty = scalar_shr #I8 #ty
-let i16_shr #ty = scalar_shr #I16 #ty
-let i32_shr #ty = scalar_shr #I32 #ty
-let i64_shr #ty = scalar_shr #I64 #ty
-let i128_shr #ty = scalar_shr #I128 #ty
-let isize_shr #ty = scalar_shr #Isize #ty
-
-(*** core::ops *)
-
-// Trait declaration: [core::ops::index::Index]
-noeq type core_ops_index_Index (self idx : Type0) = {
- output : Type0;
- index : self → idx → result output
-}
-
-// Trait declaration: [core::ops::index::IndexMut]
-noeq type core_ops_index_IndexMut (self idx : Type0) = {
- indexInst : core_ops_index_Index self idx;
- index_mut : self → idx → result indexInst.output;
- index_mut_back : self → idx → indexInst.output → result self;
-}
-
-// Trait declaration [core::ops::deref::Deref]
-noeq type core_ops_deref_Deref (self : Type0) = {
- target : Type0;
- deref : self → result target;
-}
-
-// Trait declaration [core::ops::deref::DerefMut]
-noeq type core_ops_deref_DerefMut (self : Type0) = {
- derefInst : core_ops_deref_Deref self;
- deref_mut : self → result derefInst.target;
- deref_mut_back : self → derefInst.target → result self;
-}
-
-type core_ops_range_Range (a : Type0) = {
- start : a;
- end_ : a;
-}
-
-(*** [alloc] *)
-
-let alloc_boxed_Box_deref (t : Type0) (x : t) : result t = Return x
-let alloc_boxed_Box_deref_mut (t : Type0) (x : t) : result t = Return x
-let alloc_boxed_Box_deref_mut_back (t : Type) (_ : t) (x : t) : result t = Return x
-
-// Trait instance
-let alloc_boxed_Box_coreopsDerefInst (self : Type0) : core_ops_deref_Deref self = {
- target = self;
- deref = alloc_boxed_Box_deref self;
-}
-
-// Trait instance
-let alloc_boxed_Box_coreopsDerefMutInst (self : Type0) : core_ops_deref_DerefMut self = {
- derefInst = alloc_boxed_Box_coreopsDerefInst self;
- deref_mut = alloc_boxed_Box_deref_mut self;
- deref_mut_back = alloc_boxed_Box_deref_mut_back self;
-}
-
-(*** Array *)
-type array (a : Type0) (n : usize) = s:list a{length s = n}
-
-// We tried putting the normalize_term condition as a refinement on the list
-// but it didn't work. It works with the requires clause.
-let mk_array (a : Type0) (n : usize)
- (l : list a) :
- Pure (array a n)
- (requires (normalize_term(FStar.List.Tot.length l) = n))
- (ensures (fun _ -> True)) =
- normalize_term_spec (FStar.List.Tot.length l);
- l
-
-let array_index_usize (a : Type0) (n : usize) (x : array a n) (i : usize) : result a =
- if i < length x then Return (index x i)
- else Fail Failure
-
-let array_update_usize (a : Type0) (n : usize) (x : array a n) (i : usize) (nx : a) : result (array a n) =
- if i < length x then Return (list_update x i nx)
- else Fail Failure
-
-(*** Slice *)
-type slice (a : Type0) = s:list a{length s <= usize_max}
-
-let slice_len (a : Type0) (s : slice a) : usize = length s
-
-let slice_index_usize (a : Type0) (x : slice a) (i : usize) : result a =
- if i < length x then Return (index x i)
- else Fail Failure
-
-let slice_update_usize (a : Type0) (x : slice a) (i : usize) (nx : a) : result (slice a) =
- if i < length x then Return (list_update x i nx)
- else Fail Failure
-
-(*** Subslices *)
-
-let array_to_slice (a : Type0) (n : usize) (x : array a n) : result (slice a) = Return x
-let array_from_slice (a : Type0) (n : usize) (x : array a n) (s : slice a) : result (array a n) =
- if length s = n then Return s
- else Fail Failure
-
-// TODO: finish the definitions below (there lacks [List.drop] and [List.take] in the standard library *)
-let array_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) : result (slice a) =
- admit()
-
-let array_update_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) (ns : slice a) : result (array a n) =
- admit()
-
-let array_repeat (a : Type0) (n : usize) (x : a) : array a n =
- admit()
-
-let slice_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) : result (slice a) =
- admit()
-
-let slice_update_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) (ns : slice a) : result (slice a) =
- admit()
-
-(*** Vector *)
-type alloc_vec_Vec (a : Type0) = v:list a{length v <= usize_max}
-
-let alloc_vec_Vec_new (a : Type0) : alloc_vec_Vec a = assert_norm(length #a [] == 0); []
-let alloc_vec_Vec_len (a : Type0) (v : alloc_vec_Vec a) : usize = length v
-
-// Helper
-let alloc_vec_Vec_index_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : result a =
- if i < length v then Return (index v i) else Fail Failure
-// Helper
-let alloc_vec_Vec_update_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) =
- if i < length v then Return (list_update v i x) else Fail Failure
-
-// The **forward** function shouldn't be used
-let alloc_vec_Vec_push_fwd (a : Type0) (v : alloc_vec_Vec a) (x : a) : unit = ()
-let alloc_vec_Vec_push (a : Type0) (v : alloc_vec_Vec a) (x : a) :
- Pure (result (alloc_vec_Vec a))
- (requires True)
- (ensures (fun res ->
- match res with
- | Fail e -> e == Failure
- | Return v' -> length v' = length v + 1)) =
- if length v < usize_max then begin
- (**) assert_norm(length [x] == 1);
- (**) append_length v [x];
- (**) assert(length (append v [x]) = length v + 1);
- Return (append v [x])
- end
- else Fail Failure
-
-// The **forward** function shouldn't be used
-let alloc_vec_Vec_insert_fwd (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result unit =
- if i < length v then Return () else Fail Failure
-let alloc_vec_Vec_insert (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) =
- if i < length v then Return (list_update v i x) else Fail Failure
-
-// Trait declaration: [core::slice::index::private_slice_index::Sealed]
-type core_slice_index_private_slice_index_Sealed (self : Type0) = unit
-
-// Trait declaration: [core::slice::index::SliceIndex]
-noeq type core_slice_index_SliceIndex (self t : Type0) = {
- sealedInst : core_slice_index_private_slice_index_Sealed self;
- output : Type0;
- get : self → t → result (option output);
- get_mut : self → t → result (option output);
- get_mut_back : self → t → option output → result t;
- get_unchecked : self → const_raw_ptr t → result (const_raw_ptr output);
- get_unchecked_mut : self → mut_raw_ptr t → result (mut_raw_ptr output);
- index : self → t → result output;
- index_mut : self → t → result output;
- index_mut_back : self → t → output → result t;
-}
-
-// [core::slice::index::[T]::index]: forward function
-let core_slice_index_Slice_index
- (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
- (s : slice t) (i : idx) : result inst.output =
- let* x = inst.get i s in
- match x with
- | None -> Fail Failure
- | Some x -> Return x
-
-// [core::slice::index::Range:::get]: forward function
-let core_slice_index_RangeUsize_get (t : Type0) (i : core_ops_range_Range usize) (s : slice t) :
- result (option (slice t)) =
- admit () // TODO
-
-// [core::slice::index::Range::get_mut]: forward function
-let core_slice_index_RangeUsize_get_mut
- (t : Type0) : core_ops_range_Range usize → slice t → result (option (slice t)) =
- admit () // TODO
-
-// [core::slice::index::Range::get_mut]: backward function 0
-let core_slice_index_RangeUsize_get_mut_back
- (t : Type0) :
- core_ops_range_Range usize → slice t → option (slice t) → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::Range::get_unchecked]: forward function
-let core_slice_index_RangeUsize_get_unchecked
- (t : Type0) :
- core_ops_range_Range usize → const_raw_ptr (slice t) → result (const_raw_ptr (slice t)) =
- // Don't know what the model should be - for now we always fail to make
- // sure code which uses it fails
- fun _ _ -> Fail Failure
-
-// [core::slice::index::Range::get_unchecked_mut]: forward function
-let core_slice_index_RangeUsize_get_unchecked_mut
- (t : Type0) :
- core_ops_range_Range usize → mut_raw_ptr (slice t) → result (mut_raw_ptr (slice t)) =
- // Don't know what the model should be - for now we always fail to make
- // sure code which uses it fails
- fun _ _ -> Fail Failure
-
-// [core::slice::index::Range::index]: forward function
-let core_slice_index_RangeUsize_index
- (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::Range::index_mut]: forward function
-let core_slice_index_RangeUsize_index_mut
- (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::Range::index_mut]: backward function 0
-let core_slice_index_RangeUsize_index_mut_back
- (t : Type0) : core_ops_range_Range usize → slice t → slice t → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::[T]::index_mut]: forward function
-let core_slice_index_Slice_index_mut
- (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) :
- slice t → idx → result inst.output =
- admit () //
-
-// [core::slice::index::[T]::index_mut]: backward function 0
-let core_slice_index_Slice_index_mut_back
- (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) :
- slice t → idx → inst.output → result (slice t) =
- admit () // TODO
-
-// [core::array::[T; N]::index]: forward function
-let core_array_Array_index
- (t idx : Type0) (n : usize) (inst : core_ops_index_Index (slice t) idx)
- (a : array t n) (i : idx) : result inst.output =
- admit () // TODO
-
-// [core::array::[T; N]::index_mut]: forward function
-let core_array_Array_index_mut
- (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx)
- (a : array t n) (i : idx) : result inst.indexInst.output =
- admit () // TODO
-
-// [core::array::[T; N]::index_mut]: backward function 0
-let core_array_Array_index_mut_back
- (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx)
- (a : array t n) (i : idx) (x : inst.indexInst.output) : result (array t n) =
- admit () // TODO
-
-// Trait implementation: [core::slice::index::private_slice_index::Range]
-let core_slice_index_private_slice_index_SealedRangeUsizeInst
- : core_slice_index_private_slice_index_Sealed (core_ops_range_Range usize) = ()
-
-// Trait implementation: [core::slice::index::Range]
-let core_slice_index_SliceIndexRangeUsizeSliceTInst (t : Type0) :
- core_slice_index_SliceIndex (core_ops_range_Range usize) (slice t) = {
- sealedInst = core_slice_index_private_slice_index_SealedRangeUsizeInst;
- output = slice t;
- get = core_slice_index_RangeUsize_get t;
- get_mut = core_slice_index_RangeUsize_get_mut t;
- get_mut_back = core_slice_index_RangeUsize_get_mut_back t;
- get_unchecked = core_slice_index_RangeUsize_get_unchecked t;
- get_unchecked_mut = core_slice_index_RangeUsize_get_unchecked_mut t;
- index = core_slice_index_RangeUsize_index t;
- index_mut = core_slice_index_RangeUsize_index_mut t;
- index_mut_back = core_slice_index_RangeUsize_index_mut_back t;
-}
-
-// Trait implementation: [core::slice::index::[T]]
-let core_ops_index_IndexSliceTIInst (t idx : Type0)
- (inst : core_slice_index_SliceIndex idx (slice t)) :
- core_ops_index_Index (slice t) idx = {
- output = inst.output;
- index = core_slice_index_Slice_index t idx inst;
-}
-
-// Trait implementation: [core::slice::index::[T]]
-let core_ops_index_IndexMutSliceTIInst (t idx : Type0)
- (inst : core_slice_index_SliceIndex idx (slice t)) :
- core_ops_index_IndexMut (slice t) idx = {
- indexInst = core_ops_index_IndexSliceTIInst t idx inst;
- index_mut = core_slice_index_Slice_index_mut t idx inst;
- index_mut_back = core_slice_index_Slice_index_mut_back t idx inst;
-}
-
-// Trait implementation: [core::array::[T; N]]
-let core_ops_index_IndexArrayInst (t idx : Type0) (n : usize)
- (inst : core_ops_index_Index (slice t) idx) :
- core_ops_index_Index (array t n) idx = {
- output = inst.output;
- index = core_array_Array_index t idx n inst;
-}
-
-// Trait implementation: [core::array::[T; N]]
-let core_ops_index_IndexMutArrayIInst (t idx : Type0) (n : usize)
- (inst : core_ops_index_IndexMut (slice t) idx) :
- core_ops_index_IndexMut (array t n) idx = {
- indexInst = core_ops_index_IndexArrayInst t idx n inst.indexInst;
- index_mut = core_array_Array_index_mut t idx n inst;
- index_mut_back = core_array_Array_index_mut_back t idx n inst;
-}
-
-// [core::slice::index::usize::get]: forward function
-let core_slice_index_usize_get
- (t : Type0) : usize → slice t → result (option t) =
- admit () // TODO
-
-// [core::slice::index::usize::get_mut]: forward function
-let core_slice_index_usize_get_mut
- (t : Type0) : usize → slice t → result (option t) =
- admit () // TODO
-
-// [core::slice::index::usize::get_mut]: backward function 0
-let core_slice_index_usize_get_mut_back
- (t : Type0) : usize → slice t → option t → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::usize::get_unchecked]: forward function
-let core_slice_index_usize_get_unchecked
- (t : Type0) : usize → const_raw_ptr (slice t) → result (const_raw_ptr t) =
- admit () // TODO
-
-// [core::slice::index::usize::get_unchecked_mut]: forward function
-let core_slice_index_usize_get_unchecked_mut
- (t : Type0) : usize → mut_raw_ptr (slice t) → result (mut_raw_ptr t) =
- admit () // TODO
-
-// [core::slice::index::usize::index]: forward function
-let core_slice_index_usize_index (t : Type0) : usize → slice t → result t =
- admit () // TODO
-
-// [core::slice::index::usize::index_mut]: forward function
-let core_slice_index_usize_index_mut (t : Type0) : usize → slice t → result t =
- admit () // TODO
-
-// [core::slice::index::usize::index_mut]: backward function 0
-let core_slice_index_usize_index_mut_back
- (t : Type0) : usize → slice t → t → result (slice t) =
- admit () // TODO
-
-// Trait implementation: [core::slice::index::private_slice_index::usize]
-let core_slice_index_private_slice_index_SealedUsizeInst
- : core_slice_index_private_slice_index_Sealed usize = ()
-
-// Trait implementation: [core::slice::index::usize]
-let core_slice_index_SliceIndexUsizeSliceTInst (t : Type0) :
- core_slice_index_SliceIndex usize (slice t) = {
- sealedInst = core_slice_index_private_slice_index_SealedUsizeInst;
- output = t;
- get = core_slice_index_usize_get t;
- get_mut = core_slice_index_usize_get_mut t;
- get_mut_back = core_slice_index_usize_get_mut_back t;
- get_unchecked = core_slice_index_usize_get_unchecked t;
- get_unchecked_mut = core_slice_index_usize_get_unchecked_mut t;
- index = core_slice_index_usize_index t;
- index_mut = core_slice_index_usize_index_mut t;
- index_mut_back = core_slice_index_usize_index_mut_back t;
-}
-
-// [alloc::vec::Vec::index]: forward function
-let alloc_vec_Vec_index (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
- (self : alloc_vec_Vec t) (i : idx) : result inst.output =
- admit () // TODO
-
-// [alloc::vec::Vec::index_mut]: forward function
-let alloc_vec_Vec_index_mut (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
- (self : alloc_vec_Vec t) (i : idx) : result inst.output =
- admit () // TODO
-
-// [alloc::vec::Vec::index_mut]: backward function 0
-let alloc_vec_Vec_index_mut_back
- (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
- (self : alloc_vec_Vec t) (i : idx) (x : inst.output) : result (alloc_vec_Vec t) =
- admit () // TODO
-
-// Trait implementation: [alloc::vec::Vec]
-let alloc_vec_Vec_coreopsindexIndexInst (t idx : Type0)
- (inst : core_slice_index_SliceIndex idx (slice t)) :
- core_ops_index_Index (alloc_vec_Vec t) idx = {
- output = inst.output;
- index = alloc_vec_Vec_index t idx inst;
-}
-
-// Trait implementation: [alloc::vec::Vec]
-let alloc_vec_Vec_coreopsindexIndexMutInst (t idx : Type0)
- (inst : core_slice_index_SliceIndex idx (slice t)) :
- core_ops_index_IndexMut (alloc_vec_Vec t) idx = {
- indexInst = alloc_vec_Vec_coreopsindexIndexInst t idx inst;
- index_mut = alloc_vec_Vec_index_mut t idx inst;
- index_mut_back = alloc_vec_Vec_index_mut_back t idx inst;
-}
-
-(*** Theorems *)
-
-let alloc_vec_Vec_index_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) :
- Lemma (
- alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i ==
- alloc_vec_Vec_index_usize v i)
- [SMTPat (alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)]
- =
- admit()
-
-let alloc_vec_Vec_index_mut_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) :
- Lemma (
- alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i ==
- alloc_vec_Vec_index_usize v i)
- [SMTPat (alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)]
- =
- admit()
-
-let alloc_vec_Vec_index_mut_back_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) :
- Lemma (
- alloc_vec_Vec_index_mut_back a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i x ==
- alloc_vec_Vec_update_usize v i x)
- [SMTPat (alloc_vec_Vec_index_mut_back a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i x)]
- =
- admit()
diff --git a/tests/fstar-split/demo/Demo.fst b/tests/fstar-split/demo/Demo.fst
deleted file mode 100644
index ab746157..00000000
--- a/tests/fstar-split/demo/Demo.fst
+++ /dev/null
@@ -1,187 +0,0 @@
-(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)
-(** [demo] *)
-module Demo
-open Primitives
-
-#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
-
-(** [demo::choose]: forward function
- Source: 'src/demo.rs', lines 5:0-5:70 *)
-let choose (t : Type0) (b : bool) (x : t) (y : t) : result t =
- if b then Return x else Return y
-
-(** [demo::choose]: backward function 0
- Source: 'src/demo.rs', lines 5:0-5:70 *)
-let choose_back
- (t : Type0) (b : bool) (x : t) (y : t) (ret : t) : result (t & t) =
- if b then Return (ret, y) else Return (x, ret)
-
-(** [demo::mul2_add1]: forward function
- Source: 'src/demo.rs', lines 13:0-13:31 *)
-let mul2_add1 (x : u32) : result u32 =
- let* i = u32_add x x in u32_add i 1
-
-(** [demo::use_mul2_add1]: forward function
- Source: 'src/demo.rs', lines 17:0-17:43 *)
-let use_mul2_add1 (x : u32) (y : u32) : result u32 =
- let* i = mul2_add1 x in u32_add i y
-
-(** [demo::incr]: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/demo.rs', lines 21:0-21:31 *)
-let incr (x : u32) : result u32 =
- u32_add x 1
-
-(** [demo::CList]
- Source: 'src/demo.rs', lines 27:0-27:17 *)
-type cList_t (t : Type0) =
-| CList_CCons : t -> cList_t t -> cList_t t
-| CList_CNil : cList_t t
-
-(** [demo::list_nth]: forward function
- Source: 'src/demo.rs', lines 32:0-32:56 *)
-let rec list_nth (t : Type0) (n : nat) (l : cList_t t) (i : u32) : result t =
- if is_zero n
- then Fail OutOfFuel
- else
- let n1 = decrease n in
- begin match l with
- | CList_CCons x tl ->
- if i = 0 then Return x else let* i1 = u32_sub i 1 in list_nth t n1 tl i1
- | CList_CNil -> Fail Failure
- end
-
-(** [demo::list_nth_mut]: forward function
- Source: 'src/demo.rs', lines 47:0-47:68 *)
-let rec list_nth_mut
- (t : Type0) (n : nat) (l : cList_t t) (i : u32) : result t =
- if is_zero n
- then Fail OutOfFuel
- else
- let n1 = decrease n in
- begin match l with
- | CList_CCons x tl ->
- if i = 0
- then Return x
- else let* i1 = u32_sub i 1 in list_nth_mut t n1 tl i1
- | CList_CNil -> Fail Failure
- end
-
-(** [demo::list_nth_mut]: backward function 0
- Source: 'src/demo.rs', lines 47:0-47:68 *)
-let rec list_nth_mut_back
- (t : Type0) (n : nat) (l : cList_t t) (i : u32) (ret : t) :
- result (cList_t t)
- =
- if is_zero n
- then Fail OutOfFuel
- else
- let n1 = decrease n in
- begin match l with
- | CList_CCons x tl ->
- if i = 0
- then Return (CList_CCons ret tl)
- else
- let* i1 = u32_sub i 1 in
- let* tl1 = list_nth_mut_back t n1 tl i1 ret in
- Return (CList_CCons x tl1)
- | CList_CNil -> Fail Failure
- end
-
-(** [demo::list_nth_mut1]: loop 0: forward function
- Source: 'src/demo.rs', lines 62:0-71:1 *)
-let rec list_nth_mut1_loop
- (t : Type0) (n : nat) (l : cList_t t) (i : u32) : result t =
- if is_zero n
- then Fail OutOfFuel
- else
- let n1 = decrease n in
- begin match l with
- | CList_CCons x tl ->
- if i = 0
- then Return x
- else let* i1 = u32_sub i 1 in list_nth_mut1_loop t n1 tl i1
- | CList_CNil -> Fail Failure
- end
-
-(** [demo::list_nth_mut1]: forward function
- Source: 'src/demo.rs', lines 62:0-62:77 *)
-let list_nth_mut1 (t : Type0) (n : nat) (l : cList_t t) (i : u32) : result t =
- list_nth_mut1_loop t n l i
-
-(** [demo::list_nth_mut1]: loop 0: backward function 0
- Source: 'src/demo.rs', lines 62:0-71:1 *)
-let rec list_nth_mut1_loop_back
- (t : Type0) (n : nat) (l : cList_t t) (i : u32) (ret : t) :
- result (cList_t t)
- =
- if is_zero n
- then Fail OutOfFuel
- else
- let n1 = decrease n in
- begin match l with
- | CList_CCons x tl ->
- if i = 0
- then Return (CList_CCons ret tl)
- else
- let* i1 = u32_sub i 1 in
- let* tl1 = list_nth_mut1_loop_back t n1 tl i1 ret in
- Return (CList_CCons x tl1)
- | CList_CNil -> Fail Failure
- end
-
-(** [demo::list_nth_mut1]: backward function 0
- Source: 'src/demo.rs', lines 62:0-62:77 *)
-let list_nth_mut1_back
- (t : Type0) (n : nat) (l : cList_t t) (i : u32) (ret : t) :
- result (cList_t t)
- =
- list_nth_mut1_loop_back t n l i ret
-
-(** [demo::i32_id]: forward function
- Source: 'src/demo.rs', lines 73:0-73:28 *)
-let rec i32_id (n : nat) (i : i32) : result i32 =
- if is_zero n
- then Fail OutOfFuel
- else
- let n1 = decrease n in
- if i = 0
- then Return 0
- else let* i1 = i32_sub i 1 in let* i2 = i32_id n1 i1 in i32_add i2 1
-
-(** Trait declaration: [demo::Counter]
- Source: 'src/demo.rs', lines 83:0-83:17 *)
-noeq type counter_t (self : Type0) = {
- incr : self -> result usize;
- incr_back : self -> result self;
-}
-
-(** [demo::{usize}::incr]: forward function
- Source: 'src/demo.rs', lines 88:4-88:31 *)
-let usize_incr (self : usize) : result usize =
- let* _ = usize_add self 1 in Return self
-
-(** [demo::{usize}::incr]: backward function 0
- Source: 'src/demo.rs', lines 88:4-88:31 *)
-let usize_incr_back (self : usize) : result usize =
- usize_add self 1
-
-(** Trait implementation: [demo::{usize}]
- Source: 'src/demo.rs', lines 87:0-87:22 *)
-let demo_CounterUsizeInst : counter_t usize = {
- incr = usize_incr;
- incr_back = usize_incr_back;
-}
-
-(** [demo::use_counter]: forward function
- Source: 'src/demo.rs', lines 95:0-95:59 *)
-let use_counter
- (t : Type0) (counterTInst : counter_t t) (cnt : t) : result usize =
- counterTInst.incr cnt
-
-(** [demo::use_counter]: backward function 0
- Source: 'src/demo.rs', lines 95:0-95:59 *)
-let use_counter_back
- (t : Type0) (counterTInst : counter_t t) (cnt : t) : result t =
- counterTInst.incr_back cnt
-
diff --git a/tests/fstar-split/demo/Makefile b/tests/fstar-split/demo/Makefile
deleted file mode 100644
index fa7d1f36..00000000
--- a/tests/fstar-split/demo/Makefile
+++ /dev/null
@@ -1,49 +0,0 @@
-# This file was automatically generated - modify ../Makefile.template instead
-INCLUDE_DIRS = .
-
-FSTAR_INCLUDES = $(addprefix --include ,$(INCLUDE_DIRS))
-
-FSTAR_HINTS ?= --use_hints --use_hint_hashes --record_hints
-
-FSTAR_OPTIONS = $(FSTAR_HINTS) \
- --cache_checked_modules $(FSTAR_INCLUDES) --cmi \
- --warn_error '+241@247+285-274' \
-
-FSTAR_EXE ?= fstar.exe
-FSTAR_NO_FLAGS = $(FSTAR_EXE) --already_cached 'Prims FStar LowStar Steel' --odir obj --cache_dir obj
-
-FSTAR = $(FSTAR_NO_FLAGS) $(FSTAR_OPTIONS)
-
-# The F* roots are used to compute the dependency graph, and generate the .depend file
-FSTAR_ROOTS ?= $(wildcard *.fst *.fsti)
-
-# Build all the files
-all: $(addprefix obj/,$(addsuffix .checked,$(FSTAR_ROOTS)))
-
-# This is the right way to ensure the .depend file always gets re-built.
-ifeq (,$(filter %-in,$(MAKECMDGOALS)))
-ifndef NODEPEND
-ifndef MAKE_RESTARTS
-.depend: .FORCE
- $(FSTAR_NO_FLAGS) --dep full $(notdir $(FSTAR_ROOTS)) > $@
-
-.PHONY: .FORCE
-.FORCE:
-endif
-endif
-
-include .depend
-endif
-
-# For the interactive mode
-%.fst-in %.fsti-in:
- @echo $(FSTAR_OPTIONS)
-
-# Generete the .checked files in batch mode
-%.checked:
- $(FSTAR) $(FSTAR_OPTIONS) $< && \
- touch -c $@
-
-.PHONY: clean
-clean:
- rm -f obj/*
diff --git a/tests/fstar-split/demo/Primitives.fst b/tests/fstar-split/demo/Primitives.fst
deleted file mode 100644
index a3ffbde4..00000000
--- a/tests/fstar-split/demo/Primitives.fst
+++ /dev/null
@@ -1,884 +0,0 @@
-/// This file lists primitive and assumed functions and types
-module Primitives
-open FStar.Mul
-open FStar.List.Tot
-
-#set-options "--z3rlimit 15 --fuel 0 --ifuel 1"
-
-(*** Utilities *)
-val list_update (#a : Type0) (ls : list a) (i : nat{i < length ls}) (x : a) :
- ls':list a{
- length ls' = length ls /\
- index ls' i == x
- }
-#push-options "--fuel 1"
-let rec list_update #a ls i x =
- match ls with
- | x' :: ls -> if i = 0 then x :: ls else x' :: list_update ls (i-1) x
-#pop-options
-
-(*** Result *)
-type error : Type0 =
-| Failure
-| OutOfFuel
-
-type result (a : Type0) : Type0 =
-| Return : v:a -> result a
-| Fail : e:error -> result a
-
-// Monadic return operator
-unfold let return (#a : Type0) (x : a) : result a = Return x
-
-// Monadic bind operator.
-// Allows to use the notation:
-// ```
-// let* x = y in
-// ...
-// ```
-unfold let (let*) (#a #b : Type0) (m: result a)
- (f: (x:a) -> Pure (result b) (requires (m == Return x)) (ensures fun _ -> True)) :
- result b =
- match m with
- | Return x -> f x
- | Fail e -> Fail e
-
-// Monadic assert(...)
-let massert (b:bool) : result unit = if b then Return () else Fail Failure
-
-// Normalize and unwrap a successful result (used for globals).
-let eval_global (#a : Type0) (x : result a{Return? (normalize_term x)}) : a = Return?.v x
-
-(*** Misc *)
-type char = FStar.Char.char
-type string = string
-
-let is_zero (n: nat) : bool = n = 0
-let decrease (n: nat{n > 0}) : nat = n - 1
-
-let core_mem_replace (a : Type0) (x : a) (y : a) : a = x
-let core_mem_replace_back (a : Type0) (x : a) (y : a) : a = y
-
-// We don't really use raw pointers for now
-type mut_raw_ptr (t : Type0) = { v : t }
-type const_raw_ptr (t : Type0) = { v : t }
-
-(*** Scalars *)
-/// Rem.: most of the following code was partially generated
-
-assume val size_numbits : pos
-
-// TODO: we could use FStar.Int.int_t and FStar.UInt.int_t
-
-let isize_min : int = -9223372036854775808 // TODO: should be opaque
-let isize_max : int = 9223372036854775807 // TODO: should be opaque
-let i8_min : int = -128
-let i8_max : int = 127
-let i16_min : int = -32768
-let i16_max : int = 32767
-let i32_min : int = -2147483648
-let i32_max : int = 2147483647
-let i64_min : int = -9223372036854775808
-let i64_max : int = 9223372036854775807
-let i128_min : int = -170141183460469231731687303715884105728
-let i128_max : int = 170141183460469231731687303715884105727
-let usize_min : int = 0
-let usize_max : int = 4294967295 // TODO: should be opaque
-let u8_min : int = 0
-let u8_max : int = 255
-let u16_min : int = 0
-let u16_max : int = 65535
-let u32_min : int = 0
-let u32_max : int = 4294967295
-let u64_min : int = 0
-let u64_max : int = 18446744073709551615
-let u128_min : int = 0
-let u128_max : int = 340282366920938463463374607431768211455
-
-type scalar_ty =
-| Isize
-| I8
-| I16
-| I32
-| I64
-| I128
-| Usize
-| U8
-| U16
-| U32
-| U64
-| U128
-
-let is_unsigned = function
- | Isize | I8 | I16 | I32 | I64 | I128 -> false
- | Usize | U8 | U16 | U32 | U64 | U128 -> true
-
-let scalar_min (ty : scalar_ty) : int =
- match ty with
- | Isize -> isize_min
- | I8 -> i8_min
- | I16 -> i16_min
- | I32 -> i32_min
- | I64 -> i64_min
- | I128 -> i128_min
- | Usize -> usize_min
- | U8 -> u8_min
- | U16 -> u16_min
- | U32 -> u32_min
- | U64 -> u64_min
- | U128 -> u128_min
-
-let scalar_max (ty : scalar_ty) : int =
- match ty with
- | Isize -> isize_max
- | I8 -> i8_max
- | I16 -> i16_max
- | I32 -> i32_max
- | I64 -> i64_max
- | I128 -> i128_max
- | Usize -> usize_max
- | U8 -> u8_max
- | U16 -> u16_max
- | U32 -> u32_max
- | U64 -> u64_max
- | U128 -> u128_max
-
-type scalar (ty : scalar_ty) : eqtype = x:int{scalar_min ty <= x && x <= scalar_max ty}
-
-let mk_scalar (ty : scalar_ty) (x : int) : result (scalar ty) =
- if scalar_min ty <= x && scalar_max ty >= x then Return x else Fail Failure
-
-let scalar_neg (#ty : scalar_ty) (x : scalar ty) : result (scalar ty) = mk_scalar ty (-x)
-
-let scalar_div (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- if y <> 0 then mk_scalar ty (x / y) else Fail Failure
-
-/// The remainder operation
-let int_rem (x : int) (y : int{y <> 0}) : int =
- if x >= 0 then (x % y) else -(x % y)
-
-(* Checking consistency with Rust *)
-let _ = assert_norm(int_rem 1 2 = 1)
-let _ = assert_norm(int_rem (-1) 2 = -1)
-let _ = assert_norm(int_rem 1 (-2) = 1)
-let _ = assert_norm(int_rem (-1) (-2) = -1)
-
-let scalar_rem (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- if y <> 0 then mk_scalar ty (int_rem x y) else Fail Failure
-
-let scalar_add (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- mk_scalar ty (x + y)
-
-let scalar_sub (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- mk_scalar ty (x - y)
-
-let scalar_mul (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- mk_scalar ty (x * y)
-
-let scalar_xor (#ty : scalar_ty)
- (x : scalar ty) (y : scalar ty) : scalar ty =
- match ty with
- | U8 -> FStar.UInt.logxor #8 x y
- | U16 -> FStar.UInt.logxor #16 x y
- | U32 -> FStar.UInt.logxor #32 x y
- | U64 -> FStar.UInt.logxor #64 x y
- | U128 -> FStar.UInt.logxor #128 x y
- | Usize -> admit() // TODO
- | I8 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 8);
- normalize_spec (scalar I8);
- FStar.Int.logxor #8 x y
- | I16 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 16);
- normalize_spec (scalar I16);
- FStar.Int.logxor #16 x y
- | I32 -> FStar.Int.logxor #32 x y
- | I64 -> FStar.Int.logxor #64 x y
- | I128 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 128);
- normalize_spec (scalar I128);
- FStar.Int.logxor #128 x y
- | Isize -> admit() // TODO
-
-let scalar_or (#ty : scalar_ty)
- (x : scalar ty) (y : scalar ty) : scalar ty =
- match ty with
- | U8 -> FStar.UInt.logor #8 x y
- | U16 -> FStar.UInt.logor #16 x y
- | U32 -> FStar.UInt.logor #32 x y
- | U64 -> FStar.UInt.logor #64 x y
- | U128 -> FStar.UInt.logor #128 x y
- | Usize -> admit() // TODO
- | I8 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 8);
- normalize_spec (scalar I8);
- FStar.Int.logor #8 x y
- | I16 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 16);
- normalize_spec (scalar I16);
- FStar.Int.logor #16 x y
- | I32 -> FStar.Int.logor #32 x y
- | I64 -> FStar.Int.logor #64 x y
- | I128 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 128);
- normalize_spec (scalar I128);
- FStar.Int.logor #128 x y
- | Isize -> admit() // TODO
-
-let scalar_and (#ty : scalar_ty)
- (x : scalar ty) (y : scalar ty) : scalar ty =
- match ty with
- | U8 -> FStar.UInt.logand #8 x y
- | U16 -> FStar.UInt.logand #16 x y
- | U32 -> FStar.UInt.logand #32 x y
- | U64 -> FStar.UInt.logand #64 x y
- | U128 -> FStar.UInt.logand #128 x y
- | Usize -> admit() // TODO
- | I8 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 8);
- normalize_spec (scalar I8);
- FStar.Int.logand #8 x y
- | I16 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 16);
- normalize_spec (scalar I16);
- FStar.Int.logand #16 x y
- | I32 -> FStar.Int.logand #32 x y
- | I64 -> FStar.Int.logand #64 x y
- | I128 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 128);
- normalize_spec (scalar I128);
- FStar.Int.logand #128 x y
- | Isize -> admit() // TODO
-
-// Shift left
-let scalar_shl (#ty0 #ty1 : scalar_ty)
- (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) =
- admit()
-
-// Shift right
-let scalar_shr (#ty0 #ty1 : scalar_ty)
- (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) =
- admit()
-
-(** Cast an integer from a [src_ty] to a [tgt_ty] *)
-// TODO: check the semantics of casts in Rust
-let scalar_cast (src_ty : scalar_ty) (tgt_ty : scalar_ty) (x : scalar src_ty) : result (scalar tgt_ty) =
- mk_scalar tgt_ty x
-
-// This can't fail, but for now we make all casts faillible (easier for the translation)
-let scalar_cast_bool (tgt_ty : scalar_ty) (x : bool) : result (scalar tgt_ty) =
- mk_scalar tgt_ty (if x then 1 else 0)
-
-/// The scalar types
-type isize : eqtype = scalar Isize
-type i8 : eqtype = scalar I8
-type i16 : eqtype = scalar I16
-type i32 : eqtype = scalar I32
-type i64 : eqtype = scalar I64
-type i128 : eqtype = scalar I128
-type usize : eqtype = scalar Usize
-type u8 : eqtype = scalar U8
-type u16 : eqtype = scalar U16
-type u32 : eqtype = scalar U32
-type u64 : eqtype = scalar U64
-type u128 : eqtype = scalar U128
-
-
-let core_isize_min : isize = isize_min
-let core_isize_max : isize = isize_max
-let core_i8_min : i8 = i8_min
-let core_i8_max : i8 = i8_max
-let core_i16_min : i16 = i16_min
-let core_i16_max : i16 = i16_max
-let core_i32_min : i32 = i32_min
-let core_i32_max : i32 = i32_max
-let core_i64_min : i64 = i64_min
-let core_i64_max : i64 = i64_max
-let core_i128_min : i128 = i128_min
-let core_i128_max : i128 = i128_max
-
-let core_usize_min : usize = usize_min
-let core_usize_max : usize = usize_max
-let core_u8_min : u8 = u8_min
-let core_u8_max : u8 = u8_max
-let core_u16_min : u16 = u16_min
-let core_u16_max : u16 = u16_max
-let core_u32_min : u32 = u32_min
-let core_u32_max : u32 = u32_max
-let core_u64_min : u64 = u64_min
-let core_u64_max : u64 = u64_max
-let core_u128_min : u128 = u128_min
-let core_u128_max : u128 = u128_max
-
-/// Negation
-let isize_neg = scalar_neg #Isize
-let i8_neg = scalar_neg #I8
-let i16_neg = scalar_neg #I16
-let i32_neg = scalar_neg #I32
-let i64_neg = scalar_neg #I64
-let i128_neg = scalar_neg #I128
-
-/// Division
-let isize_div = scalar_div #Isize
-let i8_div = scalar_div #I8
-let i16_div = scalar_div #I16
-let i32_div = scalar_div #I32
-let i64_div = scalar_div #I64
-let i128_div = scalar_div #I128
-let usize_div = scalar_div #Usize
-let u8_div = scalar_div #U8
-let u16_div = scalar_div #U16
-let u32_div = scalar_div #U32
-let u64_div = scalar_div #U64
-let u128_div = scalar_div #U128
-
-/// Remainder
-let isize_rem = scalar_rem #Isize
-let i8_rem = scalar_rem #I8
-let i16_rem = scalar_rem #I16
-let i32_rem = scalar_rem #I32
-let i64_rem = scalar_rem #I64
-let i128_rem = scalar_rem #I128
-let usize_rem = scalar_rem #Usize
-let u8_rem = scalar_rem #U8
-let u16_rem = scalar_rem #U16
-let u32_rem = scalar_rem #U32
-let u64_rem = scalar_rem #U64
-let u128_rem = scalar_rem #U128
-
-/// Addition
-let isize_add = scalar_add #Isize
-let i8_add = scalar_add #I8
-let i16_add = scalar_add #I16
-let i32_add = scalar_add #I32
-let i64_add = scalar_add #I64
-let i128_add = scalar_add #I128
-let usize_add = scalar_add #Usize
-let u8_add = scalar_add #U8
-let u16_add = scalar_add #U16
-let u32_add = scalar_add #U32
-let u64_add = scalar_add #U64
-let u128_add = scalar_add #U128
-
-/// Subtraction
-let isize_sub = scalar_sub #Isize
-let i8_sub = scalar_sub #I8
-let i16_sub = scalar_sub #I16
-let i32_sub = scalar_sub #I32
-let i64_sub = scalar_sub #I64
-let i128_sub = scalar_sub #I128
-let usize_sub = scalar_sub #Usize
-let u8_sub = scalar_sub #U8
-let u16_sub = scalar_sub #U16
-let u32_sub = scalar_sub #U32
-let u64_sub = scalar_sub #U64
-let u128_sub = scalar_sub #U128
-
-/// Multiplication
-let isize_mul = scalar_mul #Isize
-let i8_mul = scalar_mul #I8
-let i16_mul = scalar_mul #I16
-let i32_mul = scalar_mul #I32
-let i64_mul = scalar_mul #I64
-let i128_mul = scalar_mul #I128
-let usize_mul = scalar_mul #Usize
-let u8_mul = scalar_mul #U8
-let u16_mul = scalar_mul #U16
-let u32_mul = scalar_mul #U32
-let u64_mul = scalar_mul #U64
-let u128_mul = scalar_mul #U128
-
-/// Xor
-let u8_xor = scalar_xor #U8
-let u16_xor = scalar_xor #U16
-let u32_xor = scalar_xor #U32
-let u64_xor = scalar_xor #U64
-let u128_xor = scalar_xor #U128
-let usize_xor = scalar_xor #Usize
-let i8_xor = scalar_xor #I8
-let i16_xor = scalar_xor #I16
-let i32_xor = scalar_xor #I32
-let i64_xor = scalar_xor #I64
-let i128_xor = scalar_xor #I128
-let isize_xor = scalar_xor #Isize
-
-/// Or
-let u8_or = scalar_or #U8
-let u16_or = scalar_or #U16
-let u32_or = scalar_or #U32
-let u64_or = scalar_or #U64
-let u128_or = scalar_or #U128
-let usize_or = scalar_or #Usize
-let i8_or = scalar_or #I8
-let i16_or = scalar_or #I16
-let i32_or = scalar_or #I32
-let i64_or = scalar_or #I64
-let i128_or = scalar_or #I128
-let isize_or = scalar_or #Isize
-
-/// And
-let u8_and = scalar_and #U8
-let u16_and = scalar_and #U16
-let u32_and = scalar_and #U32
-let u64_and = scalar_and #U64
-let u128_and = scalar_and #U128
-let usize_and = scalar_and #Usize
-let i8_and = scalar_and #I8
-let i16_and = scalar_and #I16
-let i32_and = scalar_and #I32
-let i64_and = scalar_and #I64
-let i128_and = scalar_and #I128
-let isize_and = scalar_and #Isize
-
-/// Shift left
-let u8_shl #ty = scalar_shl #U8 #ty
-let u16_shl #ty = scalar_shl #U16 #ty
-let u32_shl #ty = scalar_shl #U32 #ty
-let u64_shl #ty = scalar_shl #U64 #ty
-let u128_shl #ty = scalar_shl #U128 #ty
-let usize_shl #ty = scalar_shl #Usize #ty
-let i8_shl #ty = scalar_shl #I8 #ty
-let i16_shl #ty = scalar_shl #I16 #ty
-let i32_shl #ty = scalar_shl #I32 #ty
-let i64_shl #ty = scalar_shl #I64 #ty
-let i128_shl #ty = scalar_shl #I128 #ty
-let isize_shl #ty = scalar_shl #Isize #ty
-
-/// Shift right
-let u8_shr #ty = scalar_shr #U8 #ty
-let u16_shr #ty = scalar_shr #U16 #ty
-let u32_shr #ty = scalar_shr #U32 #ty
-let u64_shr #ty = scalar_shr #U64 #ty
-let u128_shr #ty = scalar_shr #U128 #ty
-let usize_shr #ty = scalar_shr #Usize #ty
-let i8_shr #ty = scalar_shr #I8 #ty
-let i16_shr #ty = scalar_shr #I16 #ty
-let i32_shr #ty = scalar_shr #I32 #ty
-let i64_shr #ty = scalar_shr #I64 #ty
-let i128_shr #ty = scalar_shr #I128 #ty
-let isize_shr #ty = scalar_shr #Isize #ty
-
-(*** core::ops *)
-
-// Trait declaration: [core::ops::index::Index]
-noeq type core_ops_index_Index (self idx : Type0) = {
- output : Type0;
- index : self → idx → result output
-}
-
-// Trait declaration: [core::ops::index::IndexMut]
-noeq type core_ops_index_IndexMut (self idx : Type0) = {
- indexInst : core_ops_index_Index self idx;
- index_mut : self → idx → result indexInst.output;
- index_mut_back : self → idx → indexInst.output → result self;
-}
-
-// Trait declaration [core::ops::deref::Deref]
-noeq type core_ops_deref_Deref (self : Type0) = {
- target : Type0;
- deref : self → result target;
-}
-
-// Trait declaration [core::ops::deref::DerefMut]
-noeq type core_ops_deref_DerefMut (self : Type0) = {
- derefInst : core_ops_deref_Deref self;
- deref_mut : self → result derefInst.target;
- deref_mut_back : self → derefInst.target → result self;
-}
-
-type core_ops_range_Range (a : Type0) = {
- start : a;
- end_ : a;
-}
-
-(*** [alloc] *)
-
-let alloc_boxed_Box_deref (t : Type0) (x : t) : result t = Return x
-let alloc_boxed_Box_deref_mut (t : Type0) (x : t) : result t = Return x
-let alloc_boxed_Box_deref_mut_back (t : Type) (_ : t) (x : t) : result t = Return x
-
-// Trait instance
-let alloc_boxed_Box_coreopsDerefInst (self : Type0) : core_ops_deref_Deref self = {
- target = self;
- deref = alloc_boxed_Box_deref self;
-}
-
-// Trait instance
-let alloc_boxed_Box_coreopsDerefMutInst (self : Type0) : core_ops_deref_DerefMut self = {
- derefInst = alloc_boxed_Box_coreopsDerefInst self;
- deref_mut = alloc_boxed_Box_deref_mut self;
- deref_mut_back = alloc_boxed_Box_deref_mut_back self;
-}
-
-(*** Array *)
-type array (a : Type0) (n : usize) = s:list a{length s = n}
-
-// We tried putting the normalize_term condition as a refinement on the list
-// but it didn't work. It works with the requires clause.
-let mk_array (a : Type0) (n : usize)
- (l : list a) :
- Pure (array a n)
- (requires (normalize_term(FStar.List.Tot.length l) = n))
- (ensures (fun _ -> True)) =
- normalize_term_spec (FStar.List.Tot.length l);
- l
-
-let array_index_usize (a : Type0) (n : usize) (x : array a n) (i : usize) : result a =
- if i < length x then Return (index x i)
- else Fail Failure
-
-let array_update_usize (a : Type0) (n : usize) (x : array a n) (i : usize) (nx : a) : result (array a n) =
- if i < length x then Return (list_update x i nx)
- else Fail Failure
-
-(*** Slice *)
-type slice (a : Type0) = s:list a{length s <= usize_max}
-
-let slice_len (a : Type0) (s : slice a) : usize = length s
-
-let slice_index_usize (a : Type0) (x : slice a) (i : usize) : result a =
- if i < length x then Return (index x i)
- else Fail Failure
-
-let slice_update_usize (a : Type0) (x : slice a) (i : usize) (nx : a) : result (slice a) =
- if i < length x then Return (list_update x i nx)
- else Fail Failure
-
-(*** Subslices *)
-
-let array_to_slice (a : Type0) (n : usize) (x : array a n) : result (slice a) = Return x
-let array_from_slice (a : Type0) (n : usize) (x : array a n) (s : slice a) : result (array a n) =
- if length s = n then Return s
- else Fail Failure
-
-// TODO: finish the definitions below (there lacks [List.drop] and [List.take] in the standard library *)
-let array_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) : result (slice a) =
- admit()
-
-let array_update_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) (ns : slice a) : result (array a n) =
- admit()
-
-let array_repeat (a : Type0) (n : usize) (x : a) : array a n =
- admit()
-
-let slice_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) : result (slice a) =
- admit()
-
-let slice_update_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) (ns : slice a) : result (slice a) =
- admit()
-
-(*** Vector *)
-type alloc_vec_Vec (a : Type0) = v:list a{length v <= usize_max}
-
-let alloc_vec_Vec_new (a : Type0) : alloc_vec_Vec a = assert_norm(length #a [] == 0); []
-let alloc_vec_Vec_len (a : Type0) (v : alloc_vec_Vec a) : usize = length v
-
-// Helper
-let alloc_vec_Vec_index_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : result a =
- if i < length v then Return (index v i) else Fail Failure
-// Helper
-let alloc_vec_Vec_update_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) =
- if i < length v then Return (list_update v i x) else Fail Failure
-
-// The **forward** function shouldn't be used
-let alloc_vec_Vec_push_fwd (a : Type0) (v : alloc_vec_Vec a) (x : a) : unit = ()
-let alloc_vec_Vec_push (a : Type0) (v : alloc_vec_Vec a) (x : a) :
- Pure (result (alloc_vec_Vec a))
- (requires True)
- (ensures (fun res ->
- match res with
- | Fail e -> e == Failure
- | Return v' -> length v' = length v + 1)) =
- if length v < usize_max then begin
- (**) assert_norm(length [x] == 1);
- (**) append_length v [x];
- (**) assert(length (append v [x]) = length v + 1);
- Return (append v [x])
- end
- else Fail Failure
-
-// The **forward** function shouldn't be used
-let alloc_vec_Vec_insert_fwd (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result unit =
- if i < length v then Return () else Fail Failure
-let alloc_vec_Vec_insert (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) =
- if i < length v then Return (list_update v i x) else Fail Failure
-
-// Trait declaration: [core::slice::index::private_slice_index::Sealed]
-type core_slice_index_private_slice_index_Sealed (self : Type0) = unit
-
-// Trait declaration: [core::slice::index::SliceIndex]
-noeq type core_slice_index_SliceIndex (self t : Type0) = {
- sealedInst : core_slice_index_private_slice_index_Sealed self;
- output : Type0;
- get : self → t → result (option output);
- get_mut : self → t → result (option output);
- get_mut_back : self → t → option output → result t;
- get_unchecked : self → const_raw_ptr t → result (const_raw_ptr output);
- get_unchecked_mut : self → mut_raw_ptr t → result (mut_raw_ptr output);
- index : self → t → result output;
- index_mut : self → t → result output;
- index_mut_back : self → t → output → result t;
-}
-
-// [core::slice::index::[T]::index]: forward function
-let core_slice_index_Slice_index
- (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
- (s : slice t) (i : idx) : result inst.output =
- let* x = inst.get i s in
- match x with
- | None -> Fail Failure
- | Some x -> Return x
-
-// [core::slice::index::Range:::get]: forward function
-let core_slice_index_RangeUsize_get (t : Type0) (i : core_ops_range_Range usize) (s : slice t) :
- result (option (slice t)) =
- admit () // TODO
-
-// [core::slice::index::Range::get_mut]: forward function
-let core_slice_index_RangeUsize_get_mut
- (t : Type0) : core_ops_range_Range usize → slice t → result (option (slice t)) =
- admit () // TODO
-
-// [core::slice::index::Range::get_mut]: backward function 0
-let core_slice_index_RangeUsize_get_mut_back
- (t : Type0) :
- core_ops_range_Range usize → slice t → option (slice t) → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::Range::get_unchecked]: forward function
-let core_slice_index_RangeUsize_get_unchecked
- (t : Type0) :
- core_ops_range_Range usize → const_raw_ptr (slice t) → result (const_raw_ptr (slice t)) =
- // Don't know what the model should be - for now we always fail to make
- // sure code which uses it fails
- fun _ _ -> Fail Failure
-
-// [core::slice::index::Range::get_unchecked_mut]: forward function
-let core_slice_index_RangeUsize_get_unchecked_mut
- (t : Type0) :
- core_ops_range_Range usize → mut_raw_ptr (slice t) → result (mut_raw_ptr (slice t)) =
- // Don't know what the model should be - for now we always fail to make
- // sure code which uses it fails
- fun _ _ -> Fail Failure
-
-// [core::slice::index::Range::index]: forward function
-let core_slice_index_RangeUsize_index
- (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::Range::index_mut]: forward function
-let core_slice_index_RangeUsize_index_mut
- (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::Range::index_mut]: backward function 0
-let core_slice_index_RangeUsize_index_mut_back
- (t : Type0) : core_ops_range_Range usize → slice t → slice t → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::[T]::index_mut]: forward function
-let core_slice_index_Slice_index_mut
- (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) :
- slice t → idx → result inst.output =
- admit () //
-
-// [core::slice::index::[T]::index_mut]: backward function 0
-let core_slice_index_Slice_index_mut_back
- (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) :
- slice t → idx → inst.output → result (slice t) =
- admit () // TODO
-
-// [core::array::[T; N]::index]: forward function
-let core_array_Array_index
- (t idx : Type0) (n : usize) (inst : core_ops_index_Index (slice t) idx)
- (a : array t n) (i : idx) : result inst.output =
- admit () // TODO
-
-// [core::array::[T; N]::index_mut]: forward function
-let core_array_Array_index_mut
- (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx)
- (a : array t n) (i : idx) : result inst.indexInst.output =
- admit () // TODO
-
-// [core::array::[T; N]::index_mut]: backward function 0
-let core_array_Array_index_mut_back
- (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx)
- (a : array t n) (i : idx) (x : inst.indexInst.output) : result (array t n) =
- admit () // TODO
-
-// Trait implementation: [core::slice::index::private_slice_index::Range]
-let core_slice_index_private_slice_index_SealedRangeUsizeInst
- : core_slice_index_private_slice_index_Sealed (core_ops_range_Range usize) = ()
-
-// Trait implementation: [core::slice::index::Range]
-let core_slice_index_SliceIndexRangeUsizeSliceTInst (t : Type0) :
- core_slice_index_SliceIndex (core_ops_range_Range usize) (slice t) = {
- sealedInst = core_slice_index_private_slice_index_SealedRangeUsizeInst;
- output = slice t;
- get = core_slice_index_RangeUsize_get t;
- get_mut = core_slice_index_RangeUsize_get_mut t;
- get_mut_back = core_slice_index_RangeUsize_get_mut_back t;
- get_unchecked = core_slice_index_RangeUsize_get_unchecked t;
- get_unchecked_mut = core_slice_index_RangeUsize_get_unchecked_mut t;
- index = core_slice_index_RangeUsize_index t;
- index_mut = core_slice_index_RangeUsize_index_mut t;
- index_mut_back = core_slice_index_RangeUsize_index_mut_back t;
-}
-
-// Trait implementation: [core::slice::index::[T]]
-let core_ops_index_IndexSliceTIInst (t idx : Type0)
- (inst : core_slice_index_SliceIndex idx (slice t)) :
- core_ops_index_Index (slice t) idx = {
- output = inst.output;
- index = core_slice_index_Slice_index t idx inst;
-}
-
-// Trait implementation: [core::slice::index::[T]]
-let core_ops_index_IndexMutSliceTIInst (t idx : Type0)
- (inst : core_slice_index_SliceIndex idx (slice t)) :
- core_ops_index_IndexMut (slice t) idx = {
- indexInst = core_ops_index_IndexSliceTIInst t idx inst;
- index_mut = core_slice_index_Slice_index_mut t idx inst;
- index_mut_back = core_slice_index_Slice_index_mut_back t idx inst;
-}
-
-// Trait implementation: [core::array::[T; N]]
-let core_ops_index_IndexArrayInst (t idx : Type0) (n : usize)
- (inst : core_ops_index_Index (slice t) idx) :
- core_ops_index_Index (array t n) idx = {
- output = inst.output;
- index = core_array_Array_index t idx n inst;
-}
-
-// Trait implementation: [core::array::[T; N]]
-let core_ops_index_IndexMutArrayIInst (t idx : Type0) (n : usize)
- (inst : core_ops_index_IndexMut (slice t) idx) :
- core_ops_index_IndexMut (array t n) idx = {
- indexInst = core_ops_index_IndexArrayInst t idx n inst.indexInst;
- index_mut = core_array_Array_index_mut t idx n inst;
- index_mut_back = core_array_Array_index_mut_back t idx n inst;
-}
-
-// [core::slice::index::usize::get]: forward function
-let core_slice_index_usize_get
- (t : Type0) : usize → slice t → result (option t) =
- admit () // TODO
-
-// [core::slice::index::usize::get_mut]: forward function
-let core_slice_index_usize_get_mut
- (t : Type0) : usize → slice t → result (option t) =
- admit () // TODO
-
-// [core::slice::index::usize::get_mut]: backward function 0
-let core_slice_index_usize_get_mut_back
- (t : Type0) : usize → slice t → option t → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::usize::get_unchecked]: forward function
-let core_slice_index_usize_get_unchecked
- (t : Type0) : usize → const_raw_ptr (slice t) → result (const_raw_ptr t) =
- admit () // TODO
-
-// [core::slice::index::usize::get_unchecked_mut]: forward function
-let core_slice_index_usize_get_unchecked_mut
- (t : Type0) : usize → mut_raw_ptr (slice t) → result (mut_raw_ptr t) =
- admit () // TODO
-
-// [core::slice::index::usize::index]: forward function
-let core_slice_index_usize_index (t : Type0) : usize → slice t → result t =
- admit () // TODO
-
-// [core::slice::index::usize::index_mut]: forward function
-let core_slice_index_usize_index_mut (t : Type0) : usize → slice t → result t =
- admit () // TODO
-
-// [core::slice::index::usize::index_mut]: backward function 0
-let core_slice_index_usize_index_mut_back
- (t : Type0) : usize → slice t → t → result (slice t) =
- admit () // TODO
-
-// Trait implementation: [core::slice::index::private_slice_index::usize]
-let core_slice_index_private_slice_index_SealedUsizeInst
- : core_slice_index_private_slice_index_Sealed usize = ()
-
-// Trait implementation: [core::slice::index::usize]
-let core_slice_index_SliceIndexUsizeSliceTInst (t : Type0) :
- core_slice_index_SliceIndex usize (slice t) = {
- sealedInst = core_slice_index_private_slice_index_SealedUsizeInst;
- output = t;
- get = core_slice_index_usize_get t;
- get_mut = core_slice_index_usize_get_mut t;
- get_mut_back = core_slice_index_usize_get_mut_back t;
- get_unchecked = core_slice_index_usize_get_unchecked t;
- get_unchecked_mut = core_slice_index_usize_get_unchecked_mut t;
- index = core_slice_index_usize_index t;
- index_mut = core_slice_index_usize_index_mut t;
- index_mut_back = core_slice_index_usize_index_mut_back t;
-}
-
-// [alloc::vec::Vec::index]: forward function
-let alloc_vec_Vec_index (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
- (self : alloc_vec_Vec t) (i : idx) : result inst.output =
- admit () // TODO
-
-// [alloc::vec::Vec::index_mut]: forward function
-let alloc_vec_Vec_index_mut (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
- (self : alloc_vec_Vec t) (i : idx) : result inst.output =
- admit () // TODO
-
-// [alloc::vec::Vec::index_mut]: backward function 0
-let alloc_vec_Vec_index_mut_back
- (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
- (self : alloc_vec_Vec t) (i : idx) (x : inst.output) : result (alloc_vec_Vec t) =
- admit () // TODO
-
-// Trait implementation: [alloc::vec::Vec]
-let alloc_vec_Vec_coreopsindexIndexInst (t idx : Type0)
- (inst : core_slice_index_SliceIndex idx (slice t)) :
- core_ops_index_Index (alloc_vec_Vec t) idx = {
- output = inst.output;
- index = alloc_vec_Vec_index t idx inst;
-}
-
-// Trait implementation: [alloc::vec::Vec]
-let alloc_vec_Vec_coreopsindexIndexMutInst (t idx : Type0)
- (inst : core_slice_index_SliceIndex idx (slice t)) :
- core_ops_index_IndexMut (alloc_vec_Vec t) idx = {
- indexInst = alloc_vec_Vec_coreopsindexIndexInst t idx inst;
- index_mut = alloc_vec_Vec_index_mut t idx inst;
- index_mut_back = alloc_vec_Vec_index_mut_back t idx inst;
-}
-
-(*** Theorems *)
-
-let alloc_vec_Vec_index_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) :
- Lemma (
- alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i ==
- alloc_vec_Vec_index_usize v i)
- [SMTPat (alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)]
- =
- admit()
-
-let alloc_vec_Vec_index_mut_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) :
- Lemma (
- alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i ==
- alloc_vec_Vec_index_usize v i)
- [SMTPat (alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)]
- =
- admit()
-
-let alloc_vec_Vec_index_mut_back_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) :
- Lemma (
- alloc_vec_Vec_index_mut_back a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i x ==
- alloc_vec_Vec_update_usize v i x)
- [SMTPat (alloc_vec_Vec_index_mut_back a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i x)]
- =
- admit()
diff --git a/tests/fstar-split/hashmap/Hashmap.Clauses.Template.fst b/tests/fstar-split/hashmap/Hashmap.Clauses.Template.fst
deleted file mode 100644
index 2733b371..00000000
--- a/tests/fstar-split/hashmap/Hashmap.Clauses.Template.fst
+++ /dev/null
@@ -1,71 +0,0 @@
-(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)
-(** [hashmap]: templates for the decreases clauses *)
-module Hashmap.Clauses.Template
-open Primitives
-open Hashmap.Types
-
-#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
-
-(** [hashmap::{hashmap::HashMap<T>}::allocate_slots]: decreases clause
- Source: 'src/hashmap.rs', lines 50:4-56:5 *)
-unfold
-let hashMap_allocate_slots_loop_decreases (t : Type0)
- (slots : alloc_vec_Vec (list_t t)) (n : usize) : nat =
- admit ()
-
-(** [hashmap::{hashmap::HashMap<T>}::clear]: decreases clause
- Source: 'src/hashmap.rs', lines 80:4-88:5 *)
-unfold
-let hashMap_clear_loop_decreases (t : Type0) (slots : alloc_vec_Vec (list_t t))
- (i : usize) : nat =
- admit ()
-
-(** [hashmap::{hashmap::HashMap<T>}::insert_in_list]: decreases clause
- Source: 'src/hashmap.rs', lines 97:4-114:5 *)
-unfold
-let hashMap_insert_in_list_loop_decreases (t : Type0) (key : usize) (value : t)
- (ls : list_t t) : nat =
- admit ()
-
-(** [hashmap::{hashmap::HashMap<T>}::move_elements_from_list]: decreases clause
- Source: 'src/hashmap.rs', lines 183:4-196:5 *)
-unfold
-let hashMap_move_elements_from_list_loop_decreases (t : Type0)
- (ntable : hashMap_t t) (ls : list_t t) : nat =
- admit ()
-
-(** [hashmap::{hashmap::HashMap<T>}::move_elements]: decreases clause
- Source: 'src/hashmap.rs', lines 171:4-180:5 *)
-unfold
-let hashMap_move_elements_loop_decreases (t : Type0) (ntable : hashMap_t t)
- (slots : alloc_vec_Vec (list_t t)) (i : usize) : nat =
- admit ()
-
-(** [hashmap::{hashmap::HashMap<T>}::contains_key_in_list]: decreases clause
- Source: 'src/hashmap.rs', lines 206:4-219:5 *)
-unfold
-let hashMap_contains_key_in_list_loop_decreases (t : Type0) (key : usize)
- (ls : list_t t) : nat =
- admit ()
-
-(** [hashmap::{hashmap::HashMap<T>}::get_in_list]: decreases clause
- Source: 'src/hashmap.rs', lines 224:4-237:5 *)
-unfold
-let hashMap_get_in_list_loop_decreases (t : Type0) (key : usize)
- (ls : list_t t) : nat =
- admit ()
-
-(** [hashmap::{hashmap::HashMap<T>}::get_mut_in_list]: decreases clause
- Source: 'src/hashmap.rs', lines 245:4-254:5 *)
-unfold
-let hashMap_get_mut_in_list_loop_decreases (t : Type0) (ls : list_t t)
- (key : usize) : nat =
- admit ()
-
-(** [hashmap::{hashmap::HashMap<T>}::remove_from_list]: decreases clause
- Source: 'src/hashmap.rs', lines 265:4-291:5 *)
-unfold
-let hashMap_remove_from_list_loop_decreases (t : Type0) (key : usize)
- (ls : list_t t) : nat =
- admit ()
-
diff --git a/tests/fstar-split/hashmap/Hashmap.Clauses.fst b/tests/fstar-split/hashmap/Hashmap.Clauses.fst
deleted file mode 100644
index 6c699d05..00000000
--- a/tests/fstar-split/hashmap/Hashmap.Clauses.fst
+++ /dev/null
@@ -1,61 +0,0 @@
-(** [hashmap]: the decreases clauses *)
-module Hashmap.Clauses
-open Primitives
-open FStar.List.Tot
-open Hashmap.Types
-
-#set-options "--z3rlimit 50 --fuel 0 --ifuel 1"
-
-(** [hashmap::HashMap::allocate_slots]: decreases clause *)
-unfold
-let hashMap_allocate_slots_loop_decreases (t : Type0)
- (slots : alloc_vec_Vec (list_t t)) (n : usize) : nat = n
-
-(** [hashmap::HashMap::clear]: decreases clause *)
-unfold
-let hashMap_clear_loop_decreases (t : Type0) (slots : alloc_vec_Vec (list_t t))
- (i : usize) : nat =
- if i < length slots then length slots - i else 0
-
-(** [hashmap::HashMap::insert_in_list]: decreases clause *)
-unfold
-let hashMap_insert_in_list_loop_decreases (t : Type0) (key : usize) (value : t)
- (ls : list_t t) : list_t t =
- ls
-
-(** [hashmap::HashMap::move_elements_from_list]: decreases clause *)
-unfold
-let hashMap_move_elements_from_list_loop_decreases (t : Type0)
- (ntable : hashMap_t t) (ls : list_t t) : list_t t =
- ls
-
-(** [hashmap::HashMap::move_elements]: decreases clause *)
-unfold
-let hashMap_move_elements_loop_decreases (t : Type0) (ntable : hashMap_t t)
- (slots : alloc_vec_Vec (list_t t)) (i : usize) : nat =
- if i < length slots then length slots - i else 0
-
-(** [hashmap::HashMap::contains_key_in_list]: decreases clause *)
-unfold
-let hashMap_contains_key_in_list_loop_decreases (t : Type0) (key : usize)
- (ls : list_t t) : list_t t =
- ls
-
-(** [hashmap::HashMap::get_in_list]: decreases clause *)
-unfold
-let hashMap_get_in_list_loop_decreases (t : Type0) (key : usize) (ls : list_t t) :
- list_t t =
- ls
-
-(** [hashmap::HashMap::get_mut_in_list]: decreases clause *)
-unfold
-let hashMap_get_mut_in_list_loop_decreases (t : Type0) (ls : list_t t)
- (key : usize) : list_t t =
- ls
-
-(** [hashmap::HashMap::remove_from_list]: decreases clause *)
-unfold
-let hashMap_remove_from_list_loop_decreases (t : Type0) (key : usize)
- (ls : list_t t) : list_t t =
- ls
-
diff --git a/tests/fstar-split/hashmap/Hashmap.Funs.fst b/tests/fstar-split/hashmap/Hashmap.Funs.fst
deleted file mode 100644
index 290d49ee..00000000
--- a/tests/fstar-split/hashmap/Hashmap.Funs.fst
+++ /dev/null
@@ -1,529 +0,0 @@
-(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)
-(** [hashmap]: function definitions *)
-module Hashmap.Funs
-open Primitives
-include Hashmap.Types
-include Hashmap.Clauses
-
-#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
-
-(** [hashmap::hash_key]: forward function
- Source: 'src/hashmap.rs', lines 27:0-27:32 *)
-let hash_key (k : usize) : result usize =
- Return k
-
-(** [hashmap::{hashmap::HashMap<T>}::allocate_slots]: loop 0: forward function
- Source: 'src/hashmap.rs', lines 50:4-56:5 *)
-let rec hashMap_allocate_slots_loop
- (t : Type0) (slots : alloc_vec_Vec (list_t t)) (n : usize) :
- Tot (result (alloc_vec_Vec (list_t t)))
- (decreases (hashMap_allocate_slots_loop_decreases t slots n))
- =
- if n > 0
- then
- let* slots1 = alloc_vec_Vec_push (list_t t) slots List_Nil in
- let* n1 = usize_sub n 1 in
- hashMap_allocate_slots_loop t slots1 n1
- else Return slots
-
-(** [hashmap::{hashmap::HashMap<T>}::allocate_slots]: forward function
- Source: 'src/hashmap.rs', lines 50:4-50:76 *)
-let hashMap_allocate_slots
- (t : Type0) (slots : alloc_vec_Vec (list_t t)) (n : usize) :
- result (alloc_vec_Vec (list_t t))
- =
- hashMap_allocate_slots_loop t slots n
-
-(** [hashmap::{hashmap::HashMap<T>}::new_with_capacity]: forward function
- Source: 'src/hashmap.rs', lines 59:4-63:13 *)
-let hashMap_new_with_capacity
- (t : Type0) (capacity : usize) (max_load_dividend : usize)
- (max_load_divisor : usize) :
- result (hashMap_t t)
- =
- let* slots = hashMap_allocate_slots t (alloc_vec_Vec_new (list_t t)) capacity
- in
- let* i = usize_mul capacity max_load_dividend in
- let* i1 = usize_div i max_load_divisor in
- Return
- {
- num_entries = 0;
- max_load_factor = (max_load_dividend, max_load_divisor);
- max_load = i1;
- slots = slots
- }
-
-(** [hashmap::{hashmap::HashMap<T>}::new]: forward function
- Source: 'src/hashmap.rs', lines 75:4-75:24 *)
-let hashMap_new (t : Type0) : result (hashMap_t t) =
- hashMap_new_with_capacity t 32 4 5
-
-(** [hashmap::{hashmap::HashMap<T>}::clear]: loop 0: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/hashmap.rs', lines 80:4-88:5 *)
-let rec hashMap_clear_loop
- (t : Type0) (slots : alloc_vec_Vec (list_t t)) (i : usize) :
- Tot (result (alloc_vec_Vec (list_t t)))
- (decreases (hashMap_clear_loop_decreases t slots i))
- =
- let i1 = alloc_vec_Vec_len (list_t t) slots in
- if i < i1
- then
- let* i2 = usize_add i 1 in
- let* slots1 =
- alloc_vec_Vec_index_mut_back (list_t t) usize
- (core_slice_index_SliceIndexUsizeSliceTInst (list_t t)) slots i
- List_Nil in
- hashMap_clear_loop t slots1 i2
- else Return slots
-
-(** [hashmap::{hashmap::HashMap<T>}::clear]: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/hashmap.rs', lines 80:4-80:27 *)
-let hashMap_clear (t : Type0) (self : hashMap_t t) : result (hashMap_t t) =
- let* v = hashMap_clear_loop t self.slots 0 in
- Return { self with num_entries = 0; slots = v }
-
-(** [hashmap::{hashmap::HashMap<T>}::len]: forward function
- Source: 'src/hashmap.rs', lines 90:4-90:30 *)
-let hashMap_len (t : Type0) (self : hashMap_t t) : result usize =
- Return self.num_entries
-
-(** [hashmap::{hashmap::HashMap<T>}::insert_in_list]: loop 0: forward function
- Source: 'src/hashmap.rs', lines 97:4-114:5 *)
-let rec hashMap_insert_in_list_loop
- (t : Type0) (key : usize) (value : t) (ls : list_t t) :
- Tot (result bool)
- (decreases (hashMap_insert_in_list_loop_decreases t key value ls))
- =
- begin match ls with
- | List_Cons ckey _ tl ->
- if ckey = key
- then Return false
- else hashMap_insert_in_list_loop t key value tl
- | List_Nil -> Return true
- end
-
-(** [hashmap::{hashmap::HashMap<T>}::insert_in_list]: forward function
- Source: 'src/hashmap.rs', lines 97:4-97:71 *)
-let hashMap_insert_in_list
- (t : Type0) (key : usize) (value : t) (ls : list_t t) : result bool =
- hashMap_insert_in_list_loop t key value ls
-
-(** [hashmap::{hashmap::HashMap<T>}::insert_in_list]: loop 0: backward function 0
- Source: 'src/hashmap.rs', lines 97:4-114:5 *)
-let rec hashMap_insert_in_list_loop_back
- (t : Type0) (key : usize) (value : t) (ls : list_t t) :
- Tot (result (list_t t))
- (decreases (hashMap_insert_in_list_loop_decreases t key value ls))
- =
- begin match ls with
- | List_Cons ckey cvalue tl ->
- if ckey = key
- then Return (List_Cons ckey value tl)
- else
- let* tl1 = hashMap_insert_in_list_loop_back t key value tl in
- Return (List_Cons ckey cvalue tl1)
- | List_Nil -> Return (List_Cons key value List_Nil)
- end
-
-(** [hashmap::{hashmap::HashMap<T>}::insert_in_list]: backward function 0
- Source: 'src/hashmap.rs', lines 97:4-97:71 *)
-let hashMap_insert_in_list_back
- (t : Type0) (key : usize) (value : t) (ls : list_t t) : result (list_t t) =
- hashMap_insert_in_list_loop_back t key value ls
-
-(** [hashmap::{hashmap::HashMap<T>}::insert_no_resize]: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/hashmap.rs', lines 117:4-117:54 *)
-let hashMap_insert_no_resize
- (t : Type0) (self : hashMap_t t) (key : usize) (value : t) :
- result (hashMap_t t)
- =
- let* hash = hash_key key in
- let i = alloc_vec_Vec_len (list_t t) self.slots in
- let* hash_mod = usize_rem hash i in
- let* l =
- alloc_vec_Vec_index_mut (list_t t) usize
- (core_slice_index_SliceIndexUsizeSliceTInst (list_t t)) self.slots
- hash_mod in
- let* inserted = hashMap_insert_in_list t key value l in
- if inserted
- then
- let* i1 = usize_add self.num_entries 1 in
- let* l1 = hashMap_insert_in_list_back t key value l in
- let* v =
- alloc_vec_Vec_index_mut_back (list_t t) usize
- (core_slice_index_SliceIndexUsizeSliceTInst (list_t t)) self.slots
- hash_mod l1 in
- Return { self with num_entries = i1; slots = v }
- else
- let* l1 = hashMap_insert_in_list_back t key value l in
- let* v =
- alloc_vec_Vec_index_mut_back (list_t t) usize
- (core_slice_index_SliceIndexUsizeSliceTInst (list_t t)) self.slots
- hash_mod l1 in
- Return { self with slots = v }
-
-(** [hashmap::{hashmap::HashMap<T>}::move_elements_from_list]: loop 0: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/hashmap.rs', lines 183:4-196:5 *)
-let rec hashMap_move_elements_from_list_loop
- (t : Type0) (ntable : hashMap_t t) (ls : list_t t) :
- Tot (result (hashMap_t t))
- (decreases (hashMap_move_elements_from_list_loop_decreases t ntable ls))
- =
- begin match ls with
- | List_Cons k v tl ->
- let* ntable1 = hashMap_insert_no_resize t ntable k v in
- hashMap_move_elements_from_list_loop t ntable1 tl
- | List_Nil -> Return ntable
- end
-
-(** [hashmap::{hashmap::HashMap<T>}::move_elements_from_list]: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/hashmap.rs', lines 183:4-183:72 *)
-let hashMap_move_elements_from_list
- (t : Type0) (ntable : hashMap_t t) (ls : list_t t) : result (hashMap_t t) =
- hashMap_move_elements_from_list_loop t ntable ls
-
-(** [hashmap::{hashmap::HashMap<T>}::move_elements]: loop 0: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/hashmap.rs', lines 171:4-180:5 *)
-let rec hashMap_move_elements_loop
- (t : Type0) (ntable : hashMap_t t) (slots : alloc_vec_Vec (list_t t))
- (i : usize) :
- Tot (result ((hashMap_t t) & (alloc_vec_Vec (list_t t))))
- (decreases (hashMap_move_elements_loop_decreases t ntable slots i))
- =
- let i1 = alloc_vec_Vec_len (list_t t) slots in
- if i < i1
- then
- let* l =
- alloc_vec_Vec_index_mut (list_t t) usize
- (core_slice_index_SliceIndexUsizeSliceTInst (list_t t)) slots i in
- let ls = core_mem_replace (list_t t) l List_Nil in
- let* ntable1 = hashMap_move_elements_from_list t ntable ls in
- let* i2 = usize_add i 1 in
- let l1 = core_mem_replace_back (list_t t) l List_Nil in
- let* slots1 =
- alloc_vec_Vec_index_mut_back (list_t t) usize
- (core_slice_index_SliceIndexUsizeSliceTInst (list_t t)) slots i l1 in
- hashMap_move_elements_loop t ntable1 slots1 i2
- else Return (ntable, slots)
-
-(** [hashmap::{hashmap::HashMap<T>}::move_elements]: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/hashmap.rs', lines 171:4-171:95 *)
-let hashMap_move_elements
- (t : Type0) (ntable : hashMap_t t) (slots : alloc_vec_Vec (list_t t))
- (i : usize) :
- result ((hashMap_t t) & (alloc_vec_Vec (list_t t)))
- =
- hashMap_move_elements_loop t ntable slots i
-
-(** [hashmap::{hashmap::HashMap<T>}::try_resize]: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/hashmap.rs', lines 140:4-140:28 *)
-let hashMap_try_resize
- (t : Type0) (self : hashMap_t t) : result (hashMap_t t) =
- let* max_usize = scalar_cast U32 Usize core_u32_max in
- let capacity = alloc_vec_Vec_len (list_t t) self.slots in
- let* n1 = usize_div max_usize 2 in
- let (i, i1) = self.max_load_factor in
- let* i2 = usize_div n1 i in
- if capacity <= i2
- then
- let* i3 = usize_mul capacity 2 in
- let* ntable = hashMap_new_with_capacity t i3 i i1 in
- let* (ntable1, _) = hashMap_move_elements t ntable self.slots 0 in
- Return
- { ntable1 with num_entries = self.num_entries; max_load_factor = (i, i1)
- }
- else Return { self with max_load_factor = (i, i1) }
-
-(** [hashmap::{hashmap::HashMap<T>}::insert]: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/hashmap.rs', lines 129:4-129:48 *)
-let hashMap_insert
- (t : Type0) (self : hashMap_t t) (key : usize) (value : t) :
- result (hashMap_t t)
- =
- let* self1 = hashMap_insert_no_resize t self key value in
- let* i = hashMap_len t self1 in
- if i > self1.max_load then hashMap_try_resize t self1 else Return self1
-
-(** [hashmap::{hashmap::HashMap<T>}::contains_key_in_list]: loop 0: forward function
- Source: 'src/hashmap.rs', lines 206:4-219:5 *)
-let rec hashMap_contains_key_in_list_loop
- (t : Type0) (key : usize) (ls : list_t t) :
- Tot (result bool)
- (decreases (hashMap_contains_key_in_list_loop_decreases t key ls))
- =
- begin match ls with
- | List_Cons ckey _ tl ->
- if ckey = key
- then Return true
- else hashMap_contains_key_in_list_loop t key tl
- | List_Nil -> Return false
- end
-
-(** [hashmap::{hashmap::HashMap<T>}::contains_key_in_list]: forward function
- Source: 'src/hashmap.rs', lines 206:4-206:68 *)
-let hashMap_contains_key_in_list
- (t : Type0) (key : usize) (ls : list_t t) : result bool =
- hashMap_contains_key_in_list_loop t key ls
-
-(** [hashmap::{hashmap::HashMap<T>}::contains_key]: forward function
- Source: 'src/hashmap.rs', lines 199:4-199:49 *)
-let hashMap_contains_key
- (t : Type0) (self : hashMap_t t) (key : usize) : result bool =
- let* hash = hash_key key in
- let i = alloc_vec_Vec_len (list_t t) self.slots in
- let* hash_mod = usize_rem hash i in
- let* l =
- alloc_vec_Vec_index (list_t t) usize
- (core_slice_index_SliceIndexUsizeSliceTInst (list_t t)) self.slots
- hash_mod in
- hashMap_contains_key_in_list t key l
-
-(** [hashmap::{hashmap::HashMap<T>}::get_in_list]: loop 0: forward function
- Source: 'src/hashmap.rs', lines 224:4-237:5 *)
-let rec hashMap_get_in_list_loop
- (t : Type0) (key : usize) (ls : list_t t) :
- Tot (result t) (decreases (hashMap_get_in_list_loop_decreases t key ls))
- =
- begin match ls with
- | List_Cons ckey cvalue tl ->
- if ckey = key then Return cvalue else hashMap_get_in_list_loop t key tl
- | List_Nil -> Fail Failure
- end
-
-(** [hashmap::{hashmap::HashMap<T>}::get_in_list]: forward function
- Source: 'src/hashmap.rs', lines 224:4-224:70 *)
-let hashMap_get_in_list (t : Type0) (key : usize) (ls : list_t t) : result t =
- hashMap_get_in_list_loop t key ls
-
-(** [hashmap::{hashmap::HashMap<T>}::get]: forward function
- Source: 'src/hashmap.rs', lines 239:4-239:55 *)
-let hashMap_get (t : Type0) (self : hashMap_t t) (key : usize) : result t =
- let* hash = hash_key key in
- let i = alloc_vec_Vec_len (list_t t) self.slots in
- let* hash_mod = usize_rem hash i in
- let* l =
- alloc_vec_Vec_index (list_t t) usize
- (core_slice_index_SliceIndexUsizeSliceTInst (list_t t)) self.slots
- hash_mod in
- hashMap_get_in_list t key l
-
-(** [hashmap::{hashmap::HashMap<T>}::get_mut_in_list]: loop 0: forward function
- Source: 'src/hashmap.rs', lines 245:4-254:5 *)
-let rec hashMap_get_mut_in_list_loop
- (t : Type0) (ls : list_t t) (key : usize) :
- Tot (result t) (decreases (hashMap_get_mut_in_list_loop_decreases t ls key))
- =
- begin match ls with
- | List_Cons ckey cvalue tl ->
- if ckey = key then Return cvalue else hashMap_get_mut_in_list_loop t tl key
- | List_Nil -> Fail Failure
- end
-
-(** [hashmap::{hashmap::HashMap<T>}::get_mut_in_list]: forward function
- Source: 'src/hashmap.rs', lines 245:4-245:86 *)
-let hashMap_get_mut_in_list
- (t : Type0) (ls : list_t t) (key : usize) : result t =
- hashMap_get_mut_in_list_loop t ls key
-
-(** [hashmap::{hashmap::HashMap<T>}::get_mut_in_list]: loop 0: backward function 0
- Source: 'src/hashmap.rs', lines 245:4-254:5 *)
-let rec hashMap_get_mut_in_list_loop_back
- (t : Type0) (ls : list_t t) (key : usize) (ret : t) :
- Tot (result (list_t t))
- (decreases (hashMap_get_mut_in_list_loop_decreases t ls key))
- =
- begin match ls with
- | List_Cons ckey cvalue tl ->
- if ckey = key
- then Return (List_Cons ckey ret tl)
- else
- let* tl1 = hashMap_get_mut_in_list_loop_back t tl key ret in
- Return (List_Cons ckey cvalue tl1)
- | List_Nil -> Fail Failure
- end
-
-(** [hashmap::{hashmap::HashMap<T>}::get_mut_in_list]: backward function 0
- Source: 'src/hashmap.rs', lines 245:4-245:86 *)
-let hashMap_get_mut_in_list_back
- (t : Type0) (ls : list_t t) (key : usize) (ret : t) : result (list_t t) =
- hashMap_get_mut_in_list_loop_back t ls key ret
-
-(** [hashmap::{hashmap::HashMap<T>}::get_mut]: forward function
- Source: 'src/hashmap.rs', lines 257:4-257:67 *)
-let hashMap_get_mut (t : Type0) (self : hashMap_t t) (key : usize) : result t =
- let* hash = hash_key key in
- let i = alloc_vec_Vec_len (list_t t) self.slots in
- let* hash_mod = usize_rem hash i in
- let* l =
- alloc_vec_Vec_index_mut (list_t t) usize
- (core_slice_index_SliceIndexUsizeSliceTInst (list_t t)) self.slots
- hash_mod in
- hashMap_get_mut_in_list t l key
-
-(** [hashmap::{hashmap::HashMap<T>}::get_mut]: backward function 0
- Source: 'src/hashmap.rs', lines 257:4-257:67 *)
-let hashMap_get_mut_back
- (t : Type0) (self : hashMap_t t) (key : usize) (ret : t) :
- result (hashMap_t t)
- =
- let* hash = hash_key key in
- let i = alloc_vec_Vec_len (list_t t) self.slots in
- let* hash_mod = usize_rem hash i in
- let* l =
- alloc_vec_Vec_index_mut (list_t t) usize
- (core_slice_index_SliceIndexUsizeSliceTInst (list_t t)) self.slots
- hash_mod in
- let* l1 = hashMap_get_mut_in_list_back t l key ret in
- let* v =
- alloc_vec_Vec_index_mut_back (list_t t) usize
- (core_slice_index_SliceIndexUsizeSliceTInst (list_t t)) self.slots
- hash_mod l1 in
- Return { self with slots = v }
-
-(** [hashmap::{hashmap::HashMap<T>}::remove_from_list]: loop 0: forward function
- Source: 'src/hashmap.rs', lines 265:4-291:5 *)
-let rec hashMap_remove_from_list_loop
- (t : Type0) (key : usize) (ls : list_t t) :
- Tot (result (option t))
- (decreases (hashMap_remove_from_list_loop_decreases t key ls))
- =
- begin match ls with
- | List_Cons ckey x tl ->
- if ckey = key
- then
- let mv_ls = core_mem_replace (list_t t) (List_Cons ckey x tl) List_Nil in
- begin match mv_ls with
- | List_Cons _ cvalue _ -> Return (Some cvalue)
- | List_Nil -> Fail Failure
- end
- else hashMap_remove_from_list_loop t key tl
- | List_Nil -> Return None
- end
-
-(** [hashmap::{hashmap::HashMap<T>}::remove_from_list]: forward function
- Source: 'src/hashmap.rs', lines 265:4-265:69 *)
-let hashMap_remove_from_list
- (t : Type0) (key : usize) (ls : list_t t) : result (option t) =
- hashMap_remove_from_list_loop t key ls
-
-(** [hashmap::{hashmap::HashMap<T>}::remove_from_list]: loop 0: backward function 1
- Source: 'src/hashmap.rs', lines 265:4-291:5 *)
-let rec hashMap_remove_from_list_loop_back
- (t : Type0) (key : usize) (ls : list_t t) :
- Tot (result (list_t t))
- (decreases (hashMap_remove_from_list_loop_decreases t key ls))
- =
- begin match ls with
- | List_Cons ckey x tl ->
- if ckey = key
- then
- let mv_ls = core_mem_replace (list_t t) (List_Cons ckey x tl) List_Nil in
- begin match mv_ls with
- | List_Cons _ _ tl1 -> Return tl1
- | List_Nil -> Fail Failure
- end
- else
- let* tl1 = hashMap_remove_from_list_loop_back t key tl in
- Return (List_Cons ckey x tl1)
- | List_Nil -> Return List_Nil
- end
-
-(** [hashmap::{hashmap::HashMap<T>}::remove_from_list]: backward function 1
- Source: 'src/hashmap.rs', lines 265:4-265:69 *)
-let hashMap_remove_from_list_back
- (t : Type0) (key : usize) (ls : list_t t) : result (list_t t) =
- hashMap_remove_from_list_loop_back t key ls
-
-(** [hashmap::{hashmap::HashMap<T>}::remove]: forward function
- Source: 'src/hashmap.rs', lines 294:4-294:52 *)
-let hashMap_remove
- (t : Type0) (self : hashMap_t t) (key : usize) : result (option t) =
- let* hash = hash_key key in
- let i = alloc_vec_Vec_len (list_t t) self.slots in
- let* hash_mod = usize_rem hash i in
- let* l =
- alloc_vec_Vec_index_mut (list_t t) usize
- (core_slice_index_SliceIndexUsizeSliceTInst (list_t t)) self.slots
- hash_mod in
- let* x = hashMap_remove_from_list t key l in
- begin match x with
- | None -> Return None
- | Some x1 -> let* _ = usize_sub self.num_entries 1 in Return (Some x1)
- end
-
-(** [hashmap::{hashmap::HashMap<T>}::remove]: backward function 0
- Source: 'src/hashmap.rs', lines 294:4-294:52 *)
-let hashMap_remove_back
- (t : Type0) (self : hashMap_t t) (key : usize) : result (hashMap_t t) =
- let* hash = hash_key key in
- let i = alloc_vec_Vec_len (list_t t) self.slots in
- let* hash_mod = usize_rem hash i in
- let* l =
- alloc_vec_Vec_index_mut (list_t t) usize
- (core_slice_index_SliceIndexUsizeSliceTInst (list_t t)) self.slots
- hash_mod in
- let* x = hashMap_remove_from_list t key l in
- begin match x with
- | None ->
- let* l1 = hashMap_remove_from_list_back t key l in
- let* v =
- alloc_vec_Vec_index_mut_back (list_t t) usize
- (core_slice_index_SliceIndexUsizeSliceTInst (list_t t)) self.slots
- hash_mod l1 in
- Return { self with slots = v }
- | Some _ ->
- let* i1 = usize_sub self.num_entries 1 in
- let* l1 = hashMap_remove_from_list_back t key l in
- let* v =
- alloc_vec_Vec_index_mut_back (list_t t) usize
- (core_slice_index_SliceIndexUsizeSliceTInst (list_t t)) self.slots
- hash_mod l1 in
- Return { self with num_entries = i1; slots = v }
- end
-
-(** [hashmap::test1]: forward function
- Source: 'src/hashmap.rs', lines 315:0-315:10 *)
-let test1 : result unit =
- let* hm = hashMap_new u64 in
- let* hm1 = hashMap_insert u64 hm 0 42 in
- let* hm2 = hashMap_insert u64 hm1 128 18 in
- let* hm3 = hashMap_insert u64 hm2 1024 138 in
- let* hm4 = hashMap_insert u64 hm3 1056 256 in
- let* i = hashMap_get u64 hm4 128 in
- if not (i = 18)
- then Fail Failure
- else
- let* hm5 = hashMap_get_mut_back u64 hm4 1024 56 in
- let* i1 = hashMap_get u64 hm5 1024 in
- if not (i1 = 56)
- then Fail Failure
- else
- let* x = hashMap_remove u64 hm5 1024 in
- begin match x with
- | None -> Fail Failure
- | Some x1 ->
- if not (x1 = 56)
- then Fail Failure
- else
- let* hm6 = hashMap_remove_back u64 hm5 1024 in
- let* i2 = hashMap_get u64 hm6 0 in
- if not (i2 = 42)
- then Fail Failure
- else
- let* i3 = hashMap_get u64 hm6 128 in
- if not (i3 = 18)
- then Fail Failure
- else
- let* i4 = hashMap_get u64 hm6 1056 in
- if not (i4 = 256) then Fail Failure else Return ()
- end
-
diff --git a/tests/fstar-split/hashmap/Hashmap.Properties.fst b/tests/fstar-split/hashmap/Hashmap.Properties.fst
deleted file mode 100644
index def520f0..00000000
--- a/tests/fstar-split/hashmap/Hashmap.Properties.fst
+++ /dev/null
@@ -1,3186 +0,0 @@
-(** Properties about the hashmap *)
-module Hashmap.Properties
-open Primitives
-open FStar.List.Tot
-open FStar.Mul
-open Hashmap.Types
-open Hashmap.Clauses
-open Hashmap.Funs
-
-#set-options "--z3rlimit 50 --fuel 0 --ifuel 1"
-
-let _align_fsti = ()
-
-/// The proofs:
-/// ===========
-///
-/// The proof strategy is to do exactly as with Low* proofs (we initially tried to
-/// prove more properties in one go, but it was a mistake):
-/// - prove that, under some preconditions, the low-level functions translated
-/// from Rust refine some higher-level functions
-/// - do functional proofs about those high-level functions to prove interesting
-/// properties about the hash map operations, and invariant preservation
-/// - combine everything
-///
-/// The fact that we work in a pure setting allows us to be more modular than when
-/// working with effects. For instance we can do a case disjunction (see the proofs
-/// for insert, which study the cases where the key is already/not in the hash map
-/// in separate proofs - we had initially tried to do them in one step: it is doable
-/// but requires some work, and the F* response time quickly becomes annoying while
-/// making progress, so we split them). We can also easily prove a refinement lemma,
-/// study the model, *then* combine those to also prove that the low-level function
-/// preserves the invariants, rather than do everything at once as is usually the
-/// case when doing intrinsic proofs with effects (I remember that having to prove
-/// invariants in one go *and* a refinement step, even small, can be extremely
-/// difficult in Low*).
-
-
-(*** Utilities *)
-
-/// We need many small helpers and lemmas, mostly about lists (and the ones we list
-/// here are not in the standard F* library).
-
-val index_append_lem (#a : Type0) (ls0 ls1 : list a) (i : nat{i < length ls0 + length ls1}) :
- Lemma (
- (i < length ls0 ==> index (ls0 @ ls1) i == index ls0 i) /\
- (i >= length ls0 ==> index (ls0 @ ls1) i == index ls1 (i - length ls0)))
- [SMTPat (index (ls0 @ ls1) i)]
-
-#push-options "--fuel 1"
-let rec index_append_lem #a ls0 ls1 i =
- match ls0 with
- | [] -> ()
- | x :: ls0' ->
- if i = 0 then ()
- else index_append_lem ls0' ls1 (i-1)
-#pop-options
-
-val index_map_lem (#a #b: Type0) (f : a -> Tot b) (ls : list a)
- (i : nat{i < length ls}) :
- Lemma (
- index (map f ls) i == f (index ls i))
- [SMTPat (index (map f ls) i)]
-
-#push-options "--fuel 1"
-let rec index_map_lem #a #b f ls i =
- match ls with
- | [] -> ()
- | x :: ls' ->
- if i = 0 then ()
- else index_map_lem f ls' (i-1)
-#pop-options
-
-val for_all_append (#a : Type0) (f : a -> Tot bool) (ls0 ls1 : list a) :
- Lemma (for_all f (ls0 @ ls1) = (for_all f ls0 && for_all f ls1))
-
-#push-options "--fuel 1"
-let rec for_all_append #a f ls0 ls1 =
- match ls0 with
- | [] -> ()
- | x :: ls0' ->
- for_all_append f ls0' ls1
-#pop-options
-
-/// Filter a list, stopping after we removed one element
-val filter_one (#a : Type) (f : a -> bool) (ls : list a) : list a
-
-let rec filter_one #a f ls =
- match ls with
- | [] -> []
- | x :: ls' -> if f x then x :: filter_one f ls' else ls'
-
-val find_append (#a : Type) (f : a -> bool) (ls0 ls1 : list a) :
- Lemma (
- find f (ls0 @ ls1) ==
- begin match find f ls0 with
- | Some x -> Some x
- | None -> find f ls1
- end)
-
-#push-options "--fuel 1"
-let rec find_append #a f ls0 ls1 =
- match ls0 with
- | [] -> ()
- | x :: ls0' ->
- if f x then
- begin
- assert(ls0 @ ls1 == x :: (ls0' @ ls1));
- assert(find f (ls0 @ ls1) == find f (x :: (ls0' @ ls1)));
- // Why do I have to do this?! Is it because of subtyping??
- assert(
- match find f (ls0 @ ls1) with
- | Some x' -> x' == x
- | None -> False)
- end
- else find_append f ls0' ls1
-#pop-options
-
-val length_flatten_update :
- #a:Type
- -> ls:list (list a)
- -> i:nat{i < length ls}
- -> x:list a ->
- Lemma (
- // We want this property:
- // ```
- // length (flatten (list_update ls i x)) =
- // length (flatten ls) - length (index ls i) + length x
- // ```
- length (flatten (list_update ls i x)) + length (index ls i) =
- length (flatten ls) + length x)
-
-#push-options "--fuel 1"
-let rec length_flatten_update #a ls i x =
- match ls with
- | x' :: ls' ->
- assert(flatten ls == x' @ flatten ls'); // Triggers patterns
- assert(length (flatten ls) == length x' + length (flatten ls'));
- if i = 0 then
- begin
- let ls1 = x :: ls' in
- assert(list_update ls i x == ls1);
- assert(flatten ls1 == x @ flatten ls'); // Triggers patterns
- assert(length (flatten ls1) == length x + length (flatten ls'));
- ()
- end
- else
- begin
- length_flatten_update ls' (i-1) x;
- let ls1 = x' :: list_update ls' (i-1) x in
- assert(flatten ls1 == x' @ flatten (list_update ls' (i-1) x)) // Triggers patterns
- end
-#pop-options
-
-val length_flatten_index :
- #a:Type
- -> ls:list (list a)
- -> i:nat{i < length ls} ->
- Lemma (
- length (flatten ls) >= length (index ls i))
-
-#push-options "--fuel 1"
-let rec length_flatten_index #a ls i =
- match ls with
- | x' :: ls' ->
- assert(flatten ls == x' @ flatten ls'); // Triggers patterns
- assert(length (flatten ls) == length x' + length (flatten ls'));
- if i = 0 then ()
- else length_flatten_index ls' (i-1)
-#pop-options
-
-val forall_index_equiv_list_for_all
- (#a : Type) (pred : a -> Tot bool) (ls : list a) :
- Lemma ((forall (i:nat{i < length ls}). pred (index ls i)) <==> for_all pred ls)
-
-#push-options "--fuel 1"
-let rec forall_index_equiv_list_for_all pred ls =
- match ls with
- | [] -> ()
- | x :: ls' ->
- assert(forall (i:nat{i < length ls'}). index ls' i == index ls (i+1));
- assert(forall (i:nat{0 < i /\ i < length ls}). index ls i == index ls' (i-1));
- assert(index ls 0 == x);
- forall_index_equiv_list_for_all pred ls'
-#pop-options
-
-val find_update:
- #a:Type
- -> f:(a -> Tot bool)
- -> ls:list a
- -> x:a
- -> ls':list a{length ls' == length ls}
-#push-options "--fuel 1"
-let rec find_update #a f ls x =
- match ls with
- | [] -> []
- | hd::tl ->
- if f hd then x :: tl else hd :: find_update f tl x
-#pop-options
-
-val pairwise_distinct : #a:eqtype -> ls:list a -> Tot bool
-let rec pairwise_distinct (#a : eqtype) (ls : list a) : Tot bool =
- match ls with
- | [] -> true
- | x :: ls' -> List.Tot.for_all (fun y -> x <> y) ls' && pairwise_distinct ls'
-
-val pairwise_rel : #a:Type -> pred:(a -> a -> Tot bool) -> ls:list a -> Tot bool
-let rec pairwise_rel #a pred ls =
- match ls with
- | [] -> true
- | x :: ls' ->
- for_all (pred x) ls' && pairwise_rel pred ls'
-
-#push-options "--fuel 1"
-let rec flatten_append (#a : Type) (l1 l2: list (list a)) :
- Lemma (flatten (l1 @ l2) == flatten l1 @ flatten l2) =
- match l1 with
- | [] -> ()
- | x :: l1' ->
- flatten_append l1' l2;
- append_assoc x (flatten l1') (flatten l2)
-#pop-options
-
-/// We don't use anonymous functions as parameters to other functions, but rather
-/// introduce auxiliary functions instead: otherwise we can't reason (because
-/// F*'s encoding to the SMT is imprecise for functions)
-let fst_is_disctinct (#a : eqtype) (#b : Type0) (p0 : a & b) (p1 : a & b) : Type0 =
- fst p0 <> fst p1
-
-(*** Lemmas about Primitives *)
-/// TODO: move those lemmas
-
-// TODO: rename to 'insert'?
-val list_update_index_dif_lem
- (#a : Type0) (ls : list a) (i : nat{i < length ls}) (x : a)
- (j : nat{j < length ls}) :
- Lemma (requires (j <> i))
- (ensures (index (list_update ls i x) j == index ls j))
- [SMTPat (index (list_update ls i x) j)]
-
-#push-options "--fuel 1"
-let rec list_update_index_dif_lem #a ls i x j =
- match ls with
- | x' :: ls ->
- if i = 0 then ()
- else if j = 0 then ()
- else
- list_update_index_dif_lem ls (i-1) x (j-1)
-#pop-options
-
-val map_list_update_lem
- (#a #b: Type0) (f : a -> Tot b)
- (ls : list a) (i : nat{i < length ls}) (x : a) :
- Lemma (list_update (map f ls) i (f x) == map f (list_update ls i x))
- [SMTPat (list_update (map f ls) i (f x))]
-
-#push-options "--fuel 1"
-let rec map_list_update_lem #a #b f ls i x =
- match ls with
- | x' :: ls' ->
- if i = 0 then ()
- else map_list_update_lem f ls' (i-1) x
-#pop-options
-
-(*** Invariants, models *)
-
-(**** Internals *)
-/// The following invariants, models, representation functions... are mostly
-/// for the purpose of the proofs.
-
-let is_pos_usize (n : nat) : Type0 = 0 < n /\ n <= usize_max
-type pos_usize = x:usize{x > 0}
-
-type binding (t : Type0) = key & t
-
-type slots_t (t : Type0) = alloc_vec_Vec (list_t t)
-
-/// We represent hash maps as associative lists
-type assoc_list (t : Type0) = list (binding t)
-
-/// Representation function for [list_t]
-let rec list_t_v (#t : Type0) (ls : list_t t) : assoc_list t =
- match ls with
- | List_Nil -> []
- | List_Cons k v tl -> (k,v) :: list_t_v tl
-
-let list_t_len (#t : Type0) (ls : list_t t) : nat = length (list_t_v ls)
-let list_t_index (#t : Type0) (ls : list_t t) (i : nat{i < list_t_len ls}) : binding t =
- index (list_t_v ls) i
-
-type slot_s (t : Type0) = list (binding t)
-type slots_s (t : Type0) = list (slot_s t)
-
-type slot_t (t : Type0) = list_t t
-let slot_t_v #t = list_t_v #t
-
-/// Representation function for the slots.
-let slots_t_v (#t : Type0) (slots : slots_t t) : slots_s t =
- map slot_t_v slots
-
-/// Representation function for the slots, seen as an associative list.
-let slots_t_al_v (#t : Type0) (slots : slots_t t) : assoc_list t =
- flatten (map list_t_v slots)
-
-/// High-level type for the hash-map, seen as a list of associative lists (one
-/// list per slot). This is the representation we use most, internally. Note that
-/// we later introduce a [map_s] representation, which is the one used in the
-/// lemmas shown to the user.
-type hashMap_s t = list (slot_s t)
-
-// TODO: why not always have the condition on the length?
-// 'nes': "non-empty slots"
-type hashMap_s_nes (t : Type0) : Type0 =
- hm:hashMap_s t{is_pos_usize (length hm)}
-
-/// Representation function for [hashMap_t] as a list of slots
-let hashMap_t_v (#t : Type0) (hm : hashMap_t t) : hashMap_s t =
- map list_t_v hm.slots
-
-/// Representation function for [hashMap_t] as an associative list
-let hashMap_t_al_v (#t : Type0) (hm : hashMap_t t) : assoc_list t =
- flatten (hashMap_t_v hm)
-
-// 'nes': "non-empty slots"
-type hashMap_t_nes (t : Type0) : Type0 =
- hm:hashMap_t t{is_pos_usize (length hm.slots)}
-
-let hash_key_s (k : key) : hash =
- Return?.v (hash_key k)
-
-let hash_mod_key (k : key) (len : usize{len > 0}) : hash =
- (hash_key_s k) % len
-
-let not_same_key (#t : Type0) (k : key) (b : binding t) : bool = fst b <> k
-let same_key (#t : Type0) (k : key) (b : binding t) : bool = fst b = k
-
-// We take a [nat] instead of a [hash] on purpose
-let same_hash_mod_key (#t : Type0) (len : usize{len > 0}) (h : nat) (b : binding t) : bool =
- hash_mod_key (fst b) len = h
-
-let binding_neq (#t : Type0) (b0 b1 : binding t) : bool = fst b0 <> fst b1
-
-let hashMap_t_len_s (#t : Type0) (hm : hashMap_t t) : nat =
- hm.num_entries
-
-let assoc_list_find (#t : Type0) (k : key) (slot : assoc_list t) : option t =
- match find (same_key k) slot with
- | None -> None
- | Some (_, v) -> Some v
-
-let slot_s_find (#t : Type0) (k : key) (slot : list (binding t)) : option t =
- assoc_list_find k slot
-
-let slot_t_find_s (#t : Type0) (k : key) (slot : list_t t) : option t =
- slot_s_find k (slot_t_v slot)
-
-// This is a simpler version of the "find" function, which captures the essence
-// of what happens and operates on [hashMap_s].
-let hashMap_s_find
- (#t : Type0) (hm : hashMap_s_nes t)
- (k : key) : option t =
- let i = hash_mod_key k (length hm) in
- let slot = index hm i in
- slot_s_find k slot
-
-let hashMap_s_len
- (#t : Type0) (hm : hashMap_s t) :
- nat =
- length (flatten hm)
-
-// Same as above, but operates on [hashMap_t]
-// Note that we don't reuse the above function on purpose: converting to a
-// [hashMap_s] then looking up an element is not the same as what we
-// wrote below.
-let hashMap_t_find_s
- (#t : Type0) (hm : hashMap_t t{length hm.slots > 0}) (k : key) : option t =
- let slots = hm.slots in
- let i = hash_mod_key k (length slots) in
- let slot = index slots i in
- slot_t_find_s k slot
-
-/// Invariants for the slots
-
-let slot_s_inv
- (#t : Type0) (len : usize{len > 0}) (i : usize) (slot : list (binding t)) : bool =
- // All the bindings are in the proper slot
- for_all (same_hash_mod_key len i) slot &&
- // All the keys are pairwise distinct
- pairwise_rel binding_neq slot
-
-let slot_t_inv (#t : Type0) (len : usize{len > 0}) (i : usize) (slot : list_t t) : bool =
- slot_s_inv len i (slot_t_v slot)
-
-let slots_s_inv (#t : Type0) (slots : slots_s t{length slots <= usize_max}) : Type0 =
- forall(i:nat{i < length slots}).
- {:pattern index slots i}
- slot_s_inv (length slots) i (index slots i)
-
-// At some point we tried to rewrite this in terms of [slots_s_inv]. However it
-// made a lot of proofs fail because those proofs relied on the [index_map_lem]
-// pattern. We tried writing others lemmas with patterns (like [slots_s_inv]
-// implies [slots_t_inv]) but it didn't succeed, so we keep things as they are.
-let slots_t_inv (#t : Type0) (slots : slots_t t{length slots <= usize_max}) : Type0 =
- forall(i:nat{i < length slots}).
- {:pattern index slots i}
- slot_t_inv (length slots) i (index slots i)
-
-let hashMap_s_inv (#t : Type0) (hm : hashMap_s t) : Type0 =
- length hm <= usize_max /\
- length hm > 0 /\
- slots_s_inv hm
-
-/// Base invariant for the hashmap (the complete invariant can be temporarily
-/// broken between the moment we inserted an element and the moment we resize)
-let hashMap_t_base_inv (#t : Type0) (hm : hashMap_t t) : Type0 =
- let al = hashMap_t_al_v hm in
- // [num_entries] correctly tracks the number of entries in the table
- // Note that it gives us that the length of the slots array is <= usize_max:
- // [> length <= usize_max
- // (because hashMap_num_entries has type `usize`)
- hm.num_entries = length al /\
- // Slots invariant
- slots_t_inv hm.slots /\
- // The capacity must be > 0 (otherwise we can't resize, because we
- // multiply the capacity by two!)
- length hm.slots > 0 /\
- // Load computation
- begin
- let capacity = length hm.slots in
- let (dividend, divisor) = hm.max_load_factor in
- 0 < dividend /\ dividend < divisor /\
- capacity * dividend >= divisor /\
- hm.max_load = (capacity * dividend) / divisor
- end
-
-/// We often need to frame some values
-let hashMap_t_same_params (#t : Type0) (hm0 hm1 : hashMap_t t) : Type0 =
- length hm0.slots = length hm1.slots /\
- hm0.max_load = hm1.max_load /\
- hm0.max_load_factor = hm1.max_load_factor
-
-/// The following invariants, etc. are meant to be revealed to the user through
-/// the .fsti.
-
-/// Invariant for the hashmap
-let hashMap_t_inv (#t : Type0) (hm : hashMap_t t) : Type0 =
- // Base invariant
- hashMap_t_base_inv hm /\
- // The hash map is either: not overloaded, or we can't resize it
- begin
- let (dividend, divisor) = hm.max_load_factor in
- hm.num_entries <= hm.max_load
- || length hm.slots * 2 * dividend > usize_max
- end
-
-(*** .fsti *)
-/// We reveal slightly different version of the above functions to the user
-
-let len_s (#t : Type0) (hm : hashMap_t t) : nat = hashMap_t_len_s hm
-
-/// This version doesn't take any precondition (contrary to [hashMap_t_find_s])
-let find_s (#t : Type0) (hm : hashMap_t t) (k : key) : option t =
- if length hm.slots = 0 then None
- else hashMap_t_find_s hm k
-
-(*** Overloading *)
-
-let hashMap_not_overloaded_lem #t hm = ()
-
-(*** allocate_slots *)
-
-/// Auxiliary lemma
-val slots_t_all_nil_inv_lem
- (#t : Type0) (slots : alloc_vec_Vec (list_t t){length slots <= usize_max}) :
- Lemma (requires (forall (i:nat{i < length slots}). index slots i == List_Nil))
- (ensures (slots_t_inv slots))
-
-#push-options "--fuel 1"
-let slots_t_all_nil_inv_lem #t slots = ()
-#pop-options
-
-val slots_t_al_v_all_nil_is_empty_lem
- (#t : Type0) (slots : alloc_vec_Vec (list_t t)) :
- Lemma (requires (forall (i:nat{i < length slots}). index slots i == List_Nil))
- (ensures (slots_t_al_v slots == []))
-
-#push-options "--fuel 1"
-let rec slots_t_al_v_all_nil_is_empty_lem #t slots =
- match slots with
- | [] -> ()
- | s :: slots' ->
- assert(forall (i:nat{i < length slots'}). index slots' i == index slots (i+1));
- slots_t_al_v_all_nil_is_empty_lem #t slots';
- assert(slots_t_al_v slots == list_t_v s @ slots_t_al_v slots');
- assert(slots_t_al_v slots == list_t_v s);
- assert(index slots 0 == List_Nil)
-#pop-options
-
-/// [allocate_slots]
-val hashMap_allocate_slots_lem
- (t : Type0) (slots : alloc_vec_Vec (list_t t)) (n : usize) :
- Lemma
- (requires (length slots + n <= usize_max))
- (ensures (
- match hashMap_allocate_slots t slots n with
- | Fail _ -> False
- | Return slots' ->
- length slots' = length slots + n /\
- // We leave the already allocated slots unchanged
- (forall (i:nat{i < length slots}). index slots' i == index slots i) /\
- // We allocate n additional empty slots
- (forall (i:nat{length slots <= i /\ i < length slots'}). index slots' i == List_Nil)))
- (decreases (hashMap_allocate_slots_loop_decreases t slots n))
-
-#push-options "--fuel 1"
-let rec hashMap_allocate_slots_lem t slots n =
- begin match n with
- | 0 -> ()
- | _ ->
- begin match alloc_vec_Vec_push (list_t t) slots List_Nil with
- | Fail _ -> ()
- | Return slots1 ->
- begin match usize_sub n 1 with
- | Fail _ -> ()
- | Return i ->
- hashMap_allocate_slots_lem t slots1 i;
- begin match hashMap_allocate_slots t slots1 i with
- | Fail _ -> ()
- | Return slots2 ->
- assert(length slots1 = length slots + 1);
- assert(slots1 == slots @ [List_Nil]); // Triggers patterns
- assert(index slots1 (length slots) == index [List_Nil] 0); // Triggers patterns
- assert(index slots1 (length slots) == List_Nil)
- end
- end
- end
- end
-#pop-options
-
-(*** new_with_capacity *)
-/// Under proper conditions, [new_with_capacity] doesn't fail and returns an empty hash map.
-val hashMap_new_with_capacity_lem
- (t : Type0) (capacity : usize)
- (max_load_dividend : usize) (max_load_divisor : usize) :
- Lemma
- (requires (
- 0 < max_load_dividend /\
- max_load_dividend < max_load_divisor /\
- 0 < capacity /\
- capacity * max_load_dividend >= max_load_divisor /\
- capacity * max_load_dividend <= usize_max))
- (ensures (
- match hashMap_new_with_capacity t capacity max_load_dividend max_load_divisor with
- | Fail _ -> False
- | Return hm ->
- // The hash map invariant is satisfied
- hashMap_t_inv hm /\
- // The parameters are correct
- hm.max_load_factor = (max_load_dividend, max_load_divisor) /\
- hm.max_load = (capacity * max_load_dividend) / max_load_divisor /\
- // The hash map has the specified capacity - we need to reveal this
- // otherwise the pre of [hashMap_t_find_s] is not satisfied.
- length hm.slots = capacity /\
- // The hash map has 0 values
- hashMap_t_len_s hm = 0 /\
- // It contains no bindings
- (forall k. hashMap_t_find_s hm k == None) /\
- // We need this low-level property for the invariant
- (forall(i:nat{i < length hm.slots}). index hm.slots i == List_Nil)))
-
-#push-options "--z3rlimit 50 --fuel 1"
-let hashMap_new_with_capacity_lem (t : Type0) (capacity : usize)
- (max_load_dividend : usize) (max_load_divisor : usize) =
- let v = alloc_vec_Vec_new (list_t t) in
- assert(length v = 0);
- hashMap_allocate_slots_lem t v capacity;
- begin match hashMap_allocate_slots t v capacity with
- | Fail _ -> assert(False)
- | Return v0 ->
- begin match usize_mul capacity max_load_dividend with
- | Fail _ -> assert(False)
- | Return i ->
- begin match usize_div i max_load_divisor with
- | Fail _ -> assert(False)
- | Return i0 ->
- let hm = MkhashMap_t 0 (max_load_dividend, max_load_divisor) i0 v0 in
- slots_t_all_nil_inv_lem v0;
- slots_t_al_v_all_nil_is_empty_lem hm.slots
- end
- end
- end
-#pop-options
-
-(*** new *)
-
-/// [new] doesn't fail and returns an empty hash map
-val hashMap_new_lem_aux (t : Type0) :
- Lemma
- (ensures (
- match hashMap_new t with
- | Fail _ -> False
- | Return hm ->
- // The hash map invariant is satisfied
- hashMap_t_inv hm /\
- // The hash map has 0 values
- hashMap_t_len_s hm = 0 /\
- // It contains no bindings
- (forall k. hashMap_t_find_s hm k == None)))
-
-#push-options "--fuel 1"
-let hashMap_new_lem_aux t =
- hashMap_new_with_capacity_lem t 32 4 5;
- match hashMap_new_with_capacity t 32 4 5 with
- | Fail _ -> ()
- | Return hm -> ()
-#pop-options
-
-/// The lemma we reveal in the .fsti
-let hashMap_new_lem t = hashMap_new_lem_aux t
-
-(*** clear *)
-/// [clear]: the loop doesn't fail and simply clears the slots starting at index i
-#push-options "--fuel 1"
-let rec hashMap_clear_loop_lem
- (t : Type0) (slots : alloc_vec_Vec (list_t t)) (i : usize) :
- Lemma
- (ensures (
- match hashMap_clear_loop t slots i with
- | Fail _ -> False
- | Return slots' ->
- // The length is preserved
- length slots' == length slots /\
- // The slots before i are left unchanged
- (forall (j:nat{j < i /\ j < length slots}). index slots' j == index slots j) /\
- // The slots after i are set to List_Nil
- (forall (j:nat{i <= j /\ j < length slots}). index slots' j == List_Nil)))
- (decreases (hashMap_clear_loop_decreases t slots i))
- =
- let i0 = alloc_vec_Vec_len (list_t t) slots in
- let b = i < i0 in
- if b
- then
- begin match alloc_vec_Vec_update_usize slots i List_Nil with
- | Fail _ -> ()
- | Return v ->
- begin match usize_add i 1 with
- | Fail _ -> ()
- | Return i1 ->
- hashMap_clear_loop_lem t v i1;
- begin match hashMap_clear_loop t v i1 with
- | Fail _ -> ()
- | Return slots1 ->
- assert(length slots1 == length slots);
- assert(forall (j:nat{i+1 <= j /\ j < length slots}). index slots1 j == List_Nil);
- assert(index slots1 i == List_Nil)
- end
- end
- end
- else ()
-#pop-options
-
-/// [clear] doesn't fail and turns the hash map into an empty map
-val hashMap_clear_lem_aux
- (#t : Type0) (self : hashMap_t t) :
- Lemma
- (requires (hashMap_t_base_inv self))
- (ensures (
- match hashMap_clear t self with
- | Fail _ -> False
- | Return hm ->
- // The hash map invariant is satisfied
- hashMap_t_base_inv hm /\
- // We preserved the parameters
- hashMap_t_same_params hm self /\
- // The hash map has 0 values
- hashMap_t_len_s hm = 0 /\
- // It contains no bindings
- (forall k. hashMap_t_find_s hm k == None)))
-
-// Being lazy: fuel 1 helps a lot...
-#push-options "--fuel 1"
-let hashMap_clear_lem_aux #t self =
- let p = self.max_load_factor in
- let i = self.max_load in
- let v = self.slots in
- hashMap_clear_loop_lem t v 0;
- begin match hashMap_clear_loop t v 0 with
- | Fail _ -> ()
- | Return slots1 ->
- slots_t_al_v_all_nil_is_empty_lem slots1;
- let hm1 = MkhashMap_t 0 p i slots1 in
- assert(hashMap_t_base_inv hm1);
- assert(hashMap_t_inv hm1)
- end
-#pop-options
-
-let hashMap_clear_lem #t self = hashMap_clear_lem_aux #t self
-
-(*** len *)
-
-/// [len]: we link it to a non-failing function.
-/// Rk.: we might want to make an analysis to not use an error monad to translate
-/// functions which statically can't fail.
-let hashMap_len_lem #t self = ()
-
-
-(*** insert_in_list *)
-
-(**** insert_in_list'fwd *)
-
-/// [insert_in_list]: returns true iff the key is not in the list (functional version)
-val hashMap_insert_in_list_lem
- (t : Type0) (key : usize) (value : t) (ls : list_t t) :
- Lemma
- (ensures (
- match hashMap_insert_in_list t key value ls with
- | Fail _ -> False
- | Return b ->
- b <==> (slot_t_find_s key ls == None)))
- (decreases (hashMap_insert_in_list_loop_decreases t key value ls))
-
-#push-options "--fuel 1"
-let rec hashMap_insert_in_list_lem t key value ls =
- begin match ls with
- | List_Cons ckey cvalue ls0 ->
- let b = ckey = key in
- if b
- then ()
- else
- begin
- hashMap_insert_in_list_lem t key value ls0;
- match hashMap_insert_in_list t key value ls0 with
- | Fail _ -> ()
- | Return b0 -> ()
- end
- | List_Nil ->
- assert(list_t_v ls == []);
- assert_norm(find (same_key #t key) [] == None)
- end
-#pop-options
-
-(**** insert_in_list'back *)
-
-/// The proofs about [insert_in_list] backward are easier to do in several steps:
-/// extrinsic proofs to the rescue!
-/// We first prove that [insert_in_list] refines the function we wrote above, then
-/// use this function to prove the invariants, etc.
-
-/// We write a helper which "captures" what [insert_in_list] does.
-/// We then reason about this helper to prove the high-level properties we want
-/// (functional properties, preservation of invariants, etc.).
-let hashMap_insert_in_list_s
- (#t : Type0) (key : usize) (value : t) (ls : list (binding t)) :
- list (binding t) =
- // Check if there is already a binding for the key
- match find (same_key key) ls with
- | None ->
- // No binding: append the binding to the end
- ls @ [(key,value)]
- | Some _ ->
- // There is already a binding: update it
- find_update (same_key key) ls (key,value)
-
-/// [insert_in_list]: if the key is not in the map, appends a new bindings (functional version)
-val hashMap_insert_in_list_back_lem_append_s
- (t : Type0) (key : usize) (value : t) (ls : list_t t) :
- Lemma
- (requires (
- slot_t_find_s key ls == None))
- (ensures (
- match hashMap_insert_in_list_back t key value ls with
- | Fail _ -> False
- | Return ls' ->
- list_t_v ls' == list_t_v ls @ [(key,value)]))
- (decreases (hashMap_insert_in_list_loop_decreases t key value ls))
-
-#push-options "--fuel 1"
-let rec hashMap_insert_in_list_back_lem_append_s t key value ls =
- begin match ls with
- | List_Cons ckey cvalue ls0 ->
- let b = ckey = key in
- if b
- then ()
- else
- begin
- hashMap_insert_in_list_back_lem_append_s t key value ls0;
- match hashMap_insert_in_list_back t key value ls0 with
- | Fail _ -> ()
- | Return l -> ()
- end
- | List_Nil -> ()
- end
-#pop-options
-
-/// [insert_in_list]: if the key is in the map, we update the binding (functional version)
-val hashMap_insert_in_list_back_lem_update_s
- (t : Type0) (key : usize) (value : t) (ls : list_t t) :
- Lemma
- (requires (
- Some? (find (same_key key) (list_t_v ls))))
- (ensures (
- match hashMap_insert_in_list_back t key value ls with
- | Fail _ -> False
- | Return ls' ->
- list_t_v ls' == find_update (same_key key) (list_t_v ls) (key,value)))
- (decreases (hashMap_insert_in_list_loop_decreases t key value ls))
-
-#push-options "--fuel 1"
-let rec hashMap_insert_in_list_back_lem_update_s t key value ls =
- begin match ls with
- | List_Cons ckey cvalue ls0 ->
- let b = ckey = key in
- if b
- then ()
- else
- begin
- hashMap_insert_in_list_back_lem_update_s t key value ls0;
- match hashMap_insert_in_list_back t key value ls0 with
- | Fail _ -> ()
- | Return l -> ()
- end
- | List_Nil -> ()
- end
-#pop-options
-
-/// Put everything together
-val hashMap_insert_in_list_back_lem_s
- (t : Type0) (key : usize) (value : t) (ls : list_t t) :
- Lemma
- (ensures (
- match hashMap_insert_in_list_back t key value ls with
- | Fail _ -> False
- | Return ls' ->
- list_t_v ls' == hashMap_insert_in_list_s key value (list_t_v ls)))
-
-let hashMap_insert_in_list_back_lem_s t key value ls =
- match find (same_key key) (list_t_v ls) with
- | None -> hashMap_insert_in_list_back_lem_append_s t key value ls
- | Some _ -> hashMap_insert_in_list_back_lem_update_s t key value ls
-
-(**** Invariants of insert_in_list_s *)
-
-/// Auxiliary lemmas
-/// We work on [hashMap_insert_in_list_s], the "high-level" version of [insert_in_list'back].
-///
-/// Note that in F* we can't have recursive proofs inside of other proofs, contrary
-/// to Coq, which makes it a bit cumbersome to prove auxiliary results like the
-/// following ones...
-
-(** Auxiliary lemmas: append case *)
-
-val slot_t_v_for_all_binding_neq_append_lem
- (t : Type0) (key : usize) (value : t) (ls : list (binding t)) (b : binding t) :
- Lemma
- (requires (
- fst b <> key /\
- for_all (binding_neq b) ls /\
- slot_s_find key ls == None))
- (ensures (
- for_all (binding_neq b) (ls @ [(key,value)])))
-
-#push-options "--fuel 1"
-let rec slot_t_v_for_all_binding_neq_append_lem t key value ls b =
- match ls with
- | [] -> ()
- | (ck, cv) :: cls ->
- slot_t_v_for_all_binding_neq_append_lem t key value cls b
-#pop-options
-
-val slot_s_inv_not_find_append_end_inv_lem
- (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list (binding t)) :
- Lemma
- (requires (
- slot_s_inv len (hash_mod_key key len) ls /\
- slot_s_find key ls == None))
- (ensures (
- let ls' = ls @ [(key,value)] in
- slot_s_inv len (hash_mod_key key len) ls' /\
- (slot_s_find key ls' == Some value) /\
- (forall k'. k' <> key ==> slot_s_find k' ls' == slot_s_find k' ls)))
-
-#push-options "--fuel 1"
-let rec slot_s_inv_not_find_append_end_inv_lem t len key value ls =
- match ls with
- | [] -> ()
- | (ck, cv) :: cls ->
- slot_s_inv_not_find_append_end_inv_lem t len key value cls;
- let h = hash_mod_key key len in
- let ls' = ls @ [(key,value)] in
- assert(for_all (same_hash_mod_key len h) ls');
- slot_t_v_for_all_binding_neq_append_lem t key value cls (ck, cv);
- assert(pairwise_rel binding_neq ls');
- assert(slot_s_inv len h ls')
-#pop-options
-
-/// [insert_in_list]: if the key is not in the map, appends a new bindings
-val hashMap_insert_in_list_s_lem_append
- (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list (binding t)) :
- Lemma
- (requires (
- slot_s_inv len (hash_mod_key key len) ls /\
- slot_s_find key ls == None))
- (ensures (
- let ls' = hashMap_insert_in_list_s key value ls in
- ls' == ls @ [(key,value)] /\
- // The invariant is preserved
- slot_s_inv len (hash_mod_key key len) ls' /\
- // [key] maps to [value]
- slot_s_find key ls' == Some value /\
- // The other bindings are preserved
- (forall k'. k' <> key ==> slot_s_find k' ls' == slot_s_find k' ls)))
-
-let hashMap_insert_in_list_s_lem_append t len key value ls =
- slot_s_inv_not_find_append_end_inv_lem t len key value ls
-
-/// [insert_in_list]: if the key is not in the map, appends a new bindings (quantifiers)
-/// Rk.: we don't use this lemma.
-/// TODO: remove?
-val hashMap_insert_in_list_back_lem_append
- (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list_t t) :
- Lemma
- (requires (
- slot_t_inv len (hash_mod_key key len) ls /\
- slot_t_find_s key ls == None))
- (ensures (
- match hashMap_insert_in_list_back t key value ls with
- | Fail _ -> False
- | Return ls' ->
- list_t_v ls' == list_t_v ls @ [(key,value)] /\
- // The invariant is preserved
- slot_t_inv len (hash_mod_key key len) ls' /\
- // [key] maps to [value]
- slot_t_find_s key ls' == Some value /\
- // The other bindings are preserved
- (forall k'. k' <> key ==> slot_t_find_s k' ls' == slot_t_find_s k' ls)))
-
-let hashMap_insert_in_list_back_lem_append t len key value ls =
- hashMap_insert_in_list_back_lem_s t key value ls;
- hashMap_insert_in_list_s_lem_append t len key value (list_t_v ls)
-
-(** Auxiliary lemmas: update case *)
-
-val slot_s_find_update_for_all_binding_neq_append_lem
- (t : Type0) (key : usize) (value : t) (ls : list (binding t)) (b : binding t) :
- Lemma
- (requires (
- fst b <> key /\
- for_all (binding_neq b) ls))
- (ensures (
- let ls' = find_update (same_key key) ls (key, value) in
- for_all (binding_neq b) ls'))
-
-#push-options "--fuel 1"
-let rec slot_s_find_update_for_all_binding_neq_append_lem t key value ls b =
- match ls with
- | [] -> ()
- | (ck, cv) :: cls ->
- slot_s_find_update_for_all_binding_neq_append_lem t key value cls b
-#pop-options
-
-/// Annoying auxiliary lemma we have to prove because there is no way to reason
-/// properly about closures.
-/// I'm really enjoying my time.
-val for_all_binding_neq_value_indep
- (#t : Type0) (key : key) (v0 v1 : t) (ls : list (binding t)) :
- Lemma (for_all (binding_neq (key,v0)) ls = for_all (binding_neq (key,v1)) ls)
-
-#push-options "--fuel 1"
-let rec for_all_binding_neq_value_indep #t key v0 v1 ls =
- match ls with
- | [] -> ()
- | _ :: ls' -> for_all_binding_neq_value_indep #t key v0 v1 ls'
-#pop-options
-
-val slot_s_inv_find_append_end_inv_lem
- (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list (binding t)) :
- Lemma
- (requires (
- slot_s_inv len (hash_mod_key key len) ls /\
- Some? (slot_s_find key ls)))
- (ensures (
- let ls' = find_update (same_key key) ls (key, value) in
- slot_s_inv len (hash_mod_key key len) ls' /\
- (slot_s_find key ls' == Some value) /\
- (forall k'. k' <> key ==> slot_s_find k' ls' == slot_s_find k' ls)))
-
-#push-options "--z3rlimit 50 --fuel 1"
-let rec slot_s_inv_find_append_end_inv_lem t len key value ls =
- match ls with
- | [] -> ()
- | (ck, cv) :: cls ->
- let h = hash_mod_key key len in
- let ls' = find_update (same_key key) ls (key, value) in
- if ck = key then
- begin
- assert(ls' == (ck,value) :: cls);
- assert(for_all (same_hash_mod_key len h) ls');
- // For pairwise_rel: binding_neq (ck, value) is actually independent
- // of `value`. Slightly annoying to prove in F*...
- assert(for_all (binding_neq (ck,cv)) cls);
- for_all_binding_neq_value_indep key cv value cls;
- assert(for_all (binding_neq (ck,value)) cls);
- assert(pairwise_rel binding_neq ls');
- assert(slot_s_inv len (hash_mod_key key len) ls')
- end
- else
- begin
- slot_s_inv_find_append_end_inv_lem t len key value cls;
- assert(for_all (same_hash_mod_key len h) ls');
- slot_s_find_update_for_all_binding_neq_append_lem t key value cls (ck, cv);
- assert(pairwise_rel binding_neq ls');
- assert(slot_s_inv len h ls')
- end
-#pop-options
-
-/// [insert_in_list]: if the key is in the map, update the bindings
-val hashMap_insert_in_list_s_lem_update
- (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list (binding t)) :
- Lemma
- (requires (
- slot_s_inv len (hash_mod_key key len) ls /\
- Some? (slot_s_find key ls)))
- (ensures (
- let ls' = hashMap_insert_in_list_s key value ls in
- ls' == find_update (same_key key) ls (key,value) /\
- // The invariant is preserved
- slot_s_inv len (hash_mod_key key len) ls' /\
- // [key] maps to [value]
- slot_s_find key ls' == Some value /\
- // The other bindings are preserved
- (forall k'. k' <> key ==> slot_s_find k' ls' == slot_s_find k' ls)))
-
-let hashMap_insert_in_list_s_lem_update t len key value ls =
- slot_s_inv_find_append_end_inv_lem t len key value ls
-
-
-/// [insert_in_list]: if the key is in the map, update the bindings
-/// TODO: not used: remove?
-val hashMap_insert_in_list_back_lem_update
- (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list_t t) :
- Lemma
- (requires (
- slot_t_inv len (hash_mod_key key len) ls /\
- Some? (slot_t_find_s key ls)))
- (ensures (
- match hashMap_insert_in_list_back t key value ls with
- | Fail _ -> False
- | Return ls' ->
- let als = list_t_v ls in
- list_t_v ls' == find_update (same_key key) als (key,value) /\
- // The invariant is preserved
- slot_t_inv len (hash_mod_key key len) ls' /\
- // [key] maps to [value]
- slot_t_find_s key ls' == Some value /\
- // The other bindings are preserved
- (forall k'. k' <> key ==> slot_t_find_s k' ls' == slot_t_find_s k' ls)))
-
-let hashMap_insert_in_list_back_lem_update t len key value ls =
- hashMap_insert_in_list_back_lem_s t key value ls;
- hashMap_insert_in_list_s_lem_update t len key value (list_t_v ls)
-
-(** Final lemmas about [insert_in_list] *)
-
-/// High-level version
-val hashMap_insert_in_list_s_lem
- (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list (binding t)) :
- Lemma
- (requires (
- slot_s_inv len (hash_mod_key key len) ls))
- (ensures (
- let ls' = hashMap_insert_in_list_s key value ls in
- // The invariant is preserved
- slot_s_inv len (hash_mod_key key len) ls' /\
- // [key] maps to [value]
- slot_s_find key ls' == Some value /\
- // The other bindings are preserved
- (forall k'. k' <> key ==> slot_s_find k' ls' == slot_s_find k' ls) /\
- // The length is incremented, iff we inserted a new key
- (match slot_s_find key ls with
- | None -> length ls' = length ls + 1
- | Some _ -> length ls' = length ls)))
-
-let hashMap_insert_in_list_s_lem t len key value ls =
- match slot_s_find key ls with
- | None ->
- assert_norm(length [(key,value)] = 1);
- hashMap_insert_in_list_s_lem_append t len key value ls
- | Some _ ->
- hashMap_insert_in_list_s_lem_update t len key value ls
-
-/// [insert_in_list]
-/// TODO: not used: remove?
-val hashMap_insert_in_list_back_lem
- (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list_t t) :
- Lemma
- (requires (slot_t_inv len (hash_mod_key key len) ls))
- (ensures (
- match hashMap_insert_in_list_back t key value ls with
- | Fail _ -> False
- | Return ls' ->
- // The invariant is preserved
- slot_t_inv len (hash_mod_key key len) ls' /\
- // [key] maps to [value]
- slot_t_find_s key ls' == Some value /\
- // The other bindings are preserved
- (forall k'. k' <> key ==> slot_t_find_s k' ls' == slot_t_find_s k' ls) /\
- // The length is incremented, iff we inserted a new key
- (match slot_t_find_s key ls with
- | None ->
- list_t_v ls' == list_t_v ls @ [(key,value)] /\
- list_t_len ls' = list_t_len ls + 1
- | Some _ ->
- list_t_v ls' == find_update (same_key key) (list_t_v ls) (key,value) /\
- list_t_len ls' = list_t_len ls)))
- (decreases (hashMap_insert_in_list_loop_decreases t key value ls))
-
-let hashMap_insert_in_list_back_lem t len key value ls =
- hashMap_insert_in_list_back_lem_s t key value ls;
- hashMap_insert_in_list_s_lem t len key value (list_t_v ls)
-
-(*** insert_no_resize *)
-
-(**** Refinement proof *)
-/// Same strategy as for [insert_in_list]: we introduce a high-level version of
-/// the function, and reason about it.
-/// We work on [hashMap_s] (we use a higher-level view of the hash-map, but
-/// not too high).
-
-/// A high-level version of insert, which doesn't check if the table is saturated
-let hashMap_insert_no_fail_s
- (#t : Type0) (hm : hashMap_s_nes t)
- (key : usize) (value : t) :
- hashMap_s t =
- let len = length hm in
- let i = hash_mod_key key len in
- let slot = index hm i in
- let slot' = hashMap_insert_in_list_s key value slot in
- let hm' = list_update hm i slot' in
- hm'
-
-// TODO: at some point I used hashMap_s_nes and it broke proofs...x
-let hashMap_insert_no_resize_s
- (#t : Type0) (hm : hashMap_s_nes t)
- (key : usize) (value : t) :
- result (hashMap_s t) =
- // Check if the table is saturated (too many entries, and we need to insert one)
- let num_entries = length (flatten hm) in
- if None? (hashMap_s_find hm key) && num_entries = usize_max then Fail Failure
- else Return (hashMap_insert_no_fail_s hm key value)
-
-/// Prove that [hashMap_insert_no_resize_s] is refined by
-/// [hashMap_insert_no_resize'fwd_back]
-val hashMap_insert_no_resize_lem_s
- (t : Type0) (self : hashMap_t t) (key : usize) (value : t) :
- Lemma
- (requires (
- hashMap_t_base_inv self /\
- hashMap_s_len (hashMap_t_v self) = hashMap_t_len_s self))
- (ensures (
- begin
- match hashMap_insert_no_resize t self key value,
- hashMap_insert_no_resize_s (hashMap_t_v self) key value
- with
- | Fail _, Fail _ -> True
- | Return hm, Return hm_v ->
- hashMap_t_base_inv hm /\
- hashMap_t_same_params hm self /\
- hashMap_t_v hm == hm_v /\
- hashMap_s_len hm_v == hashMap_t_len_s hm
- | _ -> False
- end))
-
-let hashMap_insert_no_resize_lem_s t self key value =
- begin match hash_key key with
- | Fail _ -> ()
- | Return i ->
- let i0 = self.num_entries in
- let p = self.max_load_factor in
- let i1 = self.max_load in
- let v = self.slots in
- let i2 = alloc_vec_Vec_len (list_t t) v in
- let len = length v in
- begin match usize_rem i i2 with
- | Fail _ -> ()
- | Return hash_mod ->
- begin match alloc_vec_Vec_index_usize v hash_mod with
- | Fail _ -> ()
- | Return l ->
- begin
- // Checking that: list_t_v (index ...) == index (hashMap_t_v ...) ...
- assert(list_t_v l == index (hashMap_t_v self) hash_mod);
- hashMap_insert_in_list_lem t key value l;
- match hashMap_insert_in_list t key value l with
- | Fail _ -> ()
- | Return b ->
- assert(b = None? (slot_s_find key (list_t_v l)));
- hashMap_insert_in_list_back_lem t len key value l;
- if b
- then
- begin match usize_add i0 1 with
- | Fail _ -> ()
- | Return i3 ->
- begin
- match hashMap_insert_in_list_back t key value l with
- | Fail _ -> ()
- | Return l0 ->
- begin match alloc_vec_Vec_update_usize v hash_mod l0 with
- | Fail _ -> ()
- | Return v0 ->
- let self_v = hashMap_t_v self in
- let hm = MkhashMap_t i3 p i1 v0 in
- let hm_v = hashMap_t_v hm in
- assert(hm_v == list_update self_v hash_mod (list_t_v l0));
- assert_norm(length [(key,value)] = 1);
- assert(length (list_t_v l0) = length (list_t_v l) + 1);
- length_flatten_update self_v hash_mod (list_t_v l0);
- assert(hashMap_s_len hm_v = hashMap_t_len_s hm)
- end
- end
- end
- else
- begin
- match hashMap_insert_in_list_back t key value l with
- | Fail _ -> ()
- | Return l0 ->
- begin match alloc_vec_Vec_update_usize v hash_mod l0 with
- | Fail _ -> ()
- | Return v0 ->
- let self_v = hashMap_t_v self in
- let hm = MkhashMap_t i0 p i1 v0 in
- let hm_v = hashMap_t_v hm in
- assert(hm_v == list_update self_v hash_mod (list_t_v l0));
- assert(length (list_t_v l0) = length (list_t_v l));
- length_flatten_update self_v hash_mod (list_t_v l0);
- assert(hashMap_s_len hm_v = hashMap_t_len_s hm)
- end
- end
- end
- end
- end
- end
-
-(**** insert_{no_fail,no_resize}: invariants *)
-
-let hashMap_s_updated_binding
- (#t : Type0) (hm : hashMap_s_nes t)
- (key : usize) (opt_value : option t) (hm' : hashMap_s_nes t) : Type0 =
- // [key] maps to [value]
- hashMap_s_find hm' key == opt_value /\
- // The other bindings are preserved
- (forall k'. k' <> key ==> hashMap_s_find hm' k' == hashMap_s_find hm k')
-
-let insert_post (#t : Type0) (hm : hashMap_s_nes t)
- (key : usize) (value : t) (hm' : hashMap_s_nes t) : Type0 =
- // The invariant is preserved
- hashMap_s_inv hm' /\
- // [key] maps to [value] and the other bindings are preserved
- hashMap_s_updated_binding hm key (Some value) hm' /\
- // The length is incremented, iff we inserted a new key
- (match hashMap_s_find hm key with
- | None -> hashMap_s_len hm' = hashMap_s_len hm + 1
- | Some _ -> hashMap_s_len hm' = hashMap_s_len hm)
-
-val hashMap_insert_no_fail_s_lem
- (#t : Type0) (hm : hashMap_s_nes t)
- (key : usize) (value : t) :
- Lemma
- (requires (hashMap_s_inv hm))
- (ensures (
- let hm' = hashMap_insert_no_fail_s hm key value in
- insert_post hm key value hm'))
-
-let hashMap_insert_no_fail_s_lem #t hm key value =
- let len = length hm in
- let i = hash_mod_key key len in
- let slot = index hm i in
- hashMap_insert_in_list_s_lem t len key value slot;
- let slot' = hashMap_insert_in_list_s key value slot in
- length_flatten_update hm i slot'
-
-val hashMap_insert_no_resize_s_lem
- (#t : Type0) (hm : hashMap_s_nes t)
- (key : usize) (value : t) :
- Lemma
- (requires (hashMap_s_inv hm))
- (ensures (
- match hashMap_insert_no_resize_s hm key value with
- | Fail _ ->
- // Can fail only if we need to create a new binding in
- // an already saturated map
- hashMap_s_len hm = usize_max /\
- None? (hashMap_s_find hm key)
- | Return hm' ->
- insert_post hm key value hm'))
-
-let hashMap_insert_no_resize_s_lem #t hm key value =
- let num_entries = length (flatten hm) in
- if None? (hashMap_s_find hm key) && num_entries = usize_max then ()
- else hashMap_insert_no_fail_s_lem hm key value
-
-
-(**** find after insert *)
-/// Lemmas about what happens if we call [find] after an insertion
-
-val hashMap_insert_no_resize_s_get_same_lem
- (#t : Type0) (hm : hashMap_s t)
- (key : usize) (value : t) :
- Lemma (requires (hashMap_s_inv hm))
- (ensures (
- match hashMap_insert_no_resize_s hm key value with
- | Fail _ -> True
- | Return hm' ->
- hashMap_s_find hm' key == Some value))
-
-let hashMap_insert_no_resize_s_get_same_lem #t hm key value =
- let num_entries = length (flatten hm) in
- if None? (hashMap_s_find hm key) && num_entries = usize_max then ()
- else
- begin
- let hm' = Return?.v (hashMap_insert_no_resize_s hm key value) in
- let len = length hm in
- let i = hash_mod_key key len in
- let slot = index hm i in
- hashMap_insert_in_list_s_lem t len key value slot
- end
-
-val hashMap_insert_no_resize_s_get_diff_lem
- (#t : Type0) (hm : hashMap_s t)
- (key : usize) (value : t) (key' : usize{key' <> key}) :
- Lemma (requires (hashMap_s_inv hm))
- (ensures (
- match hashMap_insert_no_resize_s hm key value with
- | Fail _ -> True
- | Return hm' ->
- hashMap_s_find hm' key' == hashMap_s_find hm key'))
-
-let hashMap_insert_no_resize_s_get_diff_lem #t hm key value key' =
- let num_entries = length (flatten hm) in
- if None? (hashMap_s_find hm key) && num_entries = usize_max then ()
- else
- begin
- let hm' = Return?.v (hashMap_insert_no_resize_s hm key value) in
- let len = length hm in
- let i = hash_mod_key key len in
- let slot = index hm i in
- hashMap_insert_in_list_s_lem t len key value slot;
- let i' = hash_mod_key key' len in
- if i <> i' then ()
- else
- begin
- ()
- end
- end
-
-
-(*** move_elements_from_list *)
-
-/// Having a great time here: if we use `result (hashMap_s_res t)` as the
-/// return type for [hashMap_move_elements_from_list_s] instead of having this
-/// awkward match, the proof of [hashMap_move_elements_lem_refin] fails.
-/// I guess it comes from F*'s poor subtyping.
-/// Followingly, I'm not taking any chance and using [result_hashMap_s]
-/// everywhere.
-type result_hashMap_s_nes (t : Type0) : Type0 =
- res:result (hashMap_s t) {
- match res with
- | Fail _ -> True
- | Return hm -> is_pos_usize (length hm)
- }
-
-let rec hashMap_move_elements_from_list_s
- (#t : Type0) (hm : hashMap_s_nes t)
- (ls : slot_s t) :
- // Do *NOT* use `result (hashMap_s t)`
- Tot (result_hashMap_s_nes t)
- (decreases ls) =
- match ls with
- | [] -> Return hm
- | (key, value) :: ls' ->
- match hashMap_insert_no_resize_s hm key value with
- | Fail e -> Fail e
- | Return hm' ->
- hashMap_move_elements_from_list_s hm' ls'
-
-/// Refinement lemma
-val hashMap_move_elements_from_list_lem
- (t : Type0) (ntable : hashMap_t_nes t) (ls : list_t t) :
- Lemma (requires (hashMap_t_base_inv ntable))
- (ensures (
- match hashMap_move_elements_from_list t ntable ls,
- hashMap_move_elements_from_list_s (hashMap_t_v ntable) (slot_t_v ls)
- with
- | Fail _, Fail _ -> True
- | Return hm', Return hm_v ->
- hashMap_t_base_inv hm' /\
- hashMap_t_v hm' == hm_v /\
- hashMap_t_same_params hm' ntable
- | _ -> False))
- (decreases (hashMap_move_elements_from_list_loop_decreases t ntable ls))
-
-#push-options "--fuel 1"
-let rec hashMap_move_elements_from_list_lem t ntable ls =
- begin match ls with
- | List_Cons k v tl ->
- assert(list_t_v ls == (k, v) :: list_t_v tl);
- let ls_v = list_t_v ls in
- let (_,_) :: tl_v = ls_v in
- hashMap_insert_no_resize_lem_s t ntable k v;
- begin match hashMap_insert_no_resize t ntable k v with
- | Fail _ -> ()
- | Return h ->
- let h_v = Return?.v (hashMap_insert_no_resize_s (hashMap_t_v ntable) k v) in
- assert(hashMap_t_v h == h_v);
- hashMap_move_elements_from_list_lem t h tl;
- begin match hashMap_move_elements_from_list t h tl with
- | Fail _ -> ()
- | Return h0 -> ()
- end
- end
- | List_Nil -> ()
- end
-#pop-options
-
-(*** move_elements *)
-
-(**** move_elements: refinement 0 *)
-/// The proof for [hashMap_move_elements_lem_refin] broke so many times
-/// (while it is supposed to be super simple!) that we decided to add one refinement
-/// level, to really do things step by step...
-/// Doing this refinement layer made me notice that maybe the problem came from
-/// the fact that at some point we have to prove `list_t_v List_Nil == []`: I
-/// added the corresponding assert to help Z3 and everything became stable.
-/// I finally didn't use this "simple" refinement lemma, but I still keep it here
-/// because it allows for easy comparisons with [hashMap_move_elements_s].
-
-/// [hashMap_move_elements] refines this function, which is actually almost
-/// the same (just a little bit shorter and cleaner, and has a pre).
-///
-/// The way I wrote the high-level model is the following:
-/// - I copy-pasted the definition of [hashMap_move_elements], wrote the
-/// signature which links this new definition to [hashMap_move_elements] and
-/// checked that the proof passed
-/// - I gradually simplified it, while making sure the proof still passes
-#push-options "--fuel 1"
-let rec hashMap_move_elements_s_simpl
- (t : Type0) (ntable : hashMap_t t)
- (slots : alloc_vec_Vec (list_t t))
- (i : usize{i <= length slots /\ length slots <= usize_max}) :
- Pure (result ((hashMap_t t) & (alloc_vec_Vec (list_t t))))
- (requires (True))
- (ensures (fun res ->
- match res, hashMap_move_elements t ntable slots i with
- | Fail _, Fail _ -> True
- | Return (ntable1, slots1), Return (ntable2, slots2) ->
- ntable1 == ntable2 /\
- slots1 == slots2
- | _ -> False))
- (decreases (hashMap_move_elements_loop_decreases t ntable slots i))
- =
- if i < length slots
- then
- let slot = index slots i in
- begin match hashMap_move_elements_from_list t ntable slot with
- | Fail e -> Fail e
- | Return hm' ->
- let slots' = list_update slots i List_Nil in
- hashMap_move_elements_s_simpl t hm' slots' (i+1)
- end
- else Return (ntable, slots)
-#pop-options
-
-(**** move_elements: refinement 1 *)
-/// We prove a second refinement lemma: calling [move_elements] refines a function
-/// which, for every slot, moves the element out of the slot. This first model is
-/// almost exactly the translated function, it just uses `list` instead of `list_t`.
-
-// Note that we ignore the returned slots (we thus don't return a pair:
-// only the new hash map in which we moved the elements from the slots):
-// this returned value is not used.
-let rec hashMap_move_elements_s
- (#t : Type0) (hm : hashMap_s_nes t)
- (slots : slots_s t) (i : usize{i <= length slots /\ length slots <= usize_max}) :
- Tot (result_hashMap_s_nes t)
- (decreases (length slots - i)) =
- let len = length slots in
- if i < len then
- begin
- let slot = index slots i in
- match hashMap_move_elements_from_list_s hm slot with
- | Fail e -> Fail e
- | Return hm' ->
- let slots' = list_update slots i [] in
- hashMap_move_elements_s hm' slots' (i+1)
- end
- else Return hm
-
-val hashMap_move_elements_lem_refin
- (t : Type0) (ntable : hashMap_t t)
- (slots : alloc_vec_Vec (list_t t)) (i : usize{i <= length slots}) :
- Lemma
- (requires (
- hashMap_t_base_inv ntable))
- (ensures (
- match hashMap_move_elements t ntable slots i,
- hashMap_move_elements_s (hashMap_t_v ntable) (slots_t_v slots) i
- with
- | Fail _, Fail _ -> True // We will prove later that this is not possible
- | Return (ntable', _), Return ntable'_v ->
- hashMap_t_base_inv ntable' /\
- hashMap_t_v ntable' == ntable'_v /\
- hashMap_t_same_params ntable' ntable
- | _ -> False))
- (decreases (length slots - i))
-
-#restart-solver
-#push-options "--fuel 1"
-let rec hashMap_move_elements_lem_refin t ntable slots i =
- assert(hashMap_t_base_inv ntable);
- let i0 = alloc_vec_Vec_len (list_t t) slots in
- let b = i < i0 in
- if b
- then
- begin match alloc_vec_Vec_index_usize slots i with
- | Fail _ -> ()
- | Return l ->
- let l0 = core_mem_replace (list_t t) l List_Nil in
- assert(l0 == l);
- hashMap_move_elements_from_list_lem t ntable l0;
- begin match hashMap_move_elements_from_list t ntable l0 with
- | Fail _ -> ()
- | Return h ->
- let l1 = core_mem_replace_back (list_t t) l List_Nil in
- assert(l1 == List_Nil);
- assert(slot_t_v #t List_Nil == []); // THIS IS IMPORTANT
- begin match alloc_vec_Vec_update_usize slots i l1 with
- | Fail _ -> ()
- | Return v ->
- begin match usize_add i 1 with
- | Fail _ -> ()
- | Return i1 ->
- hashMap_move_elements_lem_refin t h v i1;
- begin match hashMap_move_elements t h v i1 with
- | Fail _ ->
- assert(Fail? (hashMap_move_elements t ntable slots i));
- ()
- | Return (ntable', v0) -> ()
- end
- end
- end
- end
- end
- else ()
-#pop-options
-
-
-(**** move_elements: refinement 2 *)
-/// We prove a second refinement lemma: calling [move_elements] refines a function
-/// which moves every binding of the hash map seen as *one* associative list
-/// (and not a list of lists).
-
-/// [ntable] is the hash map to which we move the elements
-/// [slots] is the current hash map, from which we remove the elements, and seen
-/// as a "flat" associative list (and not a list of lists)
-/// This is actually exactly [hashMap_move_elements_from_list_s]...
-let rec hashMap_move_elements_s_flat
- (#t : Type0) (ntable : hashMap_s_nes t)
- (slots : assoc_list t) :
- Tot (result_hashMap_s_nes t)
- (decreases slots) =
- match slots with
- | [] -> Return ntable
- | (k,v) :: slots' ->
- match hashMap_insert_no_resize_s ntable k v with
- | Fail e -> Fail e
- | Return ntable' ->
- hashMap_move_elements_s_flat ntable' slots'
-
-/// The refinment lemmas
-/// First, auxiliary helpers.
-
-/// Flatten a list of lists, starting at index i
-val flatten_i :
- #a:Type
- -> l:list (list a)
- -> i:nat{i <= length l}
- -> Tot (list a) (decreases (length l - i))
-
-let rec flatten_i l i =
- if i < length l then
- index l i @ flatten_i l (i+1)
- else []
-
-let _ = assert(let l = [1;2] in l == hd l :: tl l)
-
-val flatten_i_incr :
- #a:Type
- -> l:list (list a)
- -> i:nat{Cons? l /\ i+1 <= length l} ->
- Lemma
- (ensures (
- (**) assert_norm(length (hd l :: tl l) == 1 + length (tl l));
- flatten_i l (i+1) == flatten_i (tl l) i))
- (decreases (length l - (i+1)))
-
-#push-options "--fuel 1"
-let rec flatten_i_incr l i =
- let x :: tl = l in
- if i + 1 < length l then
- begin
- assert(flatten_i l (i+1) == index l (i+1) @ flatten_i l (i+2));
- flatten_i_incr l (i+1);
- assert(flatten_i l (i+2) == flatten_i tl (i+1));
- assert(index l (i+1) == index tl i)
- end
- else ()
-#pop-options
-
-val flatten_0_is_flatten :
- #a:Type
- -> l:list (list a) ->
- Lemma
- (ensures (flatten_i l 0 == flatten l))
-
-#push-options "--fuel 1"
-let rec flatten_0_is_flatten #a l =
- match l with
- | [] -> ()
- | x :: l' ->
- flatten_i_incr l 0;
- flatten_0_is_flatten l'
-#pop-options
-
-/// Auxiliary lemma
-val flatten_nil_prefix_as_flatten_i :
- #a:Type
- -> l:list (list a)
- -> i:nat{i <= length l} ->
- Lemma (requires (forall (j:nat{j < i}). index l j == []))
- (ensures (flatten l == flatten_i l i))
-
-#push-options "--fuel 1"
-let rec flatten_nil_prefix_as_flatten_i #a l i =
- if i = 0 then flatten_0_is_flatten l
- else
- begin
- let x :: l' = l in
- assert(index l 0 == []);
- assert(x == []);
- assert(flatten l == flatten l');
- flatten_i_incr l (i-1);
- assert(flatten_i l i == flatten_i l' (i-1));
- assert(forall (j:nat{j < length l'}). index l' j == index l (j+1));
- flatten_nil_prefix_as_flatten_i l' (i-1);
- assert(flatten l' == flatten_i l' (i-1))
- end
-#pop-options
-
-/// The proof is trivial, the functions are the same.
-/// Just keeping two definitions to allow changes...
-val hashMap_move_elements_from_list_s_as_flat_lem
- (#t : Type0) (hm : hashMap_s_nes t)
- (ls : slot_s t) :
- Lemma
- (ensures (
- hashMap_move_elements_from_list_s hm ls ==
- hashMap_move_elements_s_flat hm ls))
- (decreases ls)
-
-#push-options "--fuel 1"
-let rec hashMap_move_elements_from_list_s_as_flat_lem #t hm ls =
- match ls with
- | [] -> ()
- | (key, value) :: ls' ->
- match hashMap_insert_no_resize_s hm key value with
- | Fail _ -> ()
- | Return hm' ->
- hashMap_move_elements_from_list_s_as_flat_lem hm' ls'
-#pop-options
-
-/// Composition of two calls to [hashMap_move_elements_s_flat]
-let hashMap_move_elements_s_flat_comp
- (#t : Type0) (hm : hashMap_s_nes t) (slot0 slot1 : slot_s t) :
- Tot (result_hashMap_s_nes t) =
- match hashMap_move_elements_s_flat hm slot0 with
- | Fail e -> Fail e
- | Return hm1 -> hashMap_move_elements_s_flat hm1 slot1
-
-/// High-level desc:
-/// move_elements (move_elements hm slot0) slo1 == move_elements hm (slot0 @ slot1)
-val hashMap_move_elements_s_flat_append_lem
- (#t : Type0) (hm : hashMap_s_nes t) (slot0 slot1 : slot_s t) :
- Lemma
- (ensures (
- match hashMap_move_elements_s_flat_comp hm slot0 slot1,
- hashMap_move_elements_s_flat hm (slot0 @ slot1)
- with
- | Fail _, Fail _ -> True
- | Return hm1, Return hm2 -> hm1 == hm2
- | _ -> False))
- (decreases (slot0))
-
-#push-options "--fuel 1"
-let rec hashMap_move_elements_s_flat_append_lem #t hm slot0 slot1 =
- match slot0 with
- | [] -> ()
- | (k,v) :: slot0' ->
- match hashMap_insert_no_resize_s hm k v with
- | Fail _ -> ()
- | Return hm' ->
- hashMap_move_elements_s_flat_append_lem hm' slot0' slot1
-#pop-options
-
-val flatten_i_same_suffix (#a : Type) (l0 l1 : list (list a)) (i : nat) :
- Lemma
- (requires (
- i <= length l0 /\
- length l0 = length l1 /\
- (forall (j:nat{i <= j /\ j < length l0}). index l0 j == index l1 j)))
- (ensures (flatten_i l0 i == flatten_i l1 i))
- (decreases (length l0 - i))
-
-#push-options "--fuel 1"
-let rec flatten_i_same_suffix #a l0 l1 i =
- if i < length l0 then
- flatten_i_same_suffix l0 l1 (i+1)
- else ()
-#pop-options
-
-/// Refinement lemma:
-/// [hashMap_move_elements_s] refines [hashMap_move_elements_s_flat]
-/// (actually the functions are equal on all inputs).
-val hashMap_move_elements_s_lem_refin_flat
- (#t : Type0) (hm : hashMap_s_nes t)
- (slots : slots_s t)
- (i : nat{i <= length slots /\ length slots <= usize_max}) :
- Lemma
- (ensures (
- match hashMap_move_elements_s hm slots i,
- hashMap_move_elements_s_flat hm (flatten_i slots i)
- with
- | Fail _, Fail _ -> True
- | Return hm, Return hm' -> hm == hm'
- | _ -> False))
- (decreases (length slots - i))
-
-#push-options "--fuel 1"
-let rec hashMap_move_elements_s_lem_refin_flat #t hm slots i =
- let len = length slots in
- if i < len then
- begin
- let slot = index slots i in
- hashMap_move_elements_from_list_s_as_flat_lem hm slot;
- match hashMap_move_elements_from_list_s hm slot with
- | Fail _ ->
- assert(flatten_i slots i == slot @ flatten_i slots (i+1));
- hashMap_move_elements_s_flat_append_lem hm slot (flatten_i slots (i+1));
- assert(Fail? (hashMap_move_elements_s_flat hm (flatten_i slots i)))
- | Return hm' ->
- let slots' = list_update slots i [] in
- flatten_i_same_suffix slots slots' (i+1);
- hashMap_move_elements_s_lem_refin_flat hm' slots' (i+1);
- hashMap_move_elements_s_flat_append_lem hm slot (flatten_i slots' (i+1));
- ()
- end
- else ()
-#pop-options
-
-let assoc_list_inv (#t : Type0) (al : assoc_list t) : Type0 =
- // All the keys are pairwise distinct
- pairwise_rel binding_neq al
-
-let disjoint_hm_al_on_key
- (#t : Type0) (hm : hashMap_s_nes t) (al : assoc_list t) (k : key) : Type0 =
- match hashMap_s_find hm k, assoc_list_find k al with
- | Some _, None
- | None, Some _
- | None, None -> True
- | Some _, Some _ -> False
-
-/// Playing a dangerous game here: using forall quantifiers
-let disjoint_hm_al (#t : Type0) (hm : hashMap_s_nes t) (al : assoc_list t) : Type0 =
- forall (k:key). disjoint_hm_al_on_key hm al k
-
-let find_in_union_hm_al
- (#t : Type0) (hm : hashMap_s_nes t) (al : assoc_list t) (k : key) :
- option t =
- match hashMap_s_find hm k with
- | Some b -> Some b
- | None -> assoc_list_find k al
-
-/// Auxiliary lemma
-val for_all_binding_neq_find_lem (#t : Type0) (k : key) (v : t) (al : assoc_list t) :
- Lemma (requires (for_all (binding_neq (k,v)) al))
- (ensures (assoc_list_find k al == None))
-
-#push-options "--fuel 1"
-let rec for_all_binding_neq_find_lem #t k v al =
- match al with
- | [] -> ()
- | b :: al' -> for_all_binding_neq_find_lem k v al'
-#pop-options
-
-val hashMap_move_elements_s_flat_lem
- (#t : Type0) (hm : hashMap_s_nes t) (al : assoc_list t) :
- Lemma
- (requires (
- // Invariants
- hashMap_s_inv hm /\
- assoc_list_inv al /\
- // The two are disjoint
- disjoint_hm_al hm al /\
- // We can add all the elements to the hashmap
- hashMap_s_len hm + length al <= usize_max))
- (ensures (
- match hashMap_move_elements_s_flat hm al with
- | Fail _ -> False // We can't fail
- | Return hm' ->
- // The invariant is preserved
- hashMap_s_inv hm' /\
- // The new hash map is the union of the two maps
- (forall (k:key). hashMap_s_find hm' k == find_in_union_hm_al hm al k) /\
- hashMap_s_len hm' = hashMap_s_len hm + length al))
- (decreases al)
-
-#restart-solver
-#push-options "--z3rlimit 200 --fuel 1"
-let rec hashMap_move_elements_s_flat_lem #t hm al =
- match al with
- | [] -> ()
- | (k,v) :: al' ->
- hashMap_insert_no_resize_s_lem hm k v;
- match hashMap_insert_no_resize_s hm k v with
- | Fail _ -> ()
- | Return hm' ->
- assert(hashMap_s_inv hm');
- assert(assoc_list_inv al');
- let disjoint_lem (k' : key) :
- Lemma (disjoint_hm_al_on_key hm' al' k')
- [SMTPat (disjoint_hm_al_on_key hm' al' k')] =
- if k' = k then
- begin
- assert(hashMap_s_find hm' k' == Some v);
- for_all_binding_neq_find_lem k v al';
- assert(assoc_list_find k' al' == None)
- end
- else
- begin
- assert(hashMap_s_find hm' k' == hashMap_s_find hm k');
- assert(assoc_list_find k' al' == assoc_list_find k' al)
- end
- in
- assert(disjoint_hm_al hm' al');
- assert(hashMap_s_len hm' + length al' <= usize_max);
- hashMap_move_elements_s_flat_lem hm' al'
-#pop-options
-
-/// We need to prove that the invariants on the "low-level" representations of
-/// the hash map imply the invariants on the "high-level" representations.
-
-val slots_t_inv_implies_slots_s_inv
- (#t : Type0) (slots : slots_t t{length slots <= usize_max}) :
- Lemma (requires (slots_t_inv slots))
- (ensures (slots_s_inv (slots_t_v slots)))
-
-let slots_t_inv_implies_slots_s_inv #t slots =
- // Ok, works fine: this lemma was useless.
- // Problem is: I can never really predict for sure with F*...
- ()
-
-val hashMap_t_base_inv_implies_hashMap_s_inv
- (#t : Type0) (hm : hashMap_t t) :
- Lemma (requires (hashMap_t_base_inv hm))
- (ensures (hashMap_s_inv (hashMap_t_v hm)))
-
-let hashMap_t_base_inv_implies_hashMap_s_inv #t hm = () // same as previous
-
-/// Introducing a "partial" version of the hash map invariant, which operates on
-/// a suffix of the hash map.
-let partial_hashMap_s_inv
- (#t : Type0) (len : usize{len > 0}) (offset : usize)
- (hm : hashMap_s t{offset + length hm <= usize_max}) : Type0 =
- forall(i:nat{i < length hm}). {:pattern index hm i} slot_s_inv len (offset + i) (index hm i)
-
-/// Auxiliary lemma.
-/// If a binding comes from a slot i, then its key is different from the keys
-/// of the bindings in the other slots (because the hashes of the keys are distinct).
-val binding_in_previous_slot_implies_neq
- (#t : Type0) (len : usize{len > 0})
- (i : usize) (b : binding t)
- (offset : usize{i < offset})
- (slots : hashMap_s t{offset + length slots <= usize_max}) :
- Lemma
- (requires (
- // The binding comes from a slot not in [slots]
- hash_mod_key (fst b) len = i /\
- // The slots are the well-formed suffix of a hash map
- partial_hashMap_s_inv len offset slots))
- (ensures (
- for_all (binding_neq b) (flatten slots)))
- (decreases slots)
-
-#push-options "--z3rlimit 100 --fuel 1"
-let rec binding_in_previous_slot_implies_neq #t len i b offset slots =
- match slots with
- | [] -> ()
- | s :: slots' ->
- assert(slot_s_inv len offset (index slots 0)); // Triggers patterns
- assert(slot_s_inv len offset s);
- // Proving TARGET. We use quantifiers.
- assert(for_all (same_hash_mod_key len offset) s);
- forall_index_equiv_list_for_all (same_hash_mod_key len offset) s;
- assert(forall (i:nat{i < length s}). same_hash_mod_key len offset (index s i));
- let aux (i:nat{i < length s}) :
- Lemma
- (requires (same_hash_mod_key len offset (index s i)))
- (ensures (binding_neq b (index s i)))
- [SMTPat (index s i)] = ()
- in
- assert(forall (i:nat{i < length s}). binding_neq b (index s i));
- forall_index_equiv_list_for_all (binding_neq b) s;
- assert(for_all (binding_neq b) s); // TARGET
- //
- assert(forall (i:nat{i < length slots'}). index slots' i == index slots (i+1)); // Triggers instantiations
- binding_in_previous_slot_implies_neq len i b (offset+1) slots';
- for_all_append (binding_neq b) s (flatten slots')
-#pop-options
-
-val partial_hashMap_s_inv_implies_assoc_list_lem
- (#t : Type0) (len : usize{len > 0}) (offset : usize)
- (hm : hashMap_s t{offset + length hm <= usize_max}) :
- Lemma
- (requires (
- partial_hashMap_s_inv len offset hm))
- (ensures (assoc_list_inv (flatten hm)))
- (decreases (length hm + length (flatten hm)))
-
-#push-options "--fuel 1"
-let rec partial_hashMap_s_inv_implies_assoc_list_lem #t len offset hm =
- match hm with
- | [] -> ()
- | slot :: hm' ->
- assert(flatten hm == slot @ flatten hm');
- assert(forall (i:nat{i < length hm'}). index hm' i == index hm (i+1)); // Triggers instantiations
- match slot with
- | [] ->
- assert(flatten hm == flatten hm');
- assert(partial_hashMap_s_inv len (offset+1) hm'); // Triggers instantiations
- partial_hashMap_s_inv_implies_assoc_list_lem len (offset+1) hm'
- | x :: slot' ->
- assert(flatten (slot' :: hm') == slot' @ flatten hm');
- let hm'' = slot' :: hm' in
- assert(forall (i:nat{0 < i /\ i < length hm''}). index hm'' i == index hm i); // Triggers instantiations
- assert(forall (i:nat{0 < i /\ i < length hm''}). slot_s_inv len (offset + i) (index hm'' i));
- assert(index hm 0 == slot); // Triggers instantiations
- assert(slot_s_inv len offset slot);
- assert(slot_s_inv len offset slot');
- assert(partial_hashMap_s_inv len offset hm'');
- partial_hashMap_s_inv_implies_assoc_list_lem len offset (slot' :: hm');
- // Proving that the key in `x` is different from all the other keys in
- // the flattened map
- assert(for_all (binding_neq x) slot');
- for_all_append (binding_neq x) slot' (flatten hm');
- assert(partial_hashMap_s_inv len (offset+1) hm');
- binding_in_previous_slot_implies_neq #t len offset x (offset+1) hm';
- assert(for_all (binding_neq x) (flatten hm'));
- assert(for_all (binding_neq x) (flatten (slot' :: hm')))
-#pop-options
-
-val hashMap_s_inv_implies_assoc_list_lem
- (#t : Type0) (hm : hashMap_s t) :
- Lemma (requires (hashMap_s_inv hm))
- (ensures (assoc_list_inv (flatten hm)))
-
-let hashMap_s_inv_implies_assoc_list_lem #t hm =
- partial_hashMap_s_inv_implies_assoc_list_lem (length hm) 0 hm
-
-val hashMap_t_base_inv_implies_assoc_list_lem
- (#t : Type0) (hm : hashMap_t t):
- Lemma (requires (hashMap_t_base_inv hm))
- (ensures (assoc_list_inv (hashMap_t_al_v hm)))
-
-let hashMap_t_base_inv_implies_assoc_list_lem #t hm =
- hashMap_s_inv_implies_assoc_list_lem (hashMap_t_v hm)
-
-/// For some reason, we can't write the below [forall] directly in the [ensures]
-/// clause of the next lemma: it makes Z3 fails even with a huge rlimit.
-/// I have no idea what's going on.
-let hashMap_is_assoc_list
- (#t : Type0) (ntable : hashMap_t t{length ntable.slots > 0})
- (al : assoc_list t) : Type0 =
- (forall (k:key). hashMap_t_find_s ntable k == assoc_list_find k al)
-
-let partial_hashMap_s_find
- (#t : Type0) (len : usize{len > 0}) (offset : usize)
- (hm : hashMap_s_nes t{offset + length hm = len})
- (k : key{hash_mod_key k len >= offset}) : option t =
- let i = hash_mod_key k len in
- let slot = index hm (i - offset) in
- slot_s_find k slot
-
-val not_same_hash_key_not_found_in_slot
- (#t : Type0) (len : usize{len > 0})
- (k : key)
- (i : usize)
- (slot : slot_s t) :
- Lemma
- (requires (
- hash_mod_key k len <> i /\
- slot_s_inv len i slot))
- (ensures (slot_s_find k slot == None))
-
-#push-options "--fuel 1"
-let rec not_same_hash_key_not_found_in_slot #t len k i slot =
- match slot with
- | [] -> ()
- | (k',v) :: slot' -> not_same_hash_key_not_found_in_slot len k i slot'
-#pop-options
-
-/// Small variation of [binding_in_previous_slot_implies_neq]: if the hash of
-/// a key links it to a previous slot, it can't be found in the slots after.
-val key_in_previous_slot_implies_not_found
- (#t : Type0) (len : usize{len > 0})
- (k : key)
- (offset : usize)
- (slots : hashMap_s t{offset + length slots = len}) :
- Lemma
- (requires (
- // The binding comes from a slot not in [slots]
- hash_mod_key k len < offset /\
- // The slots are the well-formed suffix of a hash map
- partial_hashMap_s_inv len offset slots))
- (ensures (
- assoc_list_find k (flatten slots) == None))
- (decreases slots)
-
-#push-options "--fuel 1"
-let rec key_in_previous_slot_implies_not_found #t len k offset slots =
- match slots with
- | [] -> ()
- | slot :: slots' ->
- find_append (same_key k) slot (flatten slots');
- assert(index slots 0 == slot); // Triggers instantiations
- not_same_hash_key_not_found_in_slot #t len k offset slot;
- assert(assoc_list_find k slot == None);
- assert(forall (i:nat{i < length slots'}). index slots' i == index slots (i+1)); // Triggers instantiations
- key_in_previous_slot_implies_not_found len k (offset+1) slots'
-#pop-options
-
-val partial_hashMap_s_is_assoc_list_lem
- (#t : Type0) (len : usize{len > 0}) (offset : usize)
- (hm : hashMap_s_nes t{offset + length hm = len})
- (k : key{hash_mod_key k len >= offset}) :
- Lemma
- (requires (
- partial_hashMap_s_inv len offset hm))
- (ensures (
- partial_hashMap_s_find len offset hm k == assoc_list_find k (flatten hm)))
- (decreases hm)
-
-#push-options "--fuel 1"
-let rec partial_hashMap_s_is_assoc_list_lem #t len offset hm k =
- match hm with
- | [] -> ()
- | slot :: hm' ->
- let h = hash_mod_key k len in
- let i = h - offset in
- if i = 0 then
- begin
- // We must look in the current slot
- assert(partial_hashMap_s_find len offset hm k == slot_s_find k slot);
- find_append (same_key k) slot (flatten hm');
- assert(forall (i:nat{i < length hm'}). index hm' i == index hm (i+1)); // Triggers instantiations
- key_in_previous_slot_implies_not_found #t len k (offset+1) hm';
- assert( // Of course, writing `== None` doesn't work...
- match find (same_key k) (flatten hm') with
- | None -> True
- | Some _ -> False);
- assert(
- find (same_key k) (flatten hm) ==
- begin match find (same_key k) slot with
- | Some x -> Some x
- | None -> find (same_key k) (flatten hm')
- end);
- ()
- end
- else
- begin
- // We must ignore the current slot
- assert(partial_hashMap_s_find len offset hm k ==
- partial_hashMap_s_find len (offset+1) hm' k);
- find_append (same_key k) slot (flatten hm');
- assert(index hm 0 == slot); // Triggers instantiations
- not_same_hash_key_not_found_in_slot #t len k offset slot;
- assert(forall (i:nat{i < length hm'}). index hm' i == index hm (i+1)); // Triggers instantiations
- partial_hashMap_s_is_assoc_list_lem #t len (offset+1) hm' k
- end
-#pop-options
-
-val hashMap_is_assoc_list_lem (#t : Type0) (hm : hashMap_t t) :
- Lemma (requires (hashMap_t_base_inv hm))
- (ensures (hashMap_is_assoc_list hm (hashMap_t_al_v hm)))
-
-let hashMap_is_assoc_list_lem #t hm =
- let aux (k:key) :
- Lemma (hashMap_t_find_s hm k == assoc_list_find k (hashMap_t_al_v hm))
- [SMTPat (hashMap_t_find_s hm k)] =
- let hm_v = hashMap_t_v hm in
- let len = length hm_v in
- partial_hashMap_s_is_assoc_list_lem #t len 0 hm_v k
- in
- ()
-
-/// The final lemma about [move_elements]: calling it on an empty hash table moves
-/// all the elements to this empty table.
-val hashMap_move_elements_lem
- (t : Type0) (ntable : hashMap_t t) (slots : alloc_vec_Vec (list_t t)) :
- Lemma
- (requires (
- let al = flatten (slots_t_v slots) in
- hashMap_t_base_inv ntable /\
- length al <= usize_max /\
- assoc_list_inv al /\
- // The table is empty
- hashMap_t_len_s ntable = 0 /\
- (forall (k:key). hashMap_t_find_s ntable k == None)))
- (ensures (
- let al = flatten (slots_t_v slots) in
- match hashMap_move_elements t ntable slots 0,
- hashMap_move_elements_s_flat (hashMap_t_v ntable) al
- with
- | Return (ntable', _), Return ntable'_v ->
- // The invariant is preserved
- hashMap_t_base_inv ntable' /\
- // We preserved the parameters
- hashMap_t_same_params ntable' ntable /\
- // The table has the same number of slots
- length ntable'.slots = length ntable.slots /\
- // The count is good
- hashMap_t_len_s ntable' = length al /\
- // The table can be linked to its model (we need this only to reveal
- // "pretty" functional lemmas to the user in the fsti - so that we
- // can write lemmas with SMT patterns - this is very F* specific)
- hashMap_t_v ntable' == ntable'_v /\
- // The new table contains exactly all the bindings from the slots
- // Rk.: see the comment for [hashMap_is_assoc_list]
- hashMap_is_assoc_list ntable' al
- | _ -> False // We can only succeed
- ))
-
-// Weird, dirty things happen below.
-// Manually unfolding some postconditions allowed to make the proof pass,
-// and also revealed the reason why some proofs failed with "Unknown assertion
-// failed" (resulting in the call to [flatten_0_is_flatten] for instance).
-// I think manually unfolding the postconditions allowed to account for the
-// lack of ifuel (this kind of proofs is annoying, really).
-#restart-solver
-#push-options "--z3rlimit 100"
-let hashMap_move_elements_lem t ntable slots =
- let ntable_v = hashMap_t_v ntable in
- let slots_v = slots_t_v slots in
- let al = flatten slots_v in
- hashMap_move_elements_lem_refin t ntable slots 0;
- begin
- match hashMap_move_elements t ntable slots 0,
- hashMap_move_elements_s ntable_v slots_v 0
- with
- | Fail _, Fail _ -> ()
- | Return (ntable', _), Return ntable'_v ->
- assert(hashMap_t_base_inv ntable');
- assert(hashMap_t_v ntable' == ntable'_v)
- | _ -> assert(False)
- end;
- hashMap_move_elements_s_lem_refin_flat ntable_v slots_v 0;
- begin
- match hashMap_move_elements_s ntable_v slots_v 0,
- hashMap_move_elements_s_flat ntable_v (flatten_i slots_v 0)
- with
- | Fail _, Fail _ -> ()
- | Return hm, Return hm' -> assert(hm == hm')
- | _ -> assert(False)
- end;
- flatten_0_is_flatten slots_v; // flatten_i slots_v 0 == flatten slots_v
- hashMap_move_elements_s_flat_lem ntable_v al;
- match hashMap_move_elements t ntable slots 0,
- hashMap_move_elements_s_flat ntable_v al
- with
- | Return (ntable', _), Return ntable'_v ->
- assert(hashMap_t_base_inv ntable');
- assert(length ntable'.slots = length ntable.slots);
- assert(hashMap_t_len_s ntable' = length al);
- assert(hashMap_t_v ntable' == ntable'_v);
- assert(hashMap_is_assoc_list ntable' al)
- | _ -> assert(False)
-#pop-options
-
-(*** try_resize *)
-
-/// High-level model 1.
-/// This is one is slightly "crude": we just simplify a bit the function.
-
-let hashMap_try_resize_s_simpl
- (#t : Type0)
- (hm : hashMap_t t) :
- Pure (result (hashMap_t t))
- (requires (
- let (divid, divis) = hm.max_load_factor in
- divid > 0 /\ divis > 0))
- (ensures (fun _ -> True)) =
- let capacity = length hm.slots in
- let (divid, divis) = hm.max_load_factor in
- if capacity <= (usize_max / 2) / divid then
- let ncapacity : usize = capacity * 2 in
- begin match hashMap_new_with_capacity t ncapacity divid divis with
- | Fail e -> Fail e
- | Return ntable ->
- match hashMap_move_elements t ntable hm.slots 0 with
- | Fail e -> Fail e
- | Return (ntable', _) ->
- let hm =
- { hm with slots = ntable'.slots;
- max_load = ntable'.max_load }
- in
- Return hm
- end
- else Return hm
-
-val hashMap_try_resize_lem_refin
- (t : Type0) (self : hashMap_t t) :
- Lemma
- (requires (
- let (divid, divis) = self.max_load_factor in
- divid > 0 /\ divis > 0))
- (ensures (
- match hashMap_try_resize t self,
- hashMap_try_resize_s_simpl self
- with
- | Fail _, Fail _ -> True
- | Return hm1, Return hm2 -> hm1 == hm2
- | _ -> False))
-
-let hashMap_try_resize_lem_refin t self = ()
-
-/// Isolating arithmetic proofs
-
-let gt_lem0 (n m q : nat) :
- Lemma (requires (m > 0 /\ n > q))
- (ensures (n * m > q * m)) = ()
-
-let ge_lem0 (n m q : nat) :
- Lemma (requires (m > 0 /\ n >= q))
- (ensures (n * m >= q * m)) = ()
-
-let gt_ge_trans (n m p : nat) :
- Lemma (requires (n > m /\ m >= p)) (ensures (n > p)) = ()
-
-let ge_trans (n m p : nat) :
- Lemma (requires (n >= m /\ m >= p)) (ensures (n >= p)) = ()
-
-#push-options "--z3rlimit 200"
-let gt_lem1 (n m q : nat) :
- Lemma (requires (m > 0 /\ n > q / m)) (ensures (n * m > q)) =
- assert(n >= q / m + 1);
- ge_lem0 n m (q / m + 1);
- assert(n * m >= (q / m) * m + m)
-#pop-options
-
-let gt_lem2 (n m p q : nat) :
- Lemma (requires (m > 0 /\ p > 0 /\ n > (q / m) / p)) (ensures (n * m * p > q)) =
- gt_lem1 n p (q / m);
- assert(n * p > q / m);
- gt_lem1 (n * p) m q
-
-let ge_lem1 (n m q : nat) :
- Lemma (requires (n >= m /\ q > 0))
- (ensures (n / q >= m / q)) =
- FStar.Math.Lemmas.lemma_div_le m n q
-
-#restart-solver
-#push-options "--z3rlimit 200"
-let times_divid_lem (n m p : pos) : Lemma ((n * m) / p >= n * (m / p))
- =
- FStar.Math.Lemmas.multiply_fractions m p;
- assert(m >= (m / p) * p);
- assert(n * m >= n * (m / p) * p); //
- ge_lem1 (n * m) (n * (m / p) * p) p;
- assert((n * m) / p >= (n * (m / p) * p) / p);
- assert(n * (m / p) * p = (n * (m / p)) * p);
- FStar.Math.Lemmas.cancel_mul_div (n * (m / p)) p;
- assert(((n * (m / p)) * p) / p = n * (m / p))
-#pop-options
-
-/// The good old arithmetic proofs and their unstability...
-/// At some point I thought it was stable because it worked with `--quake 100`.
-/// Of course, it broke the next time I checked the file...
-/// It seems things are ok when we check this proof on its own, but not when
-/// it is sent at the same time as the one above (though we put #restart-solver!).
-/// I also tried `--quake 1/100` to no avail: it seems that when Z3 decides to
-/// fail the first one, it fails them all. I inserted #restart-solver before
-/// the previous lemma to see if it had an effect (of course not).
-val new_max_load_lem
- (len : usize) (capacity : usize{capacity > 0})
- (divid : usize{divid > 0}) (divis : usize{divis > 0}) :
- Lemma
- (requires (
- let max_load = (capacity * divid) / divis in
- let ncapacity = 2 * capacity in
- let nmax_load = (ncapacity * divid) / divis in
- capacity > 0 /\ 0 < divid /\ divid < divis /\
- capacity * divid >= divis /\
- len = max_load + 1))
- (ensures (
- let max_load = (capacity * divid) / divis in
- let ncapacity = 2 * capacity in
- let nmax_load = (ncapacity * divid) / divis in
- len <= nmax_load))
-
-let mul_assoc (a b c : nat) : Lemma (a * b * c == a * (b * c)) = ()
-
-let ge_lem2 (a b c d : nat) : Lemma (requires (a >= b + c /\ c >= d)) (ensures (a >= b + d)) = ()
-let ge_div_lem1 (a b : nat) : Lemma (requires (a >= b /\ b > 0)) (ensures (a / b >= 1)) = ()
-
-#restart-solver
-#push-options "--z3rlimit 100 --z3cliopt smt.arith.nl=false"
-let new_max_load_lem len capacity divid divis =
- FStar.Math.Lemmas.paren_mul_left 2 capacity divid;
- mul_assoc 2 capacity divid;
- // The following assertion often breaks though it is given by the above
- // lemma. I really don't know what to do (I deactivated non-linear
- // arithmetic and added the previous lemma call, moved the assertion up,
- // boosted the rlimit...).
- assert(2 * capacity * divid == 2 * (capacity * divid));
- let max_load = (capacity * divid) / divis in
- let ncapacity = 2 * capacity in
- let nmax_load = (ncapacity * divid) / divis in
- assert(nmax_load = (2 * capacity * divid) / divis);
- times_divid_lem 2 (capacity * divid) divis;
- assert((2 * (capacity * divid)) / divis >= 2 * ((capacity * divid) / divis));
- assert(nmax_load >= 2 * ((capacity * divid) / divis));
- assert(nmax_load >= 2 * max_load);
- assert(nmax_load >= max_load + max_load);
- ge_div_lem1 (capacity * divid) divis;
- ge_lem2 nmax_load max_load max_load 1;
- assert(nmax_load >= max_load + 1)
-#pop-options
-
-val hashMap_try_resize_s_simpl_lem (#t : Type0) (hm : hashMap_t t) :
- Lemma
- (requires (
- // The base invariant is satisfied
- hashMap_t_base_inv hm /\
- // However, the "full" invariant is broken, as we call [try_resize]
- // only if the current number of entries is > the max load.
- //
- // There are two situations:
- // - either we just reached the max load
- // - or we were already saturated and can't resize
- (let (dividend, divisor) = hm.max_load_factor in
- hm.num_entries == hm.max_load + 1 \/
- length hm.slots * 2 * dividend > usize_max)
- ))
- (ensures (
- match hashMap_try_resize_s_simpl hm with
- | Fail _ -> False
- | Return hm' ->
- // The full invariant is now satisfied (the full invariant is "base
- // invariant" + the map is not overloaded (or can't be resized because
- // already too big)
- hashMap_t_inv hm' /\
- // It contains the same bindings as the initial map
- (forall (k:key). hashMap_t_find_s hm' k == hashMap_t_find_s hm k)))
-
-#restart-solver
-#push-options "--z3rlimit 400"
-let hashMap_try_resize_s_simpl_lem #t hm =
- let capacity = length hm.slots in
- let (divid, divis) = hm.max_load_factor in
- if capacity <= (usize_max / 2) / divid then
- begin
- let ncapacity : usize = capacity * 2 in
- assert(ncapacity * divid <= usize_max);
- assert(hashMap_t_len_s hm = hm.max_load + 1);
- new_max_load_lem (hashMap_t_len_s hm) capacity divid divis;
- hashMap_new_with_capacity_lem t ncapacity divid divis;
- match hashMap_new_with_capacity t ncapacity divid divis with
- | Fail _ -> ()
- | Return ntable ->
- let slots = hm.slots in
- let al = flatten (slots_t_v slots) in
- // Proving that: length al = hm.num_entries
- assert(al == flatten (map slot_t_v slots));
- assert(al == flatten (map list_t_v slots));
- assert(hashMap_t_al_v hm == flatten (hashMap_t_v hm));
- assert(hashMap_t_al_v hm == flatten (map list_t_v hm.slots));
- assert(al == hashMap_t_al_v hm);
- assert(hashMap_t_base_inv ntable);
- assert(length al = hm.num_entries);
- assert(length al <= usize_max);
- hashMap_t_base_inv_implies_assoc_list_lem hm;
- assert(assoc_list_inv al);
- assert(hashMap_t_len_s ntable = 0);
- assert(forall (k:key). hashMap_t_find_s ntable k == None);
- hashMap_move_elements_lem t ntable hm.slots;
- match hashMap_move_elements t ntable hm.slots 0 with
- | Fail _ -> ()
- | Return (ntable', _) ->
- hashMap_is_assoc_list_lem hm;
- assert(hashMap_is_assoc_list hm (hashMap_t_al_v hm));
- let hm' =
- { hm with slots = ntable'.slots;
- max_load = ntable'.max_load }
- in
- assert(hashMap_t_base_inv ntable');
- assert(hashMap_t_base_inv hm');
- assert(hashMap_t_len_s hm' = hashMap_t_len_s hm);
- new_max_load_lem (hashMap_t_len_s hm') capacity divid divis;
- assert(hashMap_t_len_s hm' <= hm'.max_load); // Requires a lemma
- assert(hashMap_t_inv hm')
- end
- else
- begin
- gt_lem2 capacity 2 divid usize_max;
- assert(capacity * 2 * divid > usize_max)
- end
-#pop-options
-
-let hashMap_t_same_bindings (#t : Type0) (hm hm' : hashMap_t_nes t) : Type0 =
- forall (k:key). hashMap_t_find_s hm k == hashMap_t_find_s hm' k
-
-/// The final lemma about [try_resize]
-val hashMap_try_resize_lem (#t : Type0) (hm : hashMap_t t) :
- Lemma
- (requires (
- hashMap_t_base_inv hm /\
- // However, the "full" invariant is broken, as we call [try_resize]
- // only if the current number of entries is > the max load.
- //
- // There are two situations:
- // - either we just reached the max load
- // - or we were already saturated and can't resize
- (let (dividend, divisor) = hm.max_load_factor in
- hm.num_entries == hm.max_load + 1 \/
- length hm.slots * 2 * dividend > usize_max)))
- (ensures (
- match hashMap_try_resize t hm with
- | Fail _ -> False
- | Return hm' ->
- // The full invariant is now satisfied (the full invariant is "base
- // invariant" + the map is not overloaded (or can't be resized because
- // already too big)
- hashMap_t_inv hm' /\
- // The length is the same
- hashMap_t_len_s hm' = hashMap_t_len_s hm /\
- // It contains the same bindings as the initial map
- hashMap_t_same_bindings hm' hm))
-
-let hashMap_try_resize_lem #t hm =
- hashMap_try_resize_lem_refin t hm;
- hashMap_try_resize_s_simpl_lem hm
-
-(*** insert *)
-
-/// The high-level model (very close to the original function: we don't need something
-/// very high level, just to clean it a bit)
-let hashMap_insert_s
- (#t : Type0) (self : hashMap_t t) (key : usize) (value : t) :
- result (hashMap_t t) =
- match hashMap_insert_no_resize t self key value with
- | Fail e -> Fail e
- | Return hm' ->
- if hashMap_t_len_s hm' > hm'.max_load then
- hashMap_try_resize t hm'
- else Return hm'
-
-val hashMap_insert_lem_refin
- (t : Type0) (self : hashMap_t t) (key : usize) (value : t) :
- Lemma (requires True)
- (ensures (
- match hashMap_insert t self key value,
- hashMap_insert_s self key value
- with
- | Fail _, Fail _ -> True
- | Return hm1, Return hm2 -> hm1 == hm2
- | _ -> False))
-
-let hashMap_insert_lem_refin t self key value = ()
-
-/// Helper
-let hashMap_insert_bindings_lem
- (t : Type0) (self : hashMap_t_nes t) (key : usize) (value : t)
- (hm' hm'' : hashMap_t_nes t) :
- Lemma
- (requires (
- hashMap_s_updated_binding (hashMap_t_v self) key
- (Some value) (hashMap_t_v hm') /\
- hashMap_t_same_bindings hm' hm''))
- (ensures (
- hashMap_s_updated_binding (hashMap_t_v self) key
- (Some value) (hashMap_t_v hm'')))
- = ()
-
-val hashMap_insert_lem_aux
- (#t : Type0) (self : hashMap_t t) (key : usize) (value : t) :
- Lemma (requires (hashMap_t_inv self))
- (ensures (
- match hashMap_insert t self key value with
- | Fail _ ->
- // We can fail only if:
- // - the key is not in the map and we need to add it
- // - we are already saturated
- hashMap_t_len_s self = usize_max /\
- None? (hashMap_t_find_s self key)
- | Return hm' ->
- // The invariant is preserved
- hashMap_t_inv hm' /\
- // [key] maps to [value] and the other bindings are preserved
- hashMap_s_updated_binding (hashMap_t_v self) key (Some value) (hashMap_t_v hm') /\
- // The length is incremented, iff we inserted a new key
- (match hashMap_t_find_s self key with
- | None -> hashMap_t_len_s hm' = hashMap_t_len_s self + 1
- | Some _ -> hashMap_t_len_s hm' = hashMap_t_len_s self)))
-
-#restart-solver
-#push-options "--z3rlimit 200"
-let hashMap_insert_lem_aux #t self key value =
- hashMap_insert_no_resize_lem_s t self key value;
- hashMap_insert_no_resize_s_lem (hashMap_t_v self) key value;
- match hashMap_insert_no_resize t self key value with
- | Fail _ -> ()
- | Return hm' ->
- // Expanding the post of [hashMap_insert_no_resize_lem_s]
- let self_v = hashMap_t_v self in
- let hm'_v = Return?.v (hashMap_insert_no_resize_s self_v key value) in
- assert(hashMap_t_base_inv hm');
- assert(hashMap_t_same_params hm' self);
- assert(hashMap_t_v hm' == hm'_v);
- assert(hashMap_s_len hm'_v == hashMap_t_len_s hm');
- // Expanding the post of [hashMap_insert_no_resize_s_lem]
- assert(insert_post self_v key value hm'_v);
- // Expanding [insert_post]
- assert(hashMap_s_inv hm'_v);
- assert(
- match hashMap_s_find self_v key with
- | None -> hashMap_s_len hm'_v = hashMap_s_len self_v + 1
- | Some _ -> hashMap_s_len hm'_v = hashMap_s_len self_v);
- if hashMap_t_len_s hm' > hm'.max_load then
- begin
- hashMap_try_resize_lem hm';
- // Expanding the post of [hashMap_try_resize_lem]
- let hm'' = Return?.v (hashMap_try_resize t hm') in
- assert(hashMap_t_inv hm'');
- let hm''_v = hashMap_t_v hm'' in
- assert(forall k. hashMap_t_find_s hm'' k == hashMap_t_find_s hm' k);
- assert(hashMap_t_len_s hm'' = hashMap_t_len_s hm'); // TODO
- // Proving the post
- assert(hashMap_t_inv hm'');
- hashMap_insert_bindings_lem t self key value hm' hm'';
- assert(
- match hashMap_t_find_s self key with
- | None -> hashMap_t_len_s hm'' = hashMap_t_len_s self + 1
- | Some _ -> hashMap_t_len_s hm'' = hashMap_t_len_s self)
- end
- else ()
-#pop-options
-
-let hashMap_insert_lem #t self key value =
- hashMap_insert_lem_aux #t self key value
-
-(*** contains_key *)
-
-(**** contains_key_in_list *)
-
-val hashMap_contains_key_in_list_lem
- (#t : Type0) (key : usize) (ls : list_t t) :
- Lemma
- (ensures (
- match hashMap_contains_key_in_list t key ls with
- | Fail _ -> False
- | Return b ->
- b = Some? (slot_t_find_s key ls)))
-
-
-#push-options "--fuel 1"
-let rec hashMap_contains_key_in_list_lem #t key ls =
- match ls with
- | List_Cons ckey x ls0 ->
- let b = ckey = key in
- if b
- then ()
- else
- begin
- hashMap_contains_key_in_list_lem key ls0;
- match hashMap_contains_key_in_list t key ls0 with
- | Fail _ -> ()
- | Return b0 -> ()
- end
- | List_Nil -> ()
-#pop-options
-
-(**** contains_key *)
-
-val hashMap_contains_key_lem_aux
- (#t : Type0) (self : hashMap_t_nes t) (key : usize) :
- Lemma
- (ensures (
- match hashMap_contains_key t self key with
- | Fail _ -> False
- | Return b -> b = Some? (hashMap_t_find_s self key)))
-
-let hashMap_contains_key_lem_aux #t self key =
- begin match hash_key key with
- | Fail _ -> ()
- | Return i ->
- let v = self.slots in
- let i0 = alloc_vec_Vec_len (list_t t) v in
- begin match usize_rem i i0 with
- | Fail _ -> ()
- | Return hash_mod ->
- begin match alloc_vec_Vec_index_usize v hash_mod with
- | Fail _ -> ()
- | Return l ->
- hashMap_contains_key_in_list_lem key l;
- begin match hashMap_contains_key_in_list t key l with
- | Fail _ -> ()
- | Return b -> ()
- end
- end
- end
- end
-
-/// The lemma in the .fsti
-let hashMap_contains_key_lem #t self key =
- hashMap_contains_key_lem_aux #t self key
-
-(*** get *)
-
-(**** get_in_list *)
-
-val hashMap_get_in_list_lem
- (#t : Type0) (key : usize) (ls : list_t t) :
- Lemma
- (ensures (
- match hashMap_get_in_list t key ls, slot_t_find_s key ls with
- | Fail _, None -> True
- | Return x, Some x' -> x == x'
- | _ -> False))
-
-#push-options "--fuel 1"
-let rec hashMap_get_in_list_lem #t key ls =
- begin match ls with
- | List_Cons ckey cvalue ls0 ->
- let b = ckey = key in
- if b
- then ()
- else
- begin
- hashMap_get_in_list_lem key ls0;
- match hashMap_get_in_list t key ls0 with
- | Fail _ -> ()
- | Return x -> ()
- end
- | List_Nil -> ()
- end
-#pop-options
-
-(**** get *)
-
-val hashMap_get_lem_aux
- (#t : Type0) (self : hashMap_t_nes t) (key : usize) :
- Lemma
- (ensures (
- match hashMap_get t self key, hashMap_t_find_s self key with
- | Fail _, None -> True
- | Return x, Some x' -> x == x'
- | _ -> False))
-
-let hashMap_get_lem_aux #t self key =
- begin match hash_key key with
- | Fail _ -> ()
- | Return i ->
- let v = self.slots in
- let i0 = alloc_vec_Vec_len (list_t t) v in
- begin match usize_rem i i0 with
- | Fail _ -> ()
- | Return hash_mod ->
- begin match alloc_vec_Vec_index_usize v hash_mod with
- | Fail _ -> ()
- | Return l ->
- begin
- hashMap_get_in_list_lem key l;
- match hashMap_get_in_list t key l with
- | Fail _ -> ()
- | Return x -> ()
- end
- end
- end
- end
-
-/// .fsti
-let hashMap_get_lem #t self key = hashMap_get_lem_aux #t self key
-
-(*** get_mut'fwd *)
-
-
-(**** get_mut_in_list'fwd *)
-
-val hashMap_get_mut_in_list_loop_lem
- (#t : Type0) (ls : list_t t) (key : usize) :
- Lemma
- (ensures (
- match hashMap_get_mut_in_list_loop t ls key, slot_t_find_s key ls with
- | Fail _, None -> True
- | Return x, Some x' -> x == x'
- | _ -> False))
-
-#push-options "--fuel 1"
-let rec hashMap_get_mut_in_list_loop_lem #t ls key =
- begin match ls with
- | List_Cons ckey cvalue ls0 ->
- let b = ckey = key in
- if b
- then ()
- else
- begin
- hashMap_get_mut_in_list_loop_lem ls0 key;
- match hashMap_get_mut_in_list_loop t ls0 key with
- | Fail _ -> ()
- | Return x -> ()
- end
- | List_Nil -> ()
- end
-#pop-options
-
-(**** get_mut'fwd *)
-
-val hashMap_get_mut_lem_aux
- (#t : Type0) (self : hashMap_t_nes t) (key : usize) :
- Lemma
- (ensures (
- match hashMap_get_mut t self key, hashMap_t_find_s self key with
- | Fail _, None -> True
- | Return x, Some x' -> x == x'
- | _ -> False))
-
-let hashMap_get_mut_lem_aux #t self key =
- begin match hash_key key with
- | Fail _ -> ()
- | Return i ->
- let v = self.slots in
- let i0 = alloc_vec_Vec_len (list_t t) v in
- begin match usize_rem i i0 with
- | Fail _ -> ()
- | Return hash_mod ->
- begin match alloc_vec_Vec_index_usize v hash_mod with
- | Fail _ -> ()
- | Return l ->
- begin
- hashMap_get_mut_in_list_loop_lem l key;
- match hashMap_get_mut_in_list_loop t l key with
- | Fail _ -> ()
- | Return x -> ()
- end
- end
- end
- end
-
-let hashMap_get_mut_lem #t self key =
- hashMap_get_mut_lem_aux #t self key
-
-(*** get_mut'back *)
-
-(**** get_mut_in_list'back *)
-
-val hashMap_get_mut_in_list_loop_back_lem
- (#t : Type0) (ls : list_t t) (key : usize) (ret : t) :
- Lemma
- (requires (Some? (slot_t_find_s key ls)))
- (ensures (
- match hashMap_get_mut_in_list_loop_back t ls key ret with
- | Fail _ -> False
- | Return ls' -> list_t_v ls' == find_update (same_key key) (list_t_v ls) (key,ret)
- | _ -> False))
-
-#push-options "--fuel 1"
-let rec hashMap_get_mut_in_list_loop_back_lem #t ls key ret =
- begin match ls with
- | List_Cons ckey cvalue ls0 ->
- let b = ckey = key in
- if b
- then let ls1 = List_Cons ckey ret ls0 in ()
- else
- begin
- hashMap_get_mut_in_list_loop_back_lem ls0 key ret;
- match hashMap_get_mut_in_list_loop_back t ls0 key ret with
- | Fail _ -> ()
- | Return l -> let ls1 = List_Cons ckey cvalue l in ()
- end
- | List_Nil -> ()
- end
-#pop-options
-
-(**** get_mut'back *)
-
-/// Refinement lemma
-val hashMap_get_mut_back_lem_refin
- (#t : Type0) (self : hashMap_t t{length self.slots > 0})
- (key : usize) (ret : t) :
- Lemma
- (requires (Some? (hashMap_t_find_s self key)))
- (ensures (
- match hashMap_get_mut_back t self key ret with
- | Fail _ -> False
- | Return hm' ->
- hashMap_t_v hm' == hashMap_insert_no_fail_s (hashMap_t_v self) key ret))
-
-let hashMap_get_mut_back_lem_refin #t self key ret =
- begin match hash_key key with
- | Fail _ -> ()
- | Return i ->
- let i0 = self.num_entries in
- let p = self.max_load_factor in
- let i1 = self.max_load in
- let v = self.slots in
- let i2 = alloc_vec_Vec_len (list_t t) v in
- begin match usize_rem i i2 with
- | Fail _ -> ()
- | Return hash_mod ->
- begin match alloc_vec_Vec_index_usize v hash_mod with
- | Fail _ -> ()
- | Return l ->
- begin
- hashMap_get_mut_in_list_loop_back_lem l key ret;
- match hashMap_get_mut_in_list_loop_back t l key ret with
- | Fail _ -> ()
- | Return l0 ->
- begin match alloc_vec_Vec_update_usize v hash_mod l0 with
- | Fail _ -> ()
- | Return v0 -> let self0 = MkhashMap_t i0 p i1 v0 in ()
- end
- end
- end
- end
- end
-
-/// Final lemma
-val hashMap_get_mut_back_lem_aux
- (#t : Type0) (hm : hashMap_t t)
- (key : usize) (ret : t) :
- Lemma
- (requires (
- hashMap_t_inv hm /\
- Some? (hashMap_t_find_s hm key)))
- (ensures (
- match hashMap_get_mut_back t hm key ret with
- | Fail _ -> False
- | Return hm' ->
- // Functional spec
- hashMap_t_v hm' == hashMap_insert_no_fail_s (hashMap_t_v hm) key ret /\
- // The invariant is preserved
- hashMap_t_inv hm' /\
- // The length is preserved
- hashMap_t_len_s hm' = hashMap_t_len_s hm /\
- // [key] maps to [value]
- hashMap_t_find_s hm' key == Some ret /\
- // The other bindings are preserved
- (forall k'. k' <> key ==> hashMap_t_find_s hm' k' == hashMap_t_find_s hm k')))
-
-let hashMap_get_mut_back_lem_aux #t hm key ret =
- let hm_v = hashMap_t_v hm in
- hashMap_get_mut_back_lem_refin hm key ret;
- match hashMap_get_mut_back t hm key ret with
- | Fail _ -> assert(False)
- | Return hm' ->
- hashMap_insert_no_fail_s_lem hm_v key ret
-
-/// .fsti
-let hashMap_get_mut_back_lem #t hm key ret = hashMap_get_mut_back_lem_aux hm key ret
-
-(*** remove'fwd *)
-
-val hashMap_remove_from_list_lem
- (#t : Type0) (key : usize) (ls : list_t t) :
- Lemma
- (ensures (
- match hashMap_remove_from_list t key ls with
- | Fail _ -> False
- | Return opt_x ->
- opt_x == slot_t_find_s key ls /\
- (Some? opt_x ==> length (slot_t_v ls) > 0)))
-
-#push-options "--fuel 1"
-let rec hashMap_remove_from_list_lem #t key ls =
- begin match ls with
- | List_Cons ckey x tl ->
- let b = ckey = key in
- if b
- then
- let mv_ls = core_mem_replace (list_t t) (List_Cons ckey x tl) List_Nil in
- begin match mv_ls with
- | List_Cons i cvalue tl0 -> ()
- | List_Nil -> ()
- end
- else
- begin
- hashMap_remove_from_list_lem key tl;
- match hashMap_remove_from_list t key tl with
- | Fail _ -> ()
- | Return opt -> ()
- end
- | List_Nil -> ()
- end
-#pop-options
-
-val hashMap_remove_lem_aux
- (#t : Type0) (self : hashMap_t t) (key : usize) :
- Lemma
- (requires (
- // We need the invariant to prove that upon decrementing the entries counter,
- // the counter doesn't become negative
- hashMap_t_inv self))
- (ensures (
- match hashMap_remove t self key with
- | Fail _ -> False
- | Return opt_x -> opt_x == hashMap_t_find_s self key))
-
-let hashMap_remove_lem_aux #t self key =
- begin match hash_key key with
- | Fail _ -> ()
- | Return i ->
- let i0 = self.num_entries in
- let v = self.slots in
- let i1 = alloc_vec_Vec_len (list_t t) v in
- begin match usize_rem i i1 with
- | Fail _ -> ()
- | Return hash_mod ->
- begin match alloc_vec_Vec_index_usize v hash_mod with
- | Fail _ -> ()
- | Return l ->
- begin
- hashMap_remove_from_list_lem key l;
- match hashMap_remove_from_list t key l with
- | Fail _ -> ()
- | Return x ->
- begin match x with
- | None -> ()
- | Some x0 ->
- begin
- assert(l == index v hash_mod);
- assert(length (list_t_v #t l) > 0);
- length_flatten_index (hashMap_t_v self) hash_mod;
- match usize_sub i0 1 with
- | Fail _ -> ()
- | Return _ -> ()
- end
- end
- end
- end
- end
- end
-
-/// .fsti
-let hashMap_remove_lem #t self key = hashMap_remove_lem_aux #t self key
-
-(*** remove'back *)
-
-(**** Refinement proofs *)
-
-/// High-level model for [remove_from_list'back]
-let hashMap_remove_from_list_s
- (#t : Type0) (key : usize) (ls : slot_s t) :
- slot_s t =
- filter_one (not_same_key key) ls
-
-/// Refinement lemma
-val hashMap_remove_from_list_back_lem_refin
- (#t : Type0) (key : usize) (ls : list_t t) :
- Lemma
- (ensures (
- match hashMap_remove_from_list_back t key ls with
- | Fail _ -> False
- | Return ls' ->
- list_t_v ls' == hashMap_remove_from_list_s key (list_t_v ls) /\
- // The length is decremented, iff the key was in the slot
- (let len = length (list_t_v ls) in
- let len' = length (list_t_v ls') in
- match slot_s_find key (list_t_v ls) with
- | None -> len = len'
- | Some _ -> len = len' + 1)))
-
-#push-options "--fuel 1"
-let rec hashMap_remove_from_list_back_lem_refin #t key ls =
- begin match ls with
- | List_Cons ckey x tl ->
- let b = ckey = key in
- if b
- then
- let mv_ls = core_mem_replace (list_t t) (List_Cons ckey x tl) List_Nil in
- begin match mv_ls with
- | List_Cons i cvalue tl0 -> ()
- | List_Nil -> ()
- end
- else
- begin
- hashMap_remove_from_list_back_lem_refin key tl;
- match hashMap_remove_from_list_back t key tl with
- | Fail _ -> ()
- | Return l -> let ls0 = List_Cons ckey x l in ()
- end
- | List_Nil -> ()
- end
-#pop-options
-
-/// High-level model for [remove_from_list'back]
-let hashMap_remove_s
- (#t : Type0) (self : hashMap_s_nes t) (key : usize) :
- hashMap_s t =
- let len = length self in
- let hash = hash_mod_key key len in
- let slot = index self hash in
- let slot' = hashMap_remove_from_list_s key slot in
- list_update self hash slot'
-
-/// Refinement lemma
-val hashMap_remove_back_lem_refin
- (#t : Type0) (self : hashMap_t_nes t) (key : usize) :
- Lemma
- (requires (
- // We need the invariant to prove that upon decrementing the entries counter,
- // the counter doesn't become negative
- hashMap_t_inv self))
- (ensures (
- match hashMap_remove_back t self key with
- | Fail _ -> False
- | Return hm' ->
- hashMap_t_same_params hm' self /\
- hashMap_t_v hm' == hashMap_remove_s (hashMap_t_v self) key /\
- // The length is decremented iff the key was in the map
- (let len = hashMap_t_len_s self in
- let len' = hashMap_t_len_s hm' in
- match hashMap_t_find_s self key with
- | None -> len = len'
- | Some _ -> len = len' + 1)))
-
-let hashMap_remove_back_lem_refin #t self key =
- begin match hash_key key with
- | Fail _ -> ()
- | Return i ->
- let i0 = self.num_entries in
- let p = self.max_load_factor in
- let i1 = self.max_load in
- let v = self.slots in
- let i2 = alloc_vec_Vec_len (list_t t) v in
- begin match usize_rem i i2 with
- | Fail _ -> ()
- | Return hash_mod ->
- begin match alloc_vec_Vec_index_usize v hash_mod with
- | Fail _ -> ()
- | Return l ->
- begin
- hashMap_remove_from_list_lem key l;
- match hashMap_remove_from_list t key l with
- | Fail _ -> ()
- | Return x ->
- begin match x with
- | None ->
- begin
- hashMap_remove_from_list_back_lem_refin key l;
- match hashMap_remove_from_list_back t key l with
- | Fail _ -> ()
- | Return l0 ->
- begin
- length_flatten_update (slots_t_v v) hash_mod (list_t_v l0);
- match alloc_vec_Vec_update_usize v hash_mod l0 with
- | Fail _ -> ()
- | Return v0 -> ()
- end
- end
- | Some x0 ->
- begin
- assert(l == index v hash_mod);
- assert(length (list_t_v #t l) > 0);
- length_flatten_index (hashMap_t_v self) hash_mod;
- match usize_sub i0 1 with
- | Fail _ -> ()
- | Return i3 ->
- begin
- hashMap_remove_from_list_back_lem_refin key l;
- match hashMap_remove_from_list_back t key l with
- | Fail _ -> ()
- | Return l0 ->
- begin
- length_flatten_update (slots_t_v v) hash_mod (list_t_v l0);
- match alloc_vec_Vec_update_usize v hash_mod l0 with
- | Fail _ -> ()
- | Return v0 -> ()
- end
- end
- end
- end
- end
- end
- end
- end
-
-(**** Invariants, high-level properties *)
-
-val hashMap_remove_from_list_s_lem
- (#t : Type0) (k : usize) (slot : slot_s t) (len : usize{len > 0}) (i : usize) :
- Lemma
- (requires (slot_s_inv len i slot))
- (ensures (
- let slot' = hashMap_remove_from_list_s k slot in
- slot_s_inv len i slot' /\
- slot_s_find k slot' == None /\
- (forall (k':key{k' <> k}). slot_s_find k' slot' == slot_s_find k' slot) /\
- // This postcondition is necessary to prove that the invariant is preserved
- // in the recursive calls. This allows us to do the proof in one go.
- (forall (b:binding t). for_all (binding_neq b) slot ==> for_all (binding_neq b) slot')
- ))
-
-#push-options "--fuel 1"
-let rec hashMap_remove_from_list_s_lem #t key slot len i =
- match slot with
- | [] -> ()
- | (k',v) :: slot' ->
- if k' <> key then
- begin
- hashMap_remove_from_list_s_lem key slot' len i;
- let slot'' = hashMap_remove_from_list_s key slot' in
- assert(for_all (same_hash_mod_key len i) ((k',v)::slot''));
- assert(for_all (binding_neq (k',v)) slot'); // Triggers instanciation
- assert(for_all (binding_neq (k',v)) slot'')
- end
- else
- begin
- assert(for_all (binding_neq (k',v)) slot');
- for_all_binding_neq_find_lem key v slot'
- end
-#pop-options
-
-val hashMap_remove_s_lem
- (#t : Type0) (self : hashMap_s_nes t) (key : usize) :
- Lemma
- (requires (hashMap_s_inv self))
- (ensures (
- let hm' = hashMap_remove_s self key in
- // The invariant is preserved
- hashMap_s_inv hm' /\
- // We updated the binding
- hashMap_s_updated_binding self key None hm'))
-
-let hashMap_remove_s_lem #t self key =
- let len = length self in
- let hash = hash_mod_key key len in
- let slot = index self hash in
- hashMap_remove_from_list_s_lem key slot len hash;
- let slot' = hashMap_remove_from_list_s key slot in
- let hm' = list_update self hash slot' in
- assert(hashMap_s_inv self)
-
-/// Final lemma about [remove'back]
-val hashMap_remove_back_lem_aux
- (#t : Type0) (self : hashMap_t t) (key : usize) :
- Lemma
- (requires (hashMap_t_inv self))
- (ensures (
- match hashMap_remove_back t self key with
- | Fail _ -> False
- | Return hm' ->
- hashMap_t_inv self /\
- hashMap_t_same_params hm' self /\
- // We updated the binding
- hashMap_s_updated_binding (hashMap_t_v self) key None (hashMap_t_v hm') /\
- hashMap_t_v hm' == hashMap_remove_s (hashMap_t_v self) key /\
- // The length is decremented iff the key was in the map
- (let len = hashMap_t_len_s self in
- let len' = hashMap_t_len_s hm' in
- match hashMap_t_find_s self key with
- | None -> len = len'
- | Some _ -> len = len' + 1)))
-
-let hashMap_remove_back_lem_aux #t self key =
- hashMap_remove_back_lem_refin self key;
- hashMap_remove_s_lem (hashMap_t_v self) key
-
-/// .fsti
-let hashMap_remove_back_lem #t self key =
- hashMap_remove_back_lem_aux #t self key
diff --git a/tests/fstar-split/hashmap/Hashmap.Properties.fsti b/tests/fstar-split/hashmap/Hashmap.Properties.fsti
deleted file mode 100644
index 26c0ec06..00000000
--- a/tests/fstar-split/hashmap/Hashmap.Properties.fsti
+++ /dev/null
@@ -1,267 +0,0 @@
-(** Properties about the hashmap *)
-module Hashmap.Properties
-open Primitives
-open FStar.List.Tot
-open FStar.Mul
-open Hashmap.Types
-open Hashmap.Clauses
-open Hashmap.Funs
-
-#set-options "--z3rlimit 50 --fuel 0 --ifuel 1"
-
-// Small trick to align the .fst and the .fsti
-val _align_fsti : unit
-
-(*** Utilities *)
-
-type key : eqtype = usize
-
-type hash : eqtype = usize
-
-val hashMap_t_inv (#t : Type0) (hm : hashMap_t t) : Type0
-
-val len_s (#t : Type0) (hm : hashMap_t t) : nat
-
-val find_s (#t : Type0) (hm : hashMap_t t) (k : key) : option t
-
-(*** Overloading *)
-
-/// Upon inserting *new* entries in the hash map, the slots vector is resized
-/// whenever we reach the max load, unless we can't resize anymore because
-/// there are already too many entries. This way, we maintain performance by
-/// limiting the hash collisions.
-/// This is expressed by the following property, which is maintained in the hash
-/// map invariant.
-val hashMap_not_overloaded_lem (#t : Type0) (hm : hashMap_t t) :
- Lemma
- (requires (hashMap_t_inv hm))
- (ensures (
- // The capacity is the number of slots
- let capacity = length hm.slots in
- // The max load factor defines a threshold on the number of entries:
- // if there are more entries than a given fraction of the number of slots,
- // we resize the slots vector to limit the hash collisions
- let (dividend, divisor) = hm.max_load_factor in
- // technicality: this postcondition won't typecheck if we don't reveal
- // that divisor > 0 (because of the division)
- divisor > 0 /\
- begin
- // The max load, computed as a fraction of the capacity
- let max_load = (capacity * dividend) / divisor in
- // The number of entries inserted in the map is given by [len_s] (see
- // the functional correctness lemmas, which state how this number evolves):
- let len = len_s hm in
- // We prove that:
- // - either the number of entries is <= than the max load threshold
- len <= max_load
- // - or we couldn't resize the map, because then the arithmetic computations
- // would overflow (note that we always multiply the number of slots by 2)
- || 2* capacity * dividend > usize_max
- end))
-
-(*** Functional correctness *)
-(**** [new'fwd] *)
-
-/// [new] doesn't fail and returns an empty hash map
-val hashMap_new_lem (t : Type0) :
- Lemma
- (ensures (
- match hashMap_new t with
- | Fail _ -> False
- | Return hm ->
- // The hash map invariant is satisfied
- hashMap_t_inv hm /\
- // The hash map has a length of 0
- len_s hm = 0 /\
- // It contains no bindings
- (forall k. find_s hm k == None)))
-
-(**** [clear] *)
-
-/// [clear] doesn't fail and turns the hash map into an empty map
-val hashMap_clear_lem
- (#t : Type0) (self : hashMap_t t) :
- Lemma
- (requires (hashMap_t_inv self))
- (ensures (
- match hashMap_clear t self with
- | Fail _ -> False
- | Return hm ->
- // The hash map invariant is satisfied
- hashMap_t_inv hm /\
- // The hash map has a length of 0
- len_s hm = 0 /\
- // It contains no bindings
- (forall k. find_s hm k == None)))
-
-(**** [len] *)
-
-/// [len] can't fail and returns the length (the number of elements) of the hash map
-val hashMap_len_lem (#t : Type0) (self : hashMap_t t) :
- Lemma
- (requires (hashMap_t_inv self))
- (ensures (
- match hashMap_len t self with
- | Fail _ -> False
- | Return l -> l = len_s self))
-
-
-(**** [insert'fwd_back] *)
-
-/// The backward function for [insert] (note it is named "...insert'fwd_back" because
-/// the forward function doesn't return anything, and was thus filtered - in a
-/// sense the effect of applying the forward function then the backward function is
-/// entirely encompassed by the effect of the backward function alone).
-///
-/// [insert'fwd_back] simply inserts a binding.
-val hashMap_insert_lem
- (#t : Type0) (self : hashMap_t t) (key : usize) (value : t) :
- Lemma
- (requires (hashMap_t_inv self))
- (ensures (
- match hashMap_insert t self key value with
- | Fail _ ->
- // We can fail only if:
- // - the key is not in the map and we thus need to add it
- None? (find_s self key) /\
- // - and we are already saturated (we can't increment the internal counter)
- len_s self = usize_max
- | Return hm' ->
- // The invariant is preserved
- hashMap_t_inv hm' /\
- // [key] maps to [value]
- find_s hm' key == Some value /\
- // The other bindings are preserved
- (forall k'. k' <> key ==> find_s hm' k' == find_s self k') /\
- begin
- // The length is incremented, iff we inserted a new key
- match find_s self key with
- | None -> len_s hm' = len_s self + 1
- | Some _ -> len_s hm' = len_s self
- end))
-
-
-(**** [contains_key] *)
-
-/// [contains_key'fwd] can't fail and returns `true` if and only if there is
-/// a binding for key [key]
-val hashMap_contains_key_lem
- (#t : Type0) (self : hashMap_t t) (key : usize) :
- Lemma
- (requires (hashMap_t_inv self))
- (ensures (
- match hashMap_contains_key t self key with
- | Fail _ -> False
- | Return b -> b = Some? (find_s self key)))
-
-(**** [get'fwd] *)
-
-/// [get] returns (a shared borrow to) the binding for key [key]
-val hashMap_get_lem
- (#t : Type0) (self : hashMap_t t) (key : usize) :
- Lemma
- (requires (hashMap_t_inv self))
- (ensures (
- match hashMap_get t self key, find_s self key with
- | Fail _, None -> True
- | Return x, Some x' -> x == x'
- | _ -> False))
-
-(**** [get_mut'fwd] *)
-
-/// [get_mut'fwd] returns (a mutable borrow to) the binding for key [key].
-///
-/// The *forward* function models the action of getting a borrow to an element
-/// in Rust, which gives the possibility of modifying this element in place. Then,
-/// upon ending the borrow, the effect of the modification is modelled in the
-/// translation through a call to the backward function.
-val hashMap_get_mut_lem
- (#t : Type0) (self : hashMap_t t) (key : usize) :
- Lemma
- (requires (hashMap_t_inv self))
- (ensures (
- match hashMap_get_mut t self key, find_s self key with
- | Fail _, None -> True
- | Return x, Some x' -> x == x'
- | _ -> False))
-
-
-(**** [get_mut'back] *)
-
-/// [get_mut'back] updates the binding for key [key], without failing.
-/// A call to [get_mut'back] must follow a call to [get_mut'fwd], which gives
-/// us that there must be a binding for key [key] in the map (otherwise we
-/// can't prove the absence of failure).
-val hashMap_get_mut_back_lem
- (#t : Type0) (hm : hashMap_t t) (key : usize) (ret : t) :
- Lemma
- (requires (
- hashMap_t_inv hm /\
- // A call to the backward function must follow a call to the forward
- // function, whose success gives us that there is a binding for the key.
- // In the case of *forward* functions, "success" has to be understood as
- // the absence of panics. When translating code from Rust to pure lambda
- // calculus, we have the property that the generated calls to the backward
- // functions can't fail (because their are preceded by calls to forward
- // functions, which must then have succeeded before): for a backward function,
- // "failure" is to be understood as the semantics getting stuck.
- // This is of course true unless we filtered the call to the forward function
- // because its effect is encompassed by the backward function, as with
- // [hashMap_clear]).
- Some? (find_s hm key)))
- (ensures (
- match hashMap_get_mut_back t hm key ret with
- | Fail _ -> False // Can't fail
- | Return hm' ->
- // The invariant is preserved
- hashMap_t_inv hm' /\
- // The length is preserved
- len_s hm' = len_s hm /\
- // [key] maps to the update value, [ret]
- find_s hm' key == Some ret /\
- // The other bindings are preserved
- (forall k'. k' <> key ==> find_s hm' k' == find_s hm k')))
-
-(**** [remove'fwd] *)
-
-/// [remove'fwd] returns the (optional) element which has been removed from the map
-/// (the rust function *moves* it out of the map). Note that the effect of the update
-/// on the map is modelles through the call to [remove'back] ([remove] takes a
-/// mutable borrow to the hash map as parameter).
-val hashMap_remove_lem
- (#t : Type0) (self : hashMap_t t) (key : usize) :
- Lemma
- (requires (hashMap_t_inv self))
- (ensures (
- match hashMap_remove t self key with
- | Fail _ -> False
- | Return opt_x -> opt_x == find_s self key))
-
-
-(**** [remove'back] *)
-
-/// The hash map given as parameter to [remove] is given through a mutable borrow:
-/// hence the backward function which gives back the updated map, without the
-/// binding.
-val hashMap_remove_back_lem
- (#t : Type0) (self : hashMap_t t) (key : usize) :
- Lemma
- (requires (hashMap_t_inv self))
- (ensures (
- match hashMap_remove_back t self key with
- | Fail _ -> False
- | Return hm' ->
- // The invariant is preserved
- hashMap_t_inv self /\
- // The binding for [key] is not there anymore
- find_s hm' key == None /\
- // The other bindings are preserved
- (forall k'. k' <> key ==> find_s hm' k' == find_s self k') /\
- begin
- // The length is decremented iff the key was in the map
- let len = len_s self in
- let len' = len_s hm' in
- match find_s self key with
- | None -> len = len'
- | Some _ -> len = len' + 1
- end))
diff --git a/tests/fstar-split/hashmap/Hashmap.Types.fst b/tests/fstar-split/hashmap/Hashmap.Types.fst
deleted file mode 100644
index ef96b1e9..00000000
--- a/tests/fstar-split/hashmap/Hashmap.Types.fst
+++ /dev/null
@@ -1,23 +0,0 @@
-(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)
-(** [hashmap]: type definitions *)
-module Hashmap.Types
-open Primitives
-
-#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
-
-(** [hashmap::List]
- Source: 'src/hashmap.rs', lines 19:0-19:16 *)
-type list_t (t : Type0) =
-| List_Cons : usize -> t -> list_t t -> list_t t
-| List_Nil : list_t t
-
-(** [hashmap::HashMap]
- Source: 'src/hashmap.rs', lines 35:0-35:21 *)
-type hashMap_t (t : Type0) =
-{
- num_entries : usize;
- max_load_factor : (usize & usize);
- max_load : usize;
- slots : alloc_vec_Vec (list_t t);
-}
-
diff --git a/tests/fstar-split/hashmap/Makefile b/tests/fstar-split/hashmap/Makefile
deleted file mode 100644
index fa7d1f36..00000000
--- a/tests/fstar-split/hashmap/Makefile
+++ /dev/null
@@ -1,49 +0,0 @@
-# This file was automatically generated - modify ../Makefile.template instead
-INCLUDE_DIRS = .
-
-FSTAR_INCLUDES = $(addprefix --include ,$(INCLUDE_DIRS))
-
-FSTAR_HINTS ?= --use_hints --use_hint_hashes --record_hints
-
-FSTAR_OPTIONS = $(FSTAR_HINTS) \
- --cache_checked_modules $(FSTAR_INCLUDES) --cmi \
- --warn_error '+241@247+285-274' \
-
-FSTAR_EXE ?= fstar.exe
-FSTAR_NO_FLAGS = $(FSTAR_EXE) --already_cached 'Prims FStar LowStar Steel' --odir obj --cache_dir obj
-
-FSTAR = $(FSTAR_NO_FLAGS) $(FSTAR_OPTIONS)
-
-# The F* roots are used to compute the dependency graph, and generate the .depend file
-FSTAR_ROOTS ?= $(wildcard *.fst *.fsti)
-
-# Build all the files
-all: $(addprefix obj/,$(addsuffix .checked,$(FSTAR_ROOTS)))
-
-# This is the right way to ensure the .depend file always gets re-built.
-ifeq (,$(filter %-in,$(MAKECMDGOALS)))
-ifndef NODEPEND
-ifndef MAKE_RESTARTS
-.depend: .FORCE
- $(FSTAR_NO_FLAGS) --dep full $(notdir $(FSTAR_ROOTS)) > $@
-
-.PHONY: .FORCE
-.FORCE:
-endif
-endif
-
-include .depend
-endif
-
-# For the interactive mode
-%.fst-in %.fsti-in:
- @echo $(FSTAR_OPTIONS)
-
-# Generete the .checked files in batch mode
-%.checked:
- $(FSTAR) $(FSTAR_OPTIONS) $< && \
- touch -c $@
-
-.PHONY: clean
-clean:
- rm -f obj/*
diff --git a/tests/fstar-split/hashmap/Primitives.fst b/tests/fstar-split/hashmap/Primitives.fst
deleted file mode 100644
index a3ffbde4..00000000
--- a/tests/fstar-split/hashmap/Primitives.fst
+++ /dev/null
@@ -1,884 +0,0 @@
-/// This file lists primitive and assumed functions and types
-module Primitives
-open FStar.Mul
-open FStar.List.Tot
-
-#set-options "--z3rlimit 15 --fuel 0 --ifuel 1"
-
-(*** Utilities *)
-val list_update (#a : Type0) (ls : list a) (i : nat{i < length ls}) (x : a) :
- ls':list a{
- length ls' = length ls /\
- index ls' i == x
- }
-#push-options "--fuel 1"
-let rec list_update #a ls i x =
- match ls with
- | x' :: ls -> if i = 0 then x :: ls else x' :: list_update ls (i-1) x
-#pop-options
-
-(*** Result *)
-type error : Type0 =
-| Failure
-| OutOfFuel
-
-type result (a : Type0) : Type0 =
-| Return : v:a -> result a
-| Fail : e:error -> result a
-
-// Monadic return operator
-unfold let return (#a : Type0) (x : a) : result a = Return x
-
-// Monadic bind operator.
-// Allows to use the notation:
-// ```
-// let* x = y in
-// ...
-// ```
-unfold let (let*) (#a #b : Type0) (m: result a)
- (f: (x:a) -> Pure (result b) (requires (m == Return x)) (ensures fun _ -> True)) :
- result b =
- match m with
- | Return x -> f x
- | Fail e -> Fail e
-
-// Monadic assert(...)
-let massert (b:bool) : result unit = if b then Return () else Fail Failure
-
-// Normalize and unwrap a successful result (used for globals).
-let eval_global (#a : Type0) (x : result a{Return? (normalize_term x)}) : a = Return?.v x
-
-(*** Misc *)
-type char = FStar.Char.char
-type string = string
-
-let is_zero (n: nat) : bool = n = 0
-let decrease (n: nat{n > 0}) : nat = n - 1
-
-let core_mem_replace (a : Type0) (x : a) (y : a) : a = x
-let core_mem_replace_back (a : Type0) (x : a) (y : a) : a = y
-
-// We don't really use raw pointers for now
-type mut_raw_ptr (t : Type0) = { v : t }
-type const_raw_ptr (t : Type0) = { v : t }
-
-(*** Scalars *)
-/// Rem.: most of the following code was partially generated
-
-assume val size_numbits : pos
-
-// TODO: we could use FStar.Int.int_t and FStar.UInt.int_t
-
-let isize_min : int = -9223372036854775808 // TODO: should be opaque
-let isize_max : int = 9223372036854775807 // TODO: should be opaque
-let i8_min : int = -128
-let i8_max : int = 127
-let i16_min : int = -32768
-let i16_max : int = 32767
-let i32_min : int = -2147483648
-let i32_max : int = 2147483647
-let i64_min : int = -9223372036854775808
-let i64_max : int = 9223372036854775807
-let i128_min : int = -170141183460469231731687303715884105728
-let i128_max : int = 170141183460469231731687303715884105727
-let usize_min : int = 0
-let usize_max : int = 4294967295 // TODO: should be opaque
-let u8_min : int = 0
-let u8_max : int = 255
-let u16_min : int = 0
-let u16_max : int = 65535
-let u32_min : int = 0
-let u32_max : int = 4294967295
-let u64_min : int = 0
-let u64_max : int = 18446744073709551615
-let u128_min : int = 0
-let u128_max : int = 340282366920938463463374607431768211455
-
-type scalar_ty =
-| Isize
-| I8
-| I16
-| I32
-| I64
-| I128
-| Usize
-| U8
-| U16
-| U32
-| U64
-| U128
-
-let is_unsigned = function
- | Isize | I8 | I16 | I32 | I64 | I128 -> false
- | Usize | U8 | U16 | U32 | U64 | U128 -> true
-
-let scalar_min (ty : scalar_ty) : int =
- match ty with
- | Isize -> isize_min
- | I8 -> i8_min
- | I16 -> i16_min
- | I32 -> i32_min
- | I64 -> i64_min
- | I128 -> i128_min
- | Usize -> usize_min
- | U8 -> u8_min
- | U16 -> u16_min
- | U32 -> u32_min
- | U64 -> u64_min
- | U128 -> u128_min
-
-let scalar_max (ty : scalar_ty) : int =
- match ty with
- | Isize -> isize_max
- | I8 -> i8_max
- | I16 -> i16_max
- | I32 -> i32_max
- | I64 -> i64_max
- | I128 -> i128_max
- | Usize -> usize_max
- | U8 -> u8_max
- | U16 -> u16_max
- | U32 -> u32_max
- | U64 -> u64_max
- | U128 -> u128_max
-
-type scalar (ty : scalar_ty) : eqtype = x:int{scalar_min ty <= x && x <= scalar_max ty}
-
-let mk_scalar (ty : scalar_ty) (x : int) : result (scalar ty) =
- if scalar_min ty <= x && scalar_max ty >= x then Return x else Fail Failure
-
-let scalar_neg (#ty : scalar_ty) (x : scalar ty) : result (scalar ty) = mk_scalar ty (-x)
-
-let scalar_div (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- if y <> 0 then mk_scalar ty (x / y) else Fail Failure
-
-/// The remainder operation
-let int_rem (x : int) (y : int{y <> 0}) : int =
- if x >= 0 then (x % y) else -(x % y)
-
-(* Checking consistency with Rust *)
-let _ = assert_norm(int_rem 1 2 = 1)
-let _ = assert_norm(int_rem (-1) 2 = -1)
-let _ = assert_norm(int_rem 1 (-2) = 1)
-let _ = assert_norm(int_rem (-1) (-2) = -1)
-
-let scalar_rem (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- if y <> 0 then mk_scalar ty (int_rem x y) else Fail Failure
-
-let scalar_add (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- mk_scalar ty (x + y)
-
-let scalar_sub (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- mk_scalar ty (x - y)
-
-let scalar_mul (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- mk_scalar ty (x * y)
-
-let scalar_xor (#ty : scalar_ty)
- (x : scalar ty) (y : scalar ty) : scalar ty =
- match ty with
- | U8 -> FStar.UInt.logxor #8 x y
- | U16 -> FStar.UInt.logxor #16 x y
- | U32 -> FStar.UInt.logxor #32 x y
- | U64 -> FStar.UInt.logxor #64 x y
- | U128 -> FStar.UInt.logxor #128 x y
- | Usize -> admit() // TODO
- | I8 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 8);
- normalize_spec (scalar I8);
- FStar.Int.logxor #8 x y
- | I16 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 16);
- normalize_spec (scalar I16);
- FStar.Int.logxor #16 x y
- | I32 -> FStar.Int.logxor #32 x y
- | I64 -> FStar.Int.logxor #64 x y
- | I128 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 128);
- normalize_spec (scalar I128);
- FStar.Int.logxor #128 x y
- | Isize -> admit() // TODO
-
-let scalar_or (#ty : scalar_ty)
- (x : scalar ty) (y : scalar ty) : scalar ty =
- match ty with
- | U8 -> FStar.UInt.logor #8 x y
- | U16 -> FStar.UInt.logor #16 x y
- | U32 -> FStar.UInt.logor #32 x y
- | U64 -> FStar.UInt.logor #64 x y
- | U128 -> FStar.UInt.logor #128 x y
- | Usize -> admit() // TODO
- | I8 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 8);
- normalize_spec (scalar I8);
- FStar.Int.logor #8 x y
- | I16 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 16);
- normalize_spec (scalar I16);
- FStar.Int.logor #16 x y
- | I32 -> FStar.Int.logor #32 x y
- | I64 -> FStar.Int.logor #64 x y
- | I128 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 128);
- normalize_spec (scalar I128);
- FStar.Int.logor #128 x y
- | Isize -> admit() // TODO
-
-let scalar_and (#ty : scalar_ty)
- (x : scalar ty) (y : scalar ty) : scalar ty =
- match ty with
- | U8 -> FStar.UInt.logand #8 x y
- | U16 -> FStar.UInt.logand #16 x y
- | U32 -> FStar.UInt.logand #32 x y
- | U64 -> FStar.UInt.logand #64 x y
- | U128 -> FStar.UInt.logand #128 x y
- | Usize -> admit() // TODO
- | I8 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 8);
- normalize_spec (scalar I8);
- FStar.Int.logand #8 x y
- | I16 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 16);
- normalize_spec (scalar I16);
- FStar.Int.logand #16 x y
- | I32 -> FStar.Int.logand #32 x y
- | I64 -> FStar.Int.logand #64 x y
- | I128 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 128);
- normalize_spec (scalar I128);
- FStar.Int.logand #128 x y
- | Isize -> admit() // TODO
-
-// Shift left
-let scalar_shl (#ty0 #ty1 : scalar_ty)
- (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) =
- admit()
-
-// Shift right
-let scalar_shr (#ty0 #ty1 : scalar_ty)
- (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) =
- admit()
-
-(** Cast an integer from a [src_ty] to a [tgt_ty] *)
-// TODO: check the semantics of casts in Rust
-let scalar_cast (src_ty : scalar_ty) (tgt_ty : scalar_ty) (x : scalar src_ty) : result (scalar tgt_ty) =
- mk_scalar tgt_ty x
-
-// This can't fail, but for now we make all casts faillible (easier for the translation)
-let scalar_cast_bool (tgt_ty : scalar_ty) (x : bool) : result (scalar tgt_ty) =
- mk_scalar tgt_ty (if x then 1 else 0)
-
-/// The scalar types
-type isize : eqtype = scalar Isize
-type i8 : eqtype = scalar I8
-type i16 : eqtype = scalar I16
-type i32 : eqtype = scalar I32
-type i64 : eqtype = scalar I64
-type i128 : eqtype = scalar I128
-type usize : eqtype = scalar Usize
-type u8 : eqtype = scalar U8
-type u16 : eqtype = scalar U16
-type u32 : eqtype = scalar U32
-type u64 : eqtype = scalar U64
-type u128 : eqtype = scalar U128
-
-
-let core_isize_min : isize = isize_min
-let core_isize_max : isize = isize_max
-let core_i8_min : i8 = i8_min
-let core_i8_max : i8 = i8_max
-let core_i16_min : i16 = i16_min
-let core_i16_max : i16 = i16_max
-let core_i32_min : i32 = i32_min
-let core_i32_max : i32 = i32_max
-let core_i64_min : i64 = i64_min
-let core_i64_max : i64 = i64_max
-let core_i128_min : i128 = i128_min
-let core_i128_max : i128 = i128_max
-
-let core_usize_min : usize = usize_min
-let core_usize_max : usize = usize_max
-let core_u8_min : u8 = u8_min
-let core_u8_max : u8 = u8_max
-let core_u16_min : u16 = u16_min
-let core_u16_max : u16 = u16_max
-let core_u32_min : u32 = u32_min
-let core_u32_max : u32 = u32_max
-let core_u64_min : u64 = u64_min
-let core_u64_max : u64 = u64_max
-let core_u128_min : u128 = u128_min
-let core_u128_max : u128 = u128_max
-
-/// Negation
-let isize_neg = scalar_neg #Isize
-let i8_neg = scalar_neg #I8
-let i16_neg = scalar_neg #I16
-let i32_neg = scalar_neg #I32
-let i64_neg = scalar_neg #I64
-let i128_neg = scalar_neg #I128
-
-/// Division
-let isize_div = scalar_div #Isize
-let i8_div = scalar_div #I8
-let i16_div = scalar_div #I16
-let i32_div = scalar_div #I32
-let i64_div = scalar_div #I64
-let i128_div = scalar_div #I128
-let usize_div = scalar_div #Usize
-let u8_div = scalar_div #U8
-let u16_div = scalar_div #U16
-let u32_div = scalar_div #U32
-let u64_div = scalar_div #U64
-let u128_div = scalar_div #U128
-
-/// Remainder
-let isize_rem = scalar_rem #Isize
-let i8_rem = scalar_rem #I8
-let i16_rem = scalar_rem #I16
-let i32_rem = scalar_rem #I32
-let i64_rem = scalar_rem #I64
-let i128_rem = scalar_rem #I128
-let usize_rem = scalar_rem #Usize
-let u8_rem = scalar_rem #U8
-let u16_rem = scalar_rem #U16
-let u32_rem = scalar_rem #U32
-let u64_rem = scalar_rem #U64
-let u128_rem = scalar_rem #U128
-
-/// Addition
-let isize_add = scalar_add #Isize
-let i8_add = scalar_add #I8
-let i16_add = scalar_add #I16
-let i32_add = scalar_add #I32
-let i64_add = scalar_add #I64
-let i128_add = scalar_add #I128
-let usize_add = scalar_add #Usize
-let u8_add = scalar_add #U8
-let u16_add = scalar_add #U16
-let u32_add = scalar_add #U32
-let u64_add = scalar_add #U64
-let u128_add = scalar_add #U128
-
-/// Subtraction
-let isize_sub = scalar_sub #Isize
-let i8_sub = scalar_sub #I8
-let i16_sub = scalar_sub #I16
-let i32_sub = scalar_sub #I32
-let i64_sub = scalar_sub #I64
-let i128_sub = scalar_sub #I128
-let usize_sub = scalar_sub #Usize
-let u8_sub = scalar_sub #U8
-let u16_sub = scalar_sub #U16
-let u32_sub = scalar_sub #U32
-let u64_sub = scalar_sub #U64
-let u128_sub = scalar_sub #U128
-
-/// Multiplication
-let isize_mul = scalar_mul #Isize
-let i8_mul = scalar_mul #I8
-let i16_mul = scalar_mul #I16
-let i32_mul = scalar_mul #I32
-let i64_mul = scalar_mul #I64
-let i128_mul = scalar_mul #I128
-let usize_mul = scalar_mul #Usize
-let u8_mul = scalar_mul #U8
-let u16_mul = scalar_mul #U16
-let u32_mul = scalar_mul #U32
-let u64_mul = scalar_mul #U64
-let u128_mul = scalar_mul #U128
-
-/// Xor
-let u8_xor = scalar_xor #U8
-let u16_xor = scalar_xor #U16
-let u32_xor = scalar_xor #U32
-let u64_xor = scalar_xor #U64
-let u128_xor = scalar_xor #U128
-let usize_xor = scalar_xor #Usize
-let i8_xor = scalar_xor #I8
-let i16_xor = scalar_xor #I16
-let i32_xor = scalar_xor #I32
-let i64_xor = scalar_xor #I64
-let i128_xor = scalar_xor #I128
-let isize_xor = scalar_xor #Isize
-
-/// Or
-let u8_or = scalar_or #U8
-let u16_or = scalar_or #U16
-let u32_or = scalar_or #U32
-let u64_or = scalar_or #U64
-let u128_or = scalar_or #U128
-let usize_or = scalar_or #Usize
-let i8_or = scalar_or #I8
-let i16_or = scalar_or #I16
-let i32_or = scalar_or #I32
-let i64_or = scalar_or #I64
-let i128_or = scalar_or #I128
-let isize_or = scalar_or #Isize
-
-/// And
-let u8_and = scalar_and #U8
-let u16_and = scalar_and #U16
-let u32_and = scalar_and #U32
-let u64_and = scalar_and #U64
-let u128_and = scalar_and #U128
-let usize_and = scalar_and #Usize
-let i8_and = scalar_and #I8
-let i16_and = scalar_and #I16
-let i32_and = scalar_and #I32
-let i64_and = scalar_and #I64
-let i128_and = scalar_and #I128
-let isize_and = scalar_and #Isize
-
-/// Shift left
-let u8_shl #ty = scalar_shl #U8 #ty
-let u16_shl #ty = scalar_shl #U16 #ty
-let u32_shl #ty = scalar_shl #U32 #ty
-let u64_shl #ty = scalar_shl #U64 #ty
-let u128_shl #ty = scalar_shl #U128 #ty
-let usize_shl #ty = scalar_shl #Usize #ty
-let i8_shl #ty = scalar_shl #I8 #ty
-let i16_shl #ty = scalar_shl #I16 #ty
-let i32_shl #ty = scalar_shl #I32 #ty
-let i64_shl #ty = scalar_shl #I64 #ty
-let i128_shl #ty = scalar_shl #I128 #ty
-let isize_shl #ty = scalar_shl #Isize #ty
-
-/// Shift right
-let u8_shr #ty = scalar_shr #U8 #ty
-let u16_shr #ty = scalar_shr #U16 #ty
-let u32_shr #ty = scalar_shr #U32 #ty
-let u64_shr #ty = scalar_shr #U64 #ty
-let u128_shr #ty = scalar_shr #U128 #ty
-let usize_shr #ty = scalar_shr #Usize #ty
-let i8_shr #ty = scalar_shr #I8 #ty
-let i16_shr #ty = scalar_shr #I16 #ty
-let i32_shr #ty = scalar_shr #I32 #ty
-let i64_shr #ty = scalar_shr #I64 #ty
-let i128_shr #ty = scalar_shr #I128 #ty
-let isize_shr #ty = scalar_shr #Isize #ty
-
-(*** core::ops *)
-
-// Trait declaration: [core::ops::index::Index]
-noeq type core_ops_index_Index (self idx : Type0) = {
- output : Type0;
- index : self → idx → result output
-}
-
-// Trait declaration: [core::ops::index::IndexMut]
-noeq type core_ops_index_IndexMut (self idx : Type0) = {
- indexInst : core_ops_index_Index self idx;
- index_mut : self → idx → result indexInst.output;
- index_mut_back : self → idx → indexInst.output → result self;
-}
-
-// Trait declaration [core::ops::deref::Deref]
-noeq type core_ops_deref_Deref (self : Type0) = {
- target : Type0;
- deref : self → result target;
-}
-
-// Trait declaration [core::ops::deref::DerefMut]
-noeq type core_ops_deref_DerefMut (self : Type0) = {
- derefInst : core_ops_deref_Deref self;
- deref_mut : self → result derefInst.target;
- deref_mut_back : self → derefInst.target → result self;
-}
-
-type core_ops_range_Range (a : Type0) = {
- start : a;
- end_ : a;
-}
-
-(*** [alloc] *)
-
-let alloc_boxed_Box_deref (t : Type0) (x : t) : result t = Return x
-let alloc_boxed_Box_deref_mut (t : Type0) (x : t) : result t = Return x
-let alloc_boxed_Box_deref_mut_back (t : Type) (_ : t) (x : t) : result t = Return x
-
-// Trait instance
-let alloc_boxed_Box_coreopsDerefInst (self : Type0) : core_ops_deref_Deref self = {
- target = self;
- deref = alloc_boxed_Box_deref self;
-}
-
-// Trait instance
-let alloc_boxed_Box_coreopsDerefMutInst (self : Type0) : core_ops_deref_DerefMut self = {
- derefInst = alloc_boxed_Box_coreopsDerefInst self;
- deref_mut = alloc_boxed_Box_deref_mut self;
- deref_mut_back = alloc_boxed_Box_deref_mut_back self;
-}
-
-(*** Array *)
-type array (a : Type0) (n : usize) = s:list a{length s = n}
-
-// We tried putting the normalize_term condition as a refinement on the list
-// but it didn't work. It works with the requires clause.
-let mk_array (a : Type0) (n : usize)
- (l : list a) :
- Pure (array a n)
- (requires (normalize_term(FStar.List.Tot.length l) = n))
- (ensures (fun _ -> True)) =
- normalize_term_spec (FStar.List.Tot.length l);
- l
-
-let array_index_usize (a : Type0) (n : usize) (x : array a n) (i : usize) : result a =
- if i < length x then Return (index x i)
- else Fail Failure
-
-let array_update_usize (a : Type0) (n : usize) (x : array a n) (i : usize) (nx : a) : result (array a n) =
- if i < length x then Return (list_update x i nx)
- else Fail Failure
-
-(*** Slice *)
-type slice (a : Type0) = s:list a{length s <= usize_max}
-
-let slice_len (a : Type0) (s : slice a) : usize = length s
-
-let slice_index_usize (a : Type0) (x : slice a) (i : usize) : result a =
- if i < length x then Return (index x i)
- else Fail Failure
-
-let slice_update_usize (a : Type0) (x : slice a) (i : usize) (nx : a) : result (slice a) =
- if i < length x then Return (list_update x i nx)
- else Fail Failure
-
-(*** Subslices *)
-
-let array_to_slice (a : Type0) (n : usize) (x : array a n) : result (slice a) = Return x
-let array_from_slice (a : Type0) (n : usize) (x : array a n) (s : slice a) : result (array a n) =
- if length s = n then Return s
- else Fail Failure
-
-// TODO: finish the definitions below (there lacks [List.drop] and [List.take] in the standard library *)
-let array_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) : result (slice a) =
- admit()
-
-let array_update_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) (ns : slice a) : result (array a n) =
- admit()
-
-let array_repeat (a : Type0) (n : usize) (x : a) : array a n =
- admit()
-
-let slice_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) : result (slice a) =
- admit()
-
-let slice_update_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) (ns : slice a) : result (slice a) =
- admit()
-
-(*** Vector *)
-type alloc_vec_Vec (a : Type0) = v:list a{length v <= usize_max}
-
-let alloc_vec_Vec_new (a : Type0) : alloc_vec_Vec a = assert_norm(length #a [] == 0); []
-let alloc_vec_Vec_len (a : Type0) (v : alloc_vec_Vec a) : usize = length v
-
-// Helper
-let alloc_vec_Vec_index_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : result a =
- if i < length v then Return (index v i) else Fail Failure
-// Helper
-let alloc_vec_Vec_update_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) =
- if i < length v then Return (list_update v i x) else Fail Failure
-
-// The **forward** function shouldn't be used
-let alloc_vec_Vec_push_fwd (a : Type0) (v : alloc_vec_Vec a) (x : a) : unit = ()
-let alloc_vec_Vec_push (a : Type0) (v : alloc_vec_Vec a) (x : a) :
- Pure (result (alloc_vec_Vec a))
- (requires True)
- (ensures (fun res ->
- match res with
- | Fail e -> e == Failure
- | Return v' -> length v' = length v + 1)) =
- if length v < usize_max then begin
- (**) assert_norm(length [x] == 1);
- (**) append_length v [x];
- (**) assert(length (append v [x]) = length v + 1);
- Return (append v [x])
- end
- else Fail Failure
-
-// The **forward** function shouldn't be used
-let alloc_vec_Vec_insert_fwd (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result unit =
- if i < length v then Return () else Fail Failure
-let alloc_vec_Vec_insert (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) =
- if i < length v then Return (list_update v i x) else Fail Failure
-
-// Trait declaration: [core::slice::index::private_slice_index::Sealed]
-type core_slice_index_private_slice_index_Sealed (self : Type0) = unit
-
-// Trait declaration: [core::slice::index::SliceIndex]
-noeq type core_slice_index_SliceIndex (self t : Type0) = {
- sealedInst : core_slice_index_private_slice_index_Sealed self;
- output : Type0;
- get : self → t → result (option output);
- get_mut : self → t → result (option output);
- get_mut_back : self → t → option output → result t;
- get_unchecked : self → const_raw_ptr t → result (const_raw_ptr output);
- get_unchecked_mut : self → mut_raw_ptr t → result (mut_raw_ptr output);
- index : self → t → result output;
- index_mut : self → t → result output;
- index_mut_back : self → t → output → result t;
-}
-
-// [core::slice::index::[T]::index]: forward function
-let core_slice_index_Slice_index
- (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
- (s : slice t) (i : idx) : result inst.output =
- let* x = inst.get i s in
- match x with
- | None -> Fail Failure
- | Some x -> Return x
-
-// [core::slice::index::Range:::get]: forward function
-let core_slice_index_RangeUsize_get (t : Type0) (i : core_ops_range_Range usize) (s : slice t) :
- result (option (slice t)) =
- admit () // TODO
-
-// [core::slice::index::Range::get_mut]: forward function
-let core_slice_index_RangeUsize_get_mut
- (t : Type0) : core_ops_range_Range usize → slice t → result (option (slice t)) =
- admit () // TODO
-
-// [core::slice::index::Range::get_mut]: backward function 0
-let core_slice_index_RangeUsize_get_mut_back
- (t : Type0) :
- core_ops_range_Range usize → slice t → option (slice t) → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::Range::get_unchecked]: forward function
-let core_slice_index_RangeUsize_get_unchecked
- (t : Type0) :
- core_ops_range_Range usize → const_raw_ptr (slice t) → result (const_raw_ptr (slice t)) =
- // Don't know what the model should be - for now we always fail to make
- // sure code which uses it fails
- fun _ _ -> Fail Failure
-
-// [core::slice::index::Range::get_unchecked_mut]: forward function
-let core_slice_index_RangeUsize_get_unchecked_mut
- (t : Type0) :
- core_ops_range_Range usize → mut_raw_ptr (slice t) → result (mut_raw_ptr (slice t)) =
- // Don't know what the model should be - for now we always fail to make
- // sure code which uses it fails
- fun _ _ -> Fail Failure
-
-// [core::slice::index::Range::index]: forward function
-let core_slice_index_RangeUsize_index
- (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::Range::index_mut]: forward function
-let core_slice_index_RangeUsize_index_mut
- (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::Range::index_mut]: backward function 0
-let core_slice_index_RangeUsize_index_mut_back
- (t : Type0) : core_ops_range_Range usize → slice t → slice t → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::[T]::index_mut]: forward function
-let core_slice_index_Slice_index_mut
- (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) :
- slice t → idx → result inst.output =
- admit () //
-
-// [core::slice::index::[T]::index_mut]: backward function 0
-let core_slice_index_Slice_index_mut_back
- (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) :
- slice t → idx → inst.output → result (slice t) =
- admit () // TODO
-
-// [core::array::[T; N]::index]: forward function
-let core_array_Array_index
- (t idx : Type0) (n : usize) (inst : core_ops_index_Index (slice t) idx)
- (a : array t n) (i : idx) : result inst.output =
- admit () // TODO
-
-// [core::array::[T; N]::index_mut]: forward function
-let core_array_Array_index_mut
- (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx)
- (a : array t n) (i : idx) : result inst.indexInst.output =
- admit () // TODO
-
-// [core::array::[T; N]::index_mut]: backward function 0
-let core_array_Array_index_mut_back
- (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx)
- (a : array t n) (i : idx) (x : inst.indexInst.output) : result (array t n) =
- admit () // TODO
-
-// Trait implementation: [core::slice::index::private_slice_index::Range]
-let core_slice_index_private_slice_index_SealedRangeUsizeInst
- : core_slice_index_private_slice_index_Sealed (core_ops_range_Range usize) = ()
-
-// Trait implementation: [core::slice::index::Range]
-let core_slice_index_SliceIndexRangeUsizeSliceTInst (t : Type0) :
- core_slice_index_SliceIndex (core_ops_range_Range usize) (slice t) = {
- sealedInst = core_slice_index_private_slice_index_SealedRangeUsizeInst;
- output = slice t;
- get = core_slice_index_RangeUsize_get t;
- get_mut = core_slice_index_RangeUsize_get_mut t;
- get_mut_back = core_slice_index_RangeUsize_get_mut_back t;
- get_unchecked = core_slice_index_RangeUsize_get_unchecked t;
- get_unchecked_mut = core_slice_index_RangeUsize_get_unchecked_mut t;
- index = core_slice_index_RangeUsize_index t;
- index_mut = core_slice_index_RangeUsize_index_mut t;
- index_mut_back = core_slice_index_RangeUsize_index_mut_back t;
-}
-
-// Trait implementation: [core::slice::index::[T]]
-let core_ops_index_IndexSliceTIInst (t idx : Type0)
- (inst : core_slice_index_SliceIndex idx (slice t)) :
- core_ops_index_Index (slice t) idx = {
- output = inst.output;
- index = core_slice_index_Slice_index t idx inst;
-}
-
-// Trait implementation: [core::slice::index::[T]]
-let core_ops_index_IndexMutSliceTIInst (t idx : Type0)
- (inst : core_slice_index_SliceIndex idx (slice t)) :
- core_ops_index_IndexMut (slice t) idx = {
- indexInst = core_ops_index_IndexSliceTIInst t idx inst;
- index_mut = core_slice_index_Slice_index_mut t idx inst;
- index_mut_back = core_slice_index_Slice_index_mut_back t idx inst;
-}
-
-// Trait implementation: [core::array::[T; N]]
-let core_ops_index_IndexArrayInst (t idx : Type0) (n : usize)
- (inst : core_ops_index_Index (slice t) idx) :
- core_ops_index_Index (array t n) idx = {
- output = inst.output;
- index = core_array_Array_index t idx n inst;
-}
-
-// Trait implementation: [core::array::[T; N]]
-let core_ops_index_IndexMutArrayIInst (t idx : Type0) (n : usize)
- (inst : core_ops_index_IndexMut (slice t) idx) :
- core_ops_index_IndexMut (array t n) idx = {
- indexInst = core_ops_index_IndexArrayInst t idx n inst.indexInst;
- index_mut = core_array_Array_index_mut t idx n inst;
- index_mut_back = core_array_Array_index_mut_back t idx n inst;
-}
-
-// [core::slice::index::usize::get]: forward function
-let core_slice_index_usize_get
- (t : Type0) : usize → slice t → result (option t) =
- admit () // TODO
-
-// [core::slice::index::usize::get_mut]: forward function
-let core_slice_index_usize_get_mut
- (t : Type0) : usize → slice t → result (option t) =
- admit () // TODO
-
-// [core::slice::index::usize::get_mut]: backward function 0
-let core_slice_index_usize_get_mut_back
- (t : Type0) : usize → slice t → option t → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::usize::get_unchecked]: forward function
-let core_slice_index_usize_get_unchecked
- (t : Type0) : usize → const_raw_ptr (slice t) → result (const_raw_ptr t) =
- admit () // TODO
-
-// [core::slice::index::usize::get_unchecked_mut]: forward function
-let core_slice_index_usize_get_unchecked_mut
- (t : Type0) : usize → mut_raw_ptr (slice t) → result (mut_raw_ptr t) =
- admit () // TODO
-
-// [core::slice::index::usize::index]: forward function
-let core_slice_index_usize_index (t : Type0) : usize → slice t → result t =
- admit () // TODO
-
-// [core::slice::index::usize::index_mut]: forward function
-let core_slice_index_usize_index_mut (t : Type0) : usize → slice t → result t =
- admit () // TODO
-
-// [core::slice::index::usize::index_mut]: backward function 0
-let core_slice_index_usize_index_mut_back
- (t : Type0) : usize → slice t → t → result (slice t) =
- admit () // TODO
-
-// Trait implementation: [core::slice::index::private_slice_index::usize]
-let core_slice_index_private_slice_index_SealedUsizeInst
- : core_slice_index_private_slice_index_Sealed usize = ()
-
-// Trait implementation: [core::slice::index::usize]
-let core_slice_index_SliceIndexUsizeSliceTInst (t : Type0) :
- core_slice_index_SliceIndex usize (slice t) = {
- sealedInst = core_slice_index_private_slice_index_SealedUsizeInst;
- output = t;
- get = core_slice_index_usize_get t;
- get_mut = core_slice_index_usize_get_mut t;
- get_mut_back = core_slice_index_usize_get_mut_back t;
- get_unchecked = core_slice_index_usize_get_unchecked t;
- get_unchecked_mut = core_slice_index_usize_get_unchecked_mut t;
- index = core_slice_index_usize_index t;
- index_mut = core_slice_index_usize_index_mut t;
- index_mut_back = core_slice_index_usize_index_mut_back t;
-}
-
-// [alloc::vec::Vec::index]: forward function
-let alloc_vec_Vec_index (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
- (self : alloc_vec_Vec t) (i : idx) : result inst.output =
- admit () // TODO
-
-// [alloc::vec::Vec::index_mut]: forward function
-let alloc_vec_Vec_index_mut (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
- (self : alloc_vec_Vec t) (i : idx) : result inst.output =
- admit () // TODO
-
-// [alloc::vec::Vec::index_mut]: backward function 0
-let alloc_vec_Vec_index_mut_back
- (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
- (self : alloc_vec_Vec t) (i : idx) (x : inst.output) : result (alloc_vec_Vec t) =
- admit () // TODO
-
-// Trait implementation: [alloc::vec::Vec]
-let alloc_vec_Vec_coreopsindexIndexInst (t idx : Type0)
- (inst : core_slice_index_SliceIndex idx (slice t)) :
- core_ops_index_Index (alloc_vec_Vec t) idx = {
- output = inst.output;
- index = alloc_vec_Vec_index t idx inst;
-}
-
-// Trait implementation: [alloc::vec::Vec]
-let alloc_vec_Vec_coreopsindexIndexMutInst (t idx : Type0)
- (inst : core_slice_index_SliceIndex idx (slice t)) :
- core_ops_index_IndexMut (alloc_vec_Vec t) idx = {
- indexInst = alloc_vec_Vec_coreopsindexIndexInst t idx inst;
- index_mut = alloc_vec_Vec_index_mut t idx inst;
- index_mut_back = alloc_vec_Vec_index_mut_back t idx inst;
-}
-
-(*** Theorems *)
-
-let alloc_vec_Vec_index_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) :
- Lemma (
- alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i ==
- alloc_vec_Vec_index_usize v i)
- [SMTPat (alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)]
- =
- admit()
-
-let alloc_vec_Vec_index_mut_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) :
- Lemma (
- alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i ==
- alloc_vec_Vec_index_usize v i)
- [SMTPat (alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)]
- =
- admit()
-
-let alloc_vec_Vec_index_mut_back_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) :
- Lemma (
- alloc_vec_Vec_index_mut_back a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i x ==
- alloc_vec_Vec_update_usize v i x)
- [SMTPat (alloc_vec_Vec_index_mut_back a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i x)]
- =
- admit()
diff --git a/tests/fstar-split/hashmap_on_disk/HashmapMain.Clauses.Template.fst b/tests/fstar-split/hashmap_on_disk/HashmapMain.Clauses.Template.fst
deleted file mode 100644
index 7b274f59..00000000
--- a/tests/fstar-split/hashmap_on_disk/HashmapMain.Clauses.Template.fst
+++ /dev/null
@@ -1,72 +0,0 @@
-(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)
-(** [hashmap_main]: templates for the decreases clauses *)
-module HashmapMain.Clauses.Template
-open Primitives
-open HashmapMain.Types
-
-#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::allocate_slots]: decreases clause
- Source: 'src/hashmap.rs', lines 50:4-56:5 *)
-unfold
-let hashmap_HashMap_allocate_slots_loop_decreases (t : Type0)
- (slots : alloc_vec_Vec (hashmap_List_t t)) (n : usize) : nat =
- admit ()
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::clear]: decreases clause
- Source: 'src/hashmap.rs', lines 80:4-88:5 *)
-unfold
-let hashmap_HashMap_clear_loop_decreases (t : Type0)
- (slots : alloc_vec_Vec (hashmap_List_t t)) (i : usize) : nat =
- admit ()
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::insert_in_list]: decreases clause
- Source: 'src/hashmap.rs', lines 97:4-114:5 *)
-unfold
-let hashmap_HashMap_insert_in_list_loop_decreases (t : Type0) (key : usize)
- (value : t) (ls : hashmap_List_t t) : nat =
- admit ()
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::move_elements_from_list]: decreases clause
- Source: 'src/hashmap.rs', lines 183:4-196:5 *)
-unfold
-let hashmap_HashMap_move_elements_from_list_loop_decreases (t : Type0)
- (ntable : hashmap_HashMap_t t) (ls : hashmap_List_t t) : nat =
- admit ()
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::move_elements]: decreases clause
- Source: 'src/hashmap.rs', lines 171:4-180:5 *)
-unfold
-let hashmap_HashMap_move_elements_loop_decreases (t : Type0)
- (ntable : hashmap_HashMap_t t) (slots : alloc_vec_Vec (hashmap_List_t t))
- (i : usize) : nat =
- admit ()
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::contains_key_in_list]: decreases clause
- Source: 'src/hashmap.rs', lines 206:4-219:5 *)
-unfold
-let hashmap_HashMap_contains_key_in_list_loop_decreases (t : Type0)
- (key : usize) (ls : hashmap_List_t t) : nat =
- admit ()
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::get_in_list]: decreases clause
- Source: 'src/hashmap.rs', lines 224:4-237:5 *)
-unfold
-let hashmap_HashMap_get_in_list_loop_decreases (t : Type0) (key : usize)
- (ls : hashmap_List_t t) : nat =
- admit ()
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::get_mut_in_list]: decreases clause
- Source: 'src/hashmap.rs', lines 245:4-254:5 *)
-unfold
-let hashmap_HashMap_get_mut_in_list_loop_decreases (t : Type0)
- (ls : hashmap_List_t t) (key : usize) : nat =
- admit ()
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::remove_from_list]: decreases clause
- Source: 'src/hashmap.rs', lines 265:4-291:5 *)
-unfold
-let hashmap_HashMap_remove_from_list_loop_decreases (t : Type0) (key : usize)
- (ls : hashmap_List_t t) : nat =
- admit ()
-
diff --git a/tests/fstar-split/hashmap_on_disk/HashmapMain.Clauses.fst b/tests/fstar-split/hashmap_on_disk/HashmapMain.Clauses.fst
deleted file mode 100644
index be5a4ab1..00000000
--- a/tests/fstar-split/hashmap_on_disk/HashmapMain.Clauses.fst
+++ /dev/null
@@ -1,61 +0,0 @@
-(** [hashmap]: the decreases clauses *)
-module HashmapMain.Clauses
-open Primitives
-open FStar.List.Tot
-open HashmapMain.Types
-
-#set-options "--z3rlimit 50 --fuel 0 --ifuel 1"
-
-(** [hashmap::HashMap::allocate_slots]: decreases clause *)
-unfold
-let hashmap_HashMap_allocate_slots_loop_decreases (t : Type0) (slots : alloc_vec_Vec (hashmap_List_t t))
- (n : usize) : nat = n
-
-(** [hashmap::HashMap::clear]: decreases clause *)
-unfold
-let hashmap_HashMap_clear_loop_decreases (t : Type0) (slots : alloc_vec_Vec (hashmap_List_t t))
- (i : usize) : nat =
- if i < length slots then length slots - i else 0
-
-(** [hashmap::HashMap::insert_in_list]: decreases clause *)
-unfold
-let hashmap_HashMap_insert_in_list_loop_decreases (t : Type0) (key : usize) (value : t)
- (ls : hashmap_List_t t) : hashmap_List_t t =
- ls
-
-(** [hashmap::HashMap::move_elements_from_list]: decreases clause *)
-unfold
-let hashmap_HashMap_move_elements_from_list_loop_decreases (t : Type0)
- (ntable : hashmap_HashMap_t t) (ls : hashmap_List_t t) : hashmap_List_t t =
- ls
-
-(** [hashmap::HashMap::move_elements]: decreases clause *)
-unfold
-let hashmap_HashMap_move_elements_loop_decreases (t : Type0) (ntable : hashmap_HashMap_t t)
- (slots : alloc_vec_Vec (hashmap_List_t t)) (i : usize) : nat =
- if i < length slots then length slots - i else 0
-
-(** [hashmap::HashMap::contains_key_in_list]: decreases clause *)
-unfold
-let hashmap_HashMap_contains_key_in_list_loop_decreases (t : Type0) (key : usize)
- (ls : hashmap_List_t t) : hashmap_List_t t =
- ls
-
-(** [hashmap::HashMap::get_in_list]: decreases clause *)
-unfold
-let hashmap_HashMap_get_in_list_loop_decreases (t : Type0) (key : usize) (ls : hashmap_List_t t) :
- hashmap_List_t t =
- ls
-
-(** [hashmap::HashMap::get_mut_in_list]: decreases clause *)
-unfold
-let hashmap_HashMap_get_mut_in_list_loop_decreases (t : Type0)
- (ls : hashmap_List_t t) (key : usize) : hashmap_List_t t =
- ls
-
-(** [hashmap::HashMap::remove_from_list]: decreases clause *)
-unfold
-let hashmap_HashMap_remove_from_list_loop_decreases (t : Type0) (key : usize)
- (ls : hashmap_List_t t) : hashmap_List_t t =
- ls
-
diff --git a/tests/fstar-split/hashmap_on_disk/HashmapMain.Funs.fst b/tests/fstar-split/hashmap_on_disk/HashmapMain.Funs.fst
deleted file mode 100644
index 2e2d54b8..00000000
--- a/tests/fstar-split/hashmap_on_disk/HashmapMain.Funs.fst
+++ /dev/null
@@ -1,576 +0,0 @@
-(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)
-(** [hashmap_main]: function definitions *)
-module HashmapMain.Funs
-open Primitives
-include HashmapMain.Types
-include HashmapMain.FunsExternal
-include HashmapMain.Clauses
-
-#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
-
-(** [hashmap_main::hashmap::hash_key]: forward function
- Source: 'src/hashmap.rs', lines 27:0-27:32 *)
-let hashmap_hash_key (k : usize) : result usize =
- Return k
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::allocate_slots]: loop 0: forward function
- Source: 'src/hashmap.rs', lines 50:4-56:5 *)
-let rec hashmap_HashMap_allocate_slots_loop
- (t : Type0) (slots : alloc_vec_Vec (hashmap_List_t t)) (n : usize) :
- Tot (result (alloc_vec_Vec (hashmap_List_t t)))
- (decreases (hashmap_HashMap_allocate_slots_loop_decreases t slots n))
- =
- if n > 0
- then
- let* slots1 = alloc_vec_Vec_push (hashmap_List_t t) slots Hashmap_List_Nil
- in
- let* n1 = usize_sub n 1 in
- hashmap_HashMap_allocate_slots_loop t slots1 n1
- else Return slots
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::allocate_slots]: forward function
- Source: 'src/hashmap.rs', lines 50:4-50:76 *)
-let hashmap_HashMap_allocate_slots
- (t : Type0) (slots : alloc_vec_Vec (hashmap_List_t t)) (n : usize) :
- result (alloc_vec_Vec (hashmap_List_t t))
- =
- hashmap_HashMap_allocate_slots_loop t slots n
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::new_with_capacity]: forward function
- Source: 'src/hashmap.rs', lines 59:4-63:13 *)
-let hashmap_HashMap_new_with_capacity
- (t : Type0) (capacity : usize) (max_load_dividend : usize)
- (max_load_divisor : usize) :
- result (hashmap_HashMap_t t)
- =
- let* slots =
- hashmap_HashMap_allocate_slots t (alloc_vec_Vec_new (hashmap_List_t t))
- capacity in
- let* i = usize_mul capacity max_load_dividend in
- let* i1 = usize_div i max_load_divisor in
- Return
- {
- num_entries = 0;
- max_load_factor = (max_load_dividend, max_load_divisor);
- max_load = i1;
- slots = slots
- }
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::new]: forward function
- Source: 'src/hashmap.rs', lines 75:4-75:24 *)
-let hashmap_HashMap_new (t : Type0) : result (hashmap_HashMap_t t) =
- hashmap_HashMap_new_with_capacity t 32 4 5
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::clear]: loop 0: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/hashmap.rs', lines 80:4-88:5 *)
-let rec hashmap_HashMap_clear_loop
- (t : Type0) (slots : alloc_vec_Vec (hashmap_List_t t)) (i : usize) :
- Tot (result (alloc_vec_Vec (hashmap_List_t t)))
- (decreases (hashmap_HashMap_clear_loop_decreases t slots i))
- =
- let i1 = alloc_vec_Vec_len (hashmap_List_t t) slots in
- if i < i1
- then
- let* i2 = usize_add i 1 in
- let* slots1 =
- alloc_vec_Vec_index_mut_back (hashmap_List_t t) usize
- (core_slice_index_SliceIndexUsizeSliceTInst (hashmap_List_t t)) slots i
- Hashmap_List_Nil in
- hashmap_HashMap_clear_loop t slots1 i2
- else Return slots
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::clear]: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/hashmap.rs', lines 80:4-80:27 *)
-let hashmap_HashMap_clear
- (t : Type0) (self : hashmap_HashMap_t t) : result (hashmap_HashMap_t t) =
- let* v = hashmap_HashMap_clear_loop t self.slots 0 in
- Return { self with num_entries = 0; slots = v }
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::len]: forward function
- Source: 'src/hashmap.rs', lines 90:4-90:30 *)
-let hashmap_HashMap_len
- (t : Type0) (self : hashmap_HashMap_t t) : result usize =
- Return self.num_entries
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::insert_in_list]: loop 0: forward function
- Source: 'src/hashmap.rs', lines 97:4-114:5 *)
-let rec hashmap_HashMap_insert_in_list_loop
- (t : Type0) (key : usize) (value : t) (ls : hashmap_List_t t) :
- Tot (result bool)
- (decreases (hashmap_HashMap_insert_in_list_loop_decreases t key value ls))
- =
- begin match ls with
- | Hashmap_List_Cons ckey _ tl ->
- if ckey = key
- then Return false
- else hashmap_HashMap_insert_in_list_loop t key value tl
- | Hashmap_List_Nil -> Return true
- end
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::insert_in_list]: forward function
- Source: 'src/hashmap.rs', lines 97:4-97:71 *)
-let hashmap_HashMap_insert_in_list
- (t : Type0) (key : usize) (value : t) (ls : hashmap_List_t t) : result bool =
- hashmap_HashMap_insert_in_list_loop t key value ls
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::insert_in_list]: loop 0: backward function 0
- Source: 'src/hashmap.rs', lines 97:4-114:5 *)
-let rec hashmap_HashMap_insert_in_list_loop_back
- (t : Type0) (key : usize) (value : t) (ls : hashmap_List_t t) :
- Tot (result (hashmap_List_t t))
- (decreases (hashmap_HashMap_insert_in_list_loop_decreases t key value ls))
- =
- begin match ls with
- | Hashmap_List_Cons ckey cvalue tl ->
- if ckey = key
- then Return (Hashmap_List_Cons ckey value tl)
- else
- let* tl1 = hashmap_HashMap_insert_in_list_loop_back t key value tl in
- Return (Hashmap_List_Cons ckey cvalue tl1)
- | Hashmap_List_Nil -> Return (Hashmap_List_Cons key value Hashmap_List_Nil)
- end
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::insert_in_list]: backward function 0
- Source: 'src/hashmap.rs', lines 97:4-97:71 *)
-let hashmap_HashMap_insert_in_list_back
- (t : Type0) (key : usize) (value : t) (ls : hashmap_List_t t) :
- result (hashmap_List_t t)
- =
- hashmap_HashMap_insert_in_list_loop_back t key value ls
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::insert_no_resize]: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/hashmap.rs', lines 117:4-117:54 *)
-let hashmap_HashMap_insert_no_resize
- (t : Type0) (self : hashmap_HashMap_t t) (key : usize) (value : t) :
- result (hashmap_HashMap_t t)
- =
- let* hash = hashmap_hash_key key in
- let i = alloc_vec_Vec_len (hashmap_List_t t) self.slots in
- let* hash_mod = usize_rem hash i in
- let* l =
- alloc_vec_Vec_index_mut (hashmap_List_t t) usize
- (core_slice_index_SliceIndexUsizeSliceTInst (hashmap_List_t t))
- self.slots hash_mod in
- let* inserted = hashmap_HashMap_insert_in_list t key value l in
- if inserted
- then
- let* i1 = usize_add self.num_entries 1 in
- let* l1 = hashmap_HashMap_insert_in_list_back t key value l in
- let* v =
- alloc_vec_Vec_index_mut_back (hashmap_List_t t) usize
- (core_slice_index_SliceIndexUsizeSliceTInst (hashmap_List_t t))
- self.slots hash_mod l1 in
- Return { self with num_entries = i1; slots = v }
- else
- let* l1 = hashmap_HashMap_insert_in_list_back t key value l in
- let* v =
- alloc_vec_Vec_index_mut_back (hashmap_List_t t) usize
- (core_slice_index_SliceIndexUsizeSliceTInst (hashmap_List_t t))
- self.slots hash_mod l1 in
- Return { self with slots = v }
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::move_elements_from_list]: loop 0: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/hashmap.rs', lines 183:4-196:5 *)
-let rec hashmap_HashMap_move_elements_from_list_loop
- (t : Type0) (ntable : hashmap_HashMap_t t) (ls : hashmap_List_t t) :
- Tot (result (hashmap_HashMap_t t))
- (decreases (
- hashmap_HashMap_move_elements_from_list_loop_decreases t ntable ls))
- =
- begin match ls with
- | Hashmap_List_Cons k v tl ->
- let* ntable1 = hashmap_HashMap_insert_no_resize t ntable k v in
- hashmap_HashMap_move_elements_from_list_loop t ntable1 tl
- | Hashmap_List_Nil -> Return ntable
- end
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::move_elements_from_list]: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/hashmap.rs', lines 183:4-183:72 *)
-let hashmap_HashMap_move_elements_from_list
- (t : Type0) (ntable : hashmap_HashMap_t t) (ls : hashmap_List_t t) :
- result (hashmap_HashMap_t t)
- =
- hashmap_HashMap_move_elements_from_list_loop t ntable ls
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::move_elements]: loop 0: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/hashmap.rs', lines 171:4-180:5 *)
-let rec hashmap_HashMap_move_elements_loop
- (t : Type0) (ntable : hashmap_HashMap_t t)
- (slots : alloc_vec_Vec (hashmap_List_t t)) (i : usize) :
- Tot (result ((hashmap_HashMap_t t) & (alloc_vec_Vec (hashmap_List_t t))))
- (decreases (hashmap_HashMap_move_elements_loop_decreases t ntable slots i))
- =
- let i1 = alloc_vec_Vec_len (hashmap_List_t t) slots in
- if i < i1
- then
- let* l =
- alloc_vec_Vec_index_mut (hashmap_List_t t) usize
- (core_slice_index_SliceIndexUsizeSliceTInst (hashmap_List_t t)) slots i
- in
- let ls = core_mem_replace (hashmap_List_t t) l Hashmap_List_Nil in
- let* ntable1 = hashmap_HashMap_move_elements_from_list t ntable ls in
- let* i2 = usize_add i 1 in
- let l1 = core_mem_replace_back (hashmap_List_t t) l Hashmap_List_Nil in
- let* slots1 =
- alloc_vec_Vec_index_mut_back (hashmap_List_t t) usize
- (core_slice_index_SliceIndexUsizeSliceTInst (hashmap_List_t t)) slots i
- l1 in
- hashmap_HashMap_move_elements_loop t ntable1 slots1 i2
- else Return (ntable, slots)
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::move_elements]: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/hashmap.rs', lines 171:4-171:95 *)
-let hashmap_HashMap_move_elements
- (t : Type0) (ntable : hashmap_HashMap_t t)
- (slots : alloc_vec_Vec (hashmap_List_t t)) (i : usize) :
- result ((hashmap_HashMap_t t) & (alloc_vec_Vec (hashmap_List_t t)))
- =
- hashmap_HashMap_move_elements_loop t ntable slots i
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::try_resize]: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/hashmap.rs', lines 140:4-140:28 *)
-let hashmap_HashMap_try_resize
- (t : Type0) (self : hashmap_HashMap_t t) : result (hashmap_HashMap_t t) =
- let* max_usize = scalar_cast U32 Usize core_u32_max in
- let capacity = alloc_vec_Vec_len (hashmap_List_t t) self.slots in
- let* n1 = usize_div max_usize 2 in
- let (i, i1) = self.max_load_factor in
- let* i2 = usize_div n1 i in
- if capacity <= i2
- then
- let* i3 = usize_mul capacity 2 in
- let* ntable = hashmap_HashMap_new_with_capacity t i3 i i1 in
- let* (ntable1, _) = hashmap_HashMap_move_elements t ntable self.slots 0 in
- Return
- { ntable1 with num_entries = self.num_entries; max_load_factor = (i, i1)
- }
- else Return { self with max_load_factor = (i, i1) }
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::insert]: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/hashmap.rs', lines 129:4-129:48 *)
-let hashmap_HashMap_insert
- (t : Type0) (self : hashmap_HashMap_t t) (key : usize) (value : t) :
- result (hashmap_HashMap_t t)
- =
- let* self1 = hashmap_HashMap_insert_no_resize t self key value in
- let* i = hashmap_HashMap_len t self1 in
- if i > self1.max_load
- then hashmap_HashMap_try_resize t self1
- else Return self1
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::contains_key_in_list]: loop 0: forward function
- Source: 'src/hashmap.rs', lines 206:4-219:5 *)
-let rec hashmap_HashMap_contains_key_in_list_loop
- (t : Type0) (key : usize) (ls : hashmap_List_t t) :
- Tot (result bool)
- (decreases (hashmap_HashMap_contains_key_in_list_loop_decreases t key ls))
- =
- begin match ls with
- | Hashmap_List_Cons ckey _ tl ->
- if ckey = key
- then Return true
- else hashmap_HashMap_contains_key_in_list_loop t key tl
- | Hashmap_List_Nil -> Return false
- end
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::contains_key_in_list]: forward function
- Source: 'src/hashmap.rs', lines 206:4-206:68 *)
-let hashmap_HashMap_contains_key_in_list
- (t : Type0) (key : usize) (ls : hashmap_List_t t) : result bool =
- hashmap_HashMap_contains_key_in_list_loop t key ls
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::contains_key]: forward function
- Source: 'src/hashmap.rs', lines 199:4-199:49 *)
-let hashmap_HashMap_contains_key
- (t : Type0) (self : hashmap_HashMap_t t) (key : usize) : result bool =
- let* hash = hashmap_hash_key key in
- let i = alloc_vec_Vec_len (hashmap_List_t t) self.slots in
- let* hash_mod = usize_rem hash i in
- let* l =
- alloc_vec_Vec_index (hashmap_List_t t) usize
- (core_slice_index_SliceIndexUsizeSliceTInst (hashmap_List_t t))
- self.slots hash_mod in
- hashmap_HashMap_contains_key_in_list t key l
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::get_in_list]: loop 0: forward function
- Source: 'src/hashmap.rs', lines 224:4-237:5 *)
-let rec hashmap_HashMap_get_in_list_loop
- (t : Type0) (key : usize) (ls : hashmap_List_t t) :
- Tot (result t)
- (decreases (hashmap_HashMap_get_in_list_loop_decreases t key ls))
- =
- begin match ls with
- | Hashmap_List_Cons ckey cvalue tl ->
- if ckey = key
- then Return cvalue
- else hashmap_HashMap_get_in_list_loop t key tl
- | Hashmap_List_Nil -> Fail Failure
- end
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::get_in_list]: forward function
- Source: 'src/hashmap.rs', lines 224:4-224:70 *)
-let hashmap_HashMap_get_in_list
- (t : Type0) (key : usize) (ls : hashmap_List_t t) : result t =
- hashmap_HashMap_get_in_list_loop t key ls
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::get]: forward function
- Source: 'src/hashmap.rs', lines 239:4-239:55 *)
-let hashmap_HashMap_get
- (t : Type0) (self : hashmap_HashMap_t t) (key : usize) : result t =
- let* hash = hashmap_hash_key key in
- let i = alloc_vec_Vec_len (hashmap_List_t t) self.slots in
- let* hash_mod = usize_rem hash i in
- let* l =
- alloc_vec_Vec_index (hashmap_List_t t) usize
- (core_slice_index_SliceIndexUsizeSliceTInst (hashmap_List_t t))
- self.slots hash_mod in
- hashmap_HashMap_get_in_list t key l
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::get_mut_in_list]: loop 0: forward function
- Source: 'src/hashmap.rs', lines 245:4-254:5 *)
-let rec hashmap_HashMap_get_mut_in_list_loop
- (t : Type0) (ls : hashmap_List_t t) (key : usize) :
- Tot (result t)
- (decreases (hashmap_HashMap_get_mut_in_list_loop_decreases t ls key))
- =
- begin match ls with
- | Hashmap_List_Cons ckey cvalue tl ->
- if ckey = key
- then Return cvalue
- else hashmap_HashMap_get_mut_in_list_loop t tl key
- | Hashmap_List_Nil -> Fail Failure
- end
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::get_mut_in_list]: forward function
- Source: 'src/hashmap.rs', lines 245:4-245:86 *)
-let hashmap_HashMap_get_mut_in_list
- (t : Type0) (ls : hashmap_List_t t) (key : usize) : result t =
- hashmap_HashMap_get_mut_in_list_loop t ls key
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::get_mut_in_list]: loop 0: backward function 0
- Source: 'src/hashmap.rs', lines 245:4-254:5 *)
-let rec hashmap_HashMap_get_mut_in_list_loop_back
- (t : Type0) (ls : hashmap_List_t t) (key : usize) (ret : t) :
- Tot (result (hashmap_List_t t))
- (decreases (hashmap_HashMap_get_mut_in_list_loop_decreases t ls key))
- =
- begin match ls with
- | Hashmap_List_Cons ckey cvalue tl ->
- if ckey = key
- then Return (Hashmap_List_Cons ckey ret tl)
- else
- let* tl1 = hashmap_HashMap_get_mut_in_list_loop_back t tl key ret in
- Return (Hashmap_List_Cons ckey cvalue tl1)
- | Hashmap_List_Nil -> Fail Failure
- end
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::get_mut_in_list]: backward function 0
- Source: 'src/hashmap.rs', lines 245:4-245:86 *)
-let hashmap_HashMap_get_mut_in_list_back
- (t : Type0) (ls : hashmap_List_t t) (key : usize) (ret : t) :
- result (hashmap_List_t t)
- =
- hashmap_HashMap_get_mut_in_list_loop_back t ls key ret
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::get_mut]: forward function
- Source: 'src/hashmap.rs', lines 257:4-257:67 *)
-let hashmap_HashMap_get_mut
- (t : Type0) (self : hashmap_HashMap_t t) (key : usize) : result t =
- let* hash = hashmap_hash_key key in
- let i = alloc_vec_Vec_len (hashmap_List_t t) self.slots in
- let* hash_mod = usize_rem hash i in
- let* l =
- alloc_vec_Vec_index_mut (hashmap_List_t t) usize
- (core_slice_index_SliceIndexUsizeSliceTInst (hashmap_List_t t))
- self.slots hash_mod in
- hashmap_HashMap_get_mut_in_list t l key
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::get_mut]: backward function 0
- Source: 'src/hashmap.rs', lines 257:4-257:67 *)
-let hashmap_HashMap_get_mut_back
- (t : Type0) (self : hashmap_HashMap_t t) (key : usize) (ret : t) :
- result (hashmap_HashMap_t t)
- =
- let* hash = hashmap_hash_key key in
- let i = alloc_vec_Vec_len (hashmap_List_t t) self.slots in
- let* hash_mod = usize_rem hash i in
- let* l =
- alloc_vec_Vec_index_mut (hashmap_List_t t) usize
- (core_slice_index_SliceIndexUsizeSliceTInst (hashmap_List_t t))
- self.slots hash_mod in
- let* l1 = hashmap_HashMap_get_mut_in_list_back t l key ret in
- let* v =
- alloc_vec_Vec_index_mut_back (hashmap_List_t t) usize
- (core_slice_index_SliceIndexUsizeSliceTInst (hashmap_List_t t))
- self.slots hash_mod l1 in
- Return { self with slots = v }
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::remove_from_list]: loop 0: forward function
- Source: 'src/hashmap.rs', lines 265:4-291:5 *)
-let rec hashmap_HashMap_remove_from_list_loop
- (t : Type0) (key : usize) (ls : hashmap_List_t t) :
- Tot (result (option t))
- (decreases (hashmap_HashMap_remove_from_list_loop_decreases t key ls))
- =
- begin match ls with
- | Hashmap_List_Cons ckey x tl ->
- if ckey = key
- then
- let mv_ls =
- core_mem_replace (hashmap_List_t t) (Hashmap_List_Cons ckey x tl)
- Hashmap_List_Nil in
- begin match mv_ls with
- | Hashmap_List_Cons _ cvalue _ -> Return (Some cvalue)
- | Hashmap_List_Nil -> Fail Failure
- end
- else hashmap_HashMap_remove_from_list_loop t key tl
- | Hashmap_List_Nil -> Return None
- end
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::remove_from_list]: forward function
- Source: 'src/hashmap.rs', lines 265:4-265:69 *)
-let hashmap_HashMap_remove_from_list
- (t : Type0) (key : usize) (ls : hashmap_List_t t) : result (option t) =
- hashmap_HashMap_remove_from_list_loop t key ls
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::remove_from_list]: loop 0: backward function 1
- Source: 'src/hashmap.rs', lines 265:4-291:5 *)
-let rec hashmap_HashMap_remove_from_list_loop_back
- (t : Type0) (key : usize) (ls : hashmap_List_t t) :
- Tot (result (hashmap_List_t t))
- (decreases (hashmap_HashMap_remove_from_list_loop_decreases t key ls))
- =
- begin match ls with
- | Hashmap_List_Cons ckey x tl ->
- if ckey = key
- then
- let mv_ls =
- core_mem_replace (hashmap_List_t t) (Hashmap_List_Cons ckey x tl)
- Hashmap_List_Nil in
- begin match mv_ls with
- | Hashmap_List_Cons _ _ tl1 -> Return tl1
- | Hashmap_List_Nil -> Fail Failure
- end
- else
- let* tl1 = hashmap_HashMap_remove_from_list_loop_back t key tl in
- Return (Hashmap_List_Cons ckey x tl1)
- | Hashmap_List_Nil -> Return Hashmap_List_Nil
- end
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::remove_from_list]: backward function 1
- Source: 'src/hashmap.rs', lines 265:4-265:69 *)
-let hashmap_HashMap_remove_from_list_back
- (t : Type0) (key : usize) (ls : hashmap_List_t t) :
- result (hashmap_List_t t)
- =
- hashmap_HashMap_remove_from_list_loop_back t key ls
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::remove]: forward function
- Source: 'src/hashmap.rs', lines 294:4-294:52 *)
-let hashmap_HashMap_remove
- (t : Type0) (self : hashmap_HashMap_t t) (key : usize) : result (option t) =
- let* hash = hashmap_hash_key key in
- let i = alloc_vec_Vec_len (hashmap_List_t t) self.slots in
- let* hash_mod = usize_rem hash i in
- let* l =
- alloc_vec_Vec_index_mut (hashmap_List_t t) usize
- (core_slice_index_SliceIndexUsizeSliceTInst (hashmap_List_t t))
- self.slots hash_mod in
- let* x = hashmap_HashMap_remove_from_list t key l in
- begin match x with
- | None -> Return None
- | Some x1 -> let* _ = usize_sub self.num_entries 1 in Return (Some x1)
- end
-
-(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap<T>}::remove]: backward function 0
- Source: 'src/hashmap.rs', lines 294:4-294:52 *)
-let hashmap_HashMap_remove_back
- (t : Type0) (self : hashmap_HashMap_t t) (key : usize) :
- result (hashmap_HashMap_t t)
- =
- let* hash = hashmap_hash_key key in
- let i = alloc_vec_Vec_len (hashmap_List_t t) self.slots in
- let* hash_mod = usize_rem hash i in
- let* l =
- alloc_vec_Vec_index_mut (hashmap_List_t t) usize
- (core_slice_index_SliceIndexUsizeSliceTInst (hashmap_List_t t))
- self.slots hash_mod in
- let* x = hashmap_HashMap_remove_from_list t key l in
- begin match x with
- | None ->
- let* l1 = hashmap_HashMap_remove_from_list_back t key l in
- let* v =
- alloc_vec_Vec_index_mut_back (hashmap_List_t t) usize
- (core_slice_index_SliceIndexUsizeSliceTInst (hashmap_List_t t))
- self.slots hash_mod l1 in
- Return { self with slots = v }
- | Some _ ->
- let* i1 = usize_sub self.num_entries 1 in
- let* l1 = hashmap_HashMap_remove_from_list_back t key l in
- let* v =
- alloc_vec_Vec_index_mut_back (hashmap_List_t t) usize
- (core_slice_index_SliceIndexUsizeSliceTInst (hashmap_List_t t))
- self.slots hash_mod l1 in
- Return { self with num_entries = i1; slots = v }
- end
-
-(** [hashmap_main::hashmap::test1]: forward function
- Source: 'src/hashmap.rs', lines 315:0-315:10 *)
-let hashmap_test1 : result unit =
- let* hm = hashmap_HashMap_new u64 in
- let* hm1 = hashmap_HashMap_insert u64 hm 0 42 in
- let* hm2 = hashmap_HashMap_insert u64 hm1 128 18 in
- let* hm3 = hashmap_HashMap_insert u64 hm2 1024 138 in
- let* hm4 = hashmap_HashMap_insert u64 hm3 1056 256 in
- let* i = hashmap_HashMap_get u64 hm4 128 in
- if not (i = 18)
- then Fail Failure
- else
- let* hm5 = hashmap_HashMap_get_mut_back u64 hm4 1024 56 in
- let* i1 = hashmap_HashMap_get u64 hm5 1024 in
- if not (i1 = 56)
- then Fail Failure
- else
- let* x = hashmap_HashMap_remove u64 hm5 1024 in
- begin match x with
- | None -> Fail Failure
- | Some x1 ->
- if not (x1 = 56)
- then Fail Failure
- else
- let* hm6 = hashmap_HashMap_remove_back u64 hm5 1024 in
- let* i2 = hashmap_HashMap_get u64 hm6 0 in
- if not (i2 = 42)
- then Fail Failure
- else
- let* i3 = hashmap_HashMap_get u64 hm6 128 in
- if not (i3 = 18)
- then Fail Failure
- else
- let* i4 = hashmap_HashMap_get u64 hm6 1056 in
- if not (i4 = 256) then Fail Failure else Return ()
- end
-
-(** [hashmap_main::insert_on_disk]: forward function
- Source: 'src/hashmap_main.rs', lines 7:0-7:43 *)
-let insert_on_disk
- (key : usize) (value : u64) (st : state) : result (state & unit) =
- let* (st1, hm) = hashmap_utils_deserialize st in
- let* hm1 = hashmap_HashMap_insert u64 hm key value in
- let* (st2, _) = hashmap_utils_serialize hm1 st1 in
- Return (st2, ())
-
-(** [hashmap_main::main]: forward function
- Source: 'src/hashmap_main.rs', lines 16:0-16:13 *)
-let main : result unit =
- Return ()
-
diff --git a/tests/fstar-split/hashmap_on_disk/HashmapMain.FunsExternal.fsti b/tests/fstar-split/hashmap_on_disk/HashmapMain.FunsExternal.fsti
deleted file mode 100644
index b00bbcde..00000000
--- a/tests/fstar-split/hashmap_on_disk/HashmapMain.FunsExternal.fsti
+++ /dev/null
@@ -1,18 +0,0 @@
-(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)
-(** [hashmap_main]: external function declarations *)
-module HashmapMain.FunsExternal
-open Primitives
-include HashmapMain.Types
-
-#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
-
-(** [hashmap_main::hashmap_utils::deserialize]: forward function
- Source: 'src/hashmap_utils.rs', lines 10:0-10:43 *)
-val hashmap_utils_deserialize
- : state -> result (state & (hashmap_HashMap_t u64))
-
-(** [hashmap_main::hashmap_utils::serialize]: forward function
- Source: 'src/hashmap_utils.rs', lines 5:0-5:42 *)
-val hashmap_utils_serialize
- : hashmap_HashMap_t u64 -> state -> result (state & unit)
-
diff --git a/tests/fstar-split/hashmap_on_disk/HashmapMain.Properties.fst b/tests/fstar-split/hashmap_on_disk/HashmapMain.Properties.fst
deleted file mode 100644
index 358df29e..00000000
--- a/tests/fstar-split/hashmap_on_disk/HashmapMain.Properties.fst
+++ /dev/null
@@ -1,48 +0,0 @@
-(** Properties about the hashmap written on disk *)
-module HashmapMain.Properties
-open Primitives
-open HashmapMain.Funs
-
-#set-options "--z3rlimit 50 --fuel 0 --ifuel 1"
-
-/// Below, we focus on the functions to read from disk/write to disk to showcase
-/// how such reasoning which mixes opaque functions together with a state-error
-/// monad can be performed.
-
-(*** Hypotheses *)
-
-/// [state_v] gives us the hash map currently stored on disk
-assume
-val state_v : state -> hashmap_HashMap_t u64
-
-/// [serialize] updates the hash map stored on disk
-assume
-val serialize_lem (hm : hashmap_HashMap_t u64) (st : state) : Lemma (
- match hashmap_utils_serialize hm st with
- | Fail _ -> True
- | Return (st', ()) -> state_v st' == hm)
- [SMTPat (hashmap_utils_serialize hm st)]
-
-/// [deserialize] gives us the hash map stored on disk, without updating it
-assume
-val deserialize_lem (st : state) : Lemma (
- match hashmap_utils_deserialize st with
- | Fail _ -> True
- | Return (st', hm) -> hm == state_v st /\ st' == st)
- [SMTPat (hashmap_utils_deserialize st)]
-
-(*** Lemmas *)
-
-/// The obvious lemma about [insert_on_disk]: the updated hash map stored on disk
-/// is exactly the hash map produced from inserting the binding ([key], [value])
-/// in the hash map previously stored on disk.
-val insert_on_disk_lem (key : usize) (value : u64) (st : state) : Lemma (
- match insert_on_disk key value st with
- | Fail _ -> True
- | Return (st', ()) ->
- let hm = state_v st in
- match hashmap_HashMap_insert u64 hm key value with
- | Fail _ -> False
- | Return hm' -> hm' == state_v st')
-
-let insert_on_disk_lem key value st = ()
diff --git a/tests/fstar-split/hashmap_on_disk/HashmapMain.Types.fst b/tests/fstar-split/hashmap_on_disk/HashmapMain.Types.fst
deleted file mode 100644
index afebcde3..00000000
--- a/tests/fstar-split/hashmap_on_disk/HashmapMain.Types.fst
+++ /dev/null
@@ -1,24 +0,0 @@
-(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)
-(** [hashmap_main]: type definitions *)
-module HashmapMain.Types
-open Primitives
-include HashmapMain.TypesExternal
-
-#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
-
-(** [hashmap_main::hashmap::List]
- Source: 'src/hashmap.rs', lines 19:0-19:16 *)
-type hashmap_List_t (t : Type0) =
-| Hashmap_List_Cons : usize -> t -> hashmap_List_t t -> hashmap_List_t t
-| Hashmap_List_Nil : hashmap_List_t t
-
-(** [hashmap_main::hashmap::HashMap]
- Source: 'src/hashmap.rs', lines 35:0-35:21 *)
-type hashmap_HashMap_t (t : Type0) =
-{
- num_entries : usize;
- max_load_factor : (usize & usize);
- max_load : usize;
- slots : alloc_vec_Vec (hashmap_List_t t);
-}
-
diff --git a/tests/fstar-split/hashmap_on_disk/HashmapMain.TypesExternal.fsti b/tests/fstar-split/hashmap_on_disk/HashmapMain.TypesExternal.fsti
deleted file mode 100644
index 75747408..00000000
--- a/tests/fstar-split/hashmap_on_disk/HashmapMain.TypesExternal.fsti
+++ /dev/null
@@ -1,10 +0,0 @@
-(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)
-(** [hashmap_main]: external type declarations *)
-module HashmapMain.TypesExternal
-open Primitives
-
-#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
-
-(** The state type used in the state-error monad *)
-val state : Type0
-
diff --git a/tests/fstar-split/hashmap_on_disk/Makefile b/tests/fstar-split/hashmap_on_disk/Makefile
deleted file mode 100644
index fa7d1f36..00000000
--- a/tests/fstar-split/hashmap_on_disk/Makefile
+++ /dev/null
@@ -1,49 +0,0 @@
-# This file was automatically generated - modify ../Makefile.template instead
-INCLUDE_DIRS = .
-
-FSTAR_INCLUDES = $(addprefix --include ,$(INCLUDE_DIRS))
-
-FSTAR_HINTS ?= --use_hints --use_hint_hashes --record_hints
-
-FSTAR_OPTIONS = $(FSTAR_HINTS) \
- --cache_checked_modules $(FSTAR_INCLUDES) --cmi \
- --warn_error '+241@247+285-274' \
-
-FSTAR_EXE ?= fstar.exe
-FSTAR_NO_FLAGS = $(FSTAR_EXE) --already_cached 'Prims FStar LowStar Steel' --odir obj --cache_dir obj
-
-FSTAR = $(FSTAR_NO_FLAGS) $(FSTAR_OPTIONS)
-
-# The F* roots are used to compute the dependency graph, and generate the .depend file
-FSTAR_ROOTS ?= $(wildcard *.fst *.fsti)
-
-# Build all the files
-all: $(addprefix obj/,$(addsuffix .checked,$(FSTAR_ROOTS)))
-
-# This is the right way to ensure the .depend file always gets re-built.
-ifeq (,$(filter %-in,$(MAKECMDGOALS)))
-ifndef NODEPEND
-ifndef MAKE_RESTARTS
-.depend: .FORCE
- $(FSTAR_NO_FLAGS) --dep full $(notdir $(FSTAR_ROOTS)) > $@
-
-.PHONY: .FORCE
-.FORCE:
-endif
-endif
-
-include .depend
-endif
-
-# For the interactive mode
-%.fst-in %.fsti-in:
- @echo $(FSTAR_OPTIONS)
-
-# Generete the .checked files in batch mode
-%.checked:
- $(FSTAR) $(FSTAR_OPTIONS) $< && \
- touch -c $@
-
-.PHONY: clean
-clean:
- rm -f obj/*
diff --git a/tests/fstar-split/hashmap_on_disk/Primitives.fst b/tests/fstar-split/hashmap_on_disk/Primitives.fst
deleted file mode 100644
index a3ffbde4..00000000
--- a/tests/fstar-split/hashmap_on_disk/Primitives.fst
+++ /dev/null
@@ -1,884 +0,0 @@
-/// This file lists primitive and assumed functions and types
-module Primitives
-open FStar.Mul
-open FStar.List.Tot
-
-#set-options "--z3rlimit 15 --fuel 0 --ifuel 1"
-
-(*** Utilities *)
-val list_update (#a : Type0) (ls : list a) (i : nat{i < length ls}) (x : a) :
- ls':list a{
- length ls' = length ls /\
- index ls' i == x
- }
-#push-options "--fuel 1"
-let rec list_update #a ls i x =
- match ls with
- | x' :: ls -> if i = 0 then x :: ls else x' :: list_update ls (i-1) x
-#pop-options
-
-(*** Result *)
-type error : Type0 =
-| Failure
-| OutOfFuel
-
-type result (a : Type0) : Type0 =
-| Return : v:a -> result a
-| Fail : e:error -> result a
-
-// Monadic return operator
-unfold let return (#a : Type0) (x : a) : result a = Return x
-
-// Monadic bind operator.
-// Allows to use the notation:
-// ```
-// let* x = y in
-// ...
-// ```
-unfold let (let*) (#a #b : Type0) (m: result a)
- (f: (x:a) -> Pure (result b) (requires (m == Return x)) (ensures fun _ -> True)) :
- result b =
- match m with
- | Return x -> f x
- | Fail e -> Fail e
-
-// Monadic assert(...)
-let massert (b:bool) : result unit = if b then Return () else Fail Failure
-
-// Normalize and unwrap a successful result (used for globals).
-let eval_global (#a : Type0) (x : result a{Return? (normalize_term x)}) : a = Return?.v x
-
-(*** Misc *)
-type char = FStar.Char.char
-type string = string
-
-let is_zero (n: nat) : bool = n = 0
-let decrease (n: nat{n > 0}) : nat = n - 1
-
-let core_mem_replace (a : Type0) (x : a) (y : a) : a = x
-let core_mem_replace_back (a : Type0) (x : a) (y : a) : a = y
-
-// We don't really use raw pointers for now
-type mut_raw_ptr (t : Type0) = { v : t }
-type const_raw_ptr (t : Type0) = { v : t }
-
-(*** Scalars *)
-/// Rem.: most of the following code was partially generated
-
-assume val size_numbits : pos
-
-// TODO: we could use FStar.Int.int_t and FStar.UInt.int_t
-
-let isize_min : int = -9223372036854775808 // TODO: should be opaque
-let isize_max : int = 9223372036854775807 // TODO: should be opaque
-let i8_min : int = -128
-let i8_max : int = 127
-let i16_min : int = -32768
-let i16_max : int = 32767
-let i32_min : int = -2147483648
-let i32_max : int = 2147483647
-let i64_min : int = -9223372036854775808
-let i64_max : int = 9223372036854775807
-let i128_min : int = -170141183460469231731687303715884105728
-let i128_max : int = 170141183460469231731687303715884105727
-let usize_min : int = 0
-let usize_max : int = 4294967295 // TODO: should be opaque
-let u8_min : int = 0
-let u8_max : int = 255
-let u16_min : int = 0
-let u16_max : int = 65535
-let u32_min : int = 0
-let u32_max : int = 4294967295
-let u64_min : int = 0
-let u64_max : int = 18446744073709551615
-let u128_min : int = 0
-let u128_max : int = 340282366920938463463374607431768211455
-
-type scalar_ty =
-| Isize
-| I8
-| I16
-| I32
-| I64
-| I128
-| Usize
-| U8
-| U16
-| U32
-| U64
-| U128
-
-let is_unsigned = function
- | Isize | I8 | I16 | I32 | I64 | I128 -> false
- | Usize | U8 | U16 | U32 | U64 | U128 -> true
-
-let scalar_min (ty : scalar_ty) : int =
- match ty with
- | Isize -> isize_min
- | I8 -> i8_min
- | I16 -> i16_min
- | I32 -> i32_min
- | I64 -> i64_min
- | I128 -> i128_min
- | Usize -> usize_min
- | U8 -> u8_min
- | U16 -> u16_min
- | U32 -> u32_min
- | U64 -> u64_min
- | U128 -> u128_min
-
-let scalar_max (ty : scalar_ty) : int =
- match ty with
- | Isize -> isize_max
- | I8 -> i8_max
- | I16 -> i16_max
- | I32 -> i32_max
- | I64 -> i64_max
- | I128 -> i128_max
- | Usize -> usize_max
- | U8 -> u8_max
- | U16 -> u16_max
- | U32 -> u32_max
- | U64 -> u64_max
- | U128 -> u128_max
-
-type scalar (ty : scalar_ty) : eqtype = x:int{scalar_min ty <= x && x <= scalar_max ty}
-
-let mk_scalar (ty : scalar_ty) (x : int) : result (scalar ty) =
- if scalar_min ty <= x && scalar_max ty >= x then Return x else Fail Failure
-
-let scalar_neg (#ty : scalar_ty) (x : scalar ty) : result (scalar ty) = mk_scalar ty (-x)
-
-let scalar_div (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- if y <> 0 then mk_scalar ty (x / y) else Fail Failure
-
-/// The remainder operation
-let int_rem (x : int) (y : int{y <> 0}) : int =
- if x >= 0 then (x % y) else -(x % y)
-
-(* Checking consistency with Rust *)
-let _ = assert_norm(int_rem 1 2 = 1)
-let _ = assert_norm(int_rem (-1) 2 = -1)
-let _ = assert_norm(int_rem 1 (-2) = 1)
-let _ = assert_norm(int_rem (-1) (-2) = -1)
-
-let scalar_rem (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- if y <> 0 then mk_scalar ty (int_rem x y) else Fail Failure
-
-let scalar_add (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- mk_scalar ty (x + y)
-
-let scalar_sub (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- mk_scalar ty (x - y)
-
-let scalar_mul (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- mk_scalar ty (x * y)
-
-let scalar_xor (#ty : scalar_ty)
- (x : scalar ty) (y : scalar ty) : scalar ty =
- match ty with
- | U8 -> FStar.UInt.logxor #8 x y
- | U16 -> FStar.UInt.logxor #16 x y
- | U32 -> FStar.UInt.logxor #32 x y
- | U64 -> FStar.UInt.logxor #64 x y
- | U128 -> FStar.UInt.logxor #128 x y
- | Usize -> admit() // TODO
- | I8 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 8);
- normalize_spec (scalar I8);
- FStar.Int.logxor #8 x y
- | I16 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 16);
- normalize_spec (scalar I16);
- FStar.Int.logxor #16 x y
- | I32 -> FStar.Int.logxor #32 x y
- | I64 -> FStar.Int.logxor #64 x y
- | I128 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 128);
- normalize_spec (scalar I128);
- FStar.Int.logxor #128 x y
- | Isize -> admit() // TODO
-
-let scalar_or (#ty : scalar_ty)
- (x : scalar ty) (y : scalar ty) : scalar ty =
- match ty with
- | U8 -> FStar.UInt.logor #8 x y
- | U16 -> FStar.UInt.logor #16 x y
- | U32 -> FStar.UInt.logor #32 x y
- | U64 -> FStar.UInt.logor #64 x y
- | U128 -> FStar.UInt.logor #128 x y
- | Usize -> admit() // TODO
- | I8 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 8);
- normalize_spec (scalar I8);
- FStar.Int.logor #8 x y
- | I16 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 16);
- normalize_spec (scalar I16);
- FStar.Int.logor #16 x y
- | I32 -> FStar.Int.logor #32 x y
- | I64 -> FStar.Int.logor #64 x y
- | I128 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 128);
- normalize_spec (scalar I128);
- FStar.Int.logor #128 x y
- | Isize -> admit() // TODO
-
-let scalar_and (#ty : scalar_ty)
- (x : scalar ty) (y : scalar ty) : scalar ty =
- match ty with
- | U8 -> FStar.UInt.logand #8 x y
- | U16 -> FStar.UInt.logand #16 x y
- | U32 -> FStar.UInt.logand #32 x y
- | U64 -> FStar.UInt.logand #64 x y
- | U128 -> FStar.UInt.logand #128 x y
- | Usize -> admit() // TODO
- | I8 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 8);
- normalize_spec (scalar I8);
- FStar.Int.logand #8 x y
- | I16 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 16);
- normalize_spec (scalar I16);
- FStar.Int.logand #16 x y
- | I32 -> FStar.Int.logand #32 x y
- | I64 -> FStar.Int.logand #64 x y
- | I128 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 128);
- normalize_spec (scalar I128);
- FStar.Int.logand #128 x y
- | Isize -> admit() // TODO
-
-// Shift left
-let scalar_shl (#ty0 #ty1 : scalar_ty)
- (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) =
- admit()
-
-// Shift right
-let scalar_shr (#ty0 #ty1 : scalar_ty)
- (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) =
- admit()
-
-(** Cast an integer from a [src_ty] to a [tgt_ty] *)
-// TODO: check the semantics of casts in Rust
-let scalar_cast (src_ty : scalar_ty) (tgt_ty : scalar_ty) (x : scalar src_ty) : result (scalar tgt_ty) =
- mk_scalar tgt_ty x
-
-// This can't fail, but for now we make all casts faillible (easier for the translation)
-let scalar_cast_bool (tgt_ty : scalar_ty) (x : bool) : result (scalar tgt_ty) =
- mk_scalar tgt_ty (if x then 1 else 0)
-
-/// The scalar types
-type isize : eqtype = scalar Isize
-type i8 : eqtype = scalar I8
-type i16 : eqtype = scalar I16
-type i32 : eqtype = scalar I32
-type i64 : eqtype = scalar I64
-type i128 : eqtype = scalar I128
-type usize : eqtype = scalar Usize
-type u8 : eqtype = scalar U8
-type u16 : eqtype = scalar U16
-type u32 : eqtype = scalar U32
-type u64 : eqtype = scalar U64
-type u128 : eqtype = scalar U128
-
-
-let core_isize_min : isize = isize_min
-let core_isize_max : isize = isize_max
-let core_i8_min : i8 = i8_min
-let core_i8_max : i8 = i8_max
-let core_i16_min : i16 = i16_min
-let core_i16_max : i16 = i16_max
-let core_i32_min : i32 = i32_min
-let core_i32_max : i32 = i32_max
-let core_i64_min : i64 = i64_min
-let core_i64_max : i64 = i64_max
-let core_i128_min : i128 = i128_min
-let core_i128_max : i128 = i128_max
-
-let core_usize_min : usize = usize_min
-let core_usize_max : usize = usize_max
-let core_u8_min : u8 = u8_min
-let core_u8_max : u8 = u8_max
-let core_u16_min : u16 = u16_min
-let core_u16_max : u16 = u16_max
-let core_u32_min : u32 = u32_min
-let core_u32_max : u32 = u32_max
-let core_u64_min : u64 = u64_min
-let core_u64_max : u64 = u64_max
-let core_u128_min : u128 = u128_min
-let core_u128_max : u128 = u128_max
-
-/// Negation
-let isize_neg = scalar_neg #Isize
-let i8_neg = scalar_neg #I8
-let i16_neg = scalar_neg #I16
-let i32_neg = scalar_neg #I32
-let i64_neg = scalar_neg #I64
-let i128_neg = scalar_neg #I128
-
-/// Division
-let isize_div = scalar_div #Isize
-let i8_div = scalar_div #I8
-let i16_div = scalar_div #I16
-let i32_div = scalar_div #I32
-let i64_div = scalar_div #I64
-let i128_div = scalar_div #I128
-let usize_div = scalar_div #Usize
-let u8_div = scalar_div #U8
-let u16_div = scalar_div #U16
-let u32_div = scalar_div #U32
-let u64_div = scalar_div #U64
-let u128_div = scalar_div #U128
-
-/// Remainder
-let isize_rem = scalar_rem #Isize
-let i8_rem = scalar_rem #I8
-let i16_rem = scalar_rem #I16
-let i32_rem = scalar_rem #I32
-let i64_rem = scalar_rem #I64
-let i128_rem = scalar_rem #I128
-let usize_rem = scalar_rem #Usize
-let u8_rem = scalar_rem #U8
-let u16_rem = scalar_rem #U16
-let u32_rem = scalar_rem #U32
-let u64_rem = scalar_rem #U64
-let u128_rem = scalar_rem #U128
-
-/// Addition
-let isize_add = scalar_add #Isize
-let i8_add = scalar_add #I8
-let i16_add = scalar_add #I16
-let i32_add = scalar_add #I32
-let i64_add = scalar_add #I64
-let i128_add = scalar_add #I128
-let usize_add = scalar_add #Usize
-let u8_add = scalar_add #U8
-let u16_add = scalar_add #U16
-let u32_add = scalar_add #U32
-let u64_add = scalar_add #U64
-let u128_add = scalar_add #U128
-
-/// Subtraction
-let isize_sub = scalar_sub #Isize
-let i8_sub = scalar_sub #I8
-let i16_sub = scalar_sub #I16
-let i32_sub = scalar_sub #I32
-let i64_sub = scalar_sub #I64
-let i128_sub = scalar_sub #I128
-let usize_sub = scalar_sub #Usize
-let u8_sub = scalar_sub #U8
-let u16_sub = scalar_sub #U16
-let u32_sub = scalar_sub #U32
-let u64_sub = scalar_sub #U64
-let u128_sub = scalar_sub #U128
-
-/// Multiplication
-let isize_mul = scalar_mul #Isize
-let i8_mul = scalar_mul #I8
-let i16_mul = scalar_mul #I16
-let i32_mul = scalar_mul #I32
-let i64_mul = scalar_mul #I64
-let i128_mul = scalar_mul #I128
-let usize_mul = scalar_mul #Usize
-let u8_mul = scalar_mul #U8
-let u16_mul = scalar_mul #U16
-let u32_mul = scalar_mul #U32
-let u64_mul = scalar_mul #U64
-let u128_mul = scalar_mul #U128
-
-/// Xor
-let u8_xor = scalar_xor #U8
-let u16_xor = scalar_xor #U16
-let u32_xor = scalar_xor #U32
-let u64_xor = scalar_xor #U64
-let u128_xor = scalar_xor #U128
-let usize_xor = scalar_xor #Usize
-let i8_xor = scalar_xor #I8
-let i16_xor = scalar_xor #I16
-let i32_xor = scalar_xor #I32
-let i64_xor = scalar_xor #I64
-let i128_xor = scalar_xor #I128
-let isize_xor = scalar_xor #Isize
-
-/// Or
-let u8_or = scalar_or #U8
-let u16_or = scalar_or #U16
-let u32_or = scalar_or #U32
-let u64_or = scalar_or #U64
-let u128_or = scalar_or #U128
-let usize_or = scalar_or #Usize
-let i8_or = scalar_or #I8
-let i16_or = scalar_or #I16
-let i32_or = scalar_or #I32
-let i64_or = scalar_or #I64
-let i128_or = scalar_or #I128
-let isize_or = scalar_or #Isize
-
-/// And
-let u8_and = scalar_and #U8
-let u16_and = scalar_and #U16
-let u32_and = scalar_and #U32
-let u64_and = scalar_and #U64
-let u128_and = scalar_and #U128
-let usize_and = scalar_and #Usize
-let i8_and = scalar_and #I8
-let i16_and = scalar_and #I16
-let i32_and = scalar_and #I32
-let i64_and = scalar_and #I64
-let i128_and = scalar_and #I128
-let isize_and = scalar_and #Isize
-
-/// Shift left
-let u8_shl #ty = scalar_shl #U8 #ty
-let u16_shl #ty = scalar_shl #U16 #ty
-let u32_shl #ty = scalar_shl #U32 #ty
-let u64_shl #ty = scalar_shl #U64 #ty
-let u128_shl #ty = scalar_shl #U128 #ty
-let usize_shl #ty = scalar_shl #Usize #ty
-let i8_shl #ty = scalar_shl #I8 #ty
-let i16_shl #ty = scalar_shl #I16 #ty
-let i32_shl #ty = scalar_shl #I32 #ty
-let i64_shl #ty = scalar_shl #I64 #ty
-let i128_shl #ty = scalar_shl #I128 #ty
-let isize_shl #ty = scalar_shl #Isize #ty
-
-/// Shift right
-let u8_shr #ty = scalar_shr #U8 #ty
-let u16_shr #ty = scalar_shr #U16 #ty
-let u32_shr #ty = scalar_shr #U32 #ty
-let u64_shr #ty = scalar_shr #U64 #ty
-let u128_shr #ty = scalar_shr #U128 #ty
-let usize_shr #ty = scalar_shr #Usize #ty
-let i8_shr #ty = scalar_shr #I8 #ty
-let i16_shr #ty = scalar_shr #I16 #ty
-let i32_shr #ty = scalar_shr #I32 #ty
-let i64_shr #ty = scalar_shr #I64 #ty
-let i128_shr #ty = scalar_shr #I128 #ty
-let isize_shr #ty = scalar_shr #Isize #ty
-
-(*** core::ops *)
-
-// Trait declaration: [core::ops::index::Index]
-noeq type core_ops_index_Index (self idx : Type0) = {
- output : Type0;
- index : self → idx → result output
-}
-
-// Trait declaration: [core::ops::index::IndexMut]
-noeq type core_ops_index_IndexMut (self idx : Type0) = {
- indexInst : core_ops_index_Index self idx;
- index_mut : self → idx → result indexInst.output;
- index_mut_back : self → idx → indexInst.output → result self;
-}
-
-// Trait declaration [core::ops::deref::Deref]
-noeq type core_ops_deref_Deref (self : Type0) = {
- target : Type0;
- deref : self → result target;
-}
-
-// Trait declaration [core::ops::deref::DerefMut]
-noeq type core_ops_deref_DerefMut (self : Type0) = {
- derefInst : core_ops_deref_Deref self;
- deref_mut : self → result derefInst.target;
- deref_mut_back : self → derefInst.target → result self;
-}
-
-type core_ops_range_Range (a : Type0) = {
- start : a;
- end_ : a;
-}
-
-(*** [alloc] *)
-
-let alloc_boxed_Box_deref (t : Type0) (x : t) : result t = Return x
-let alloc_boxed_Box_deref_mut (t : Type0) (x : t) : result t = Return x
-let alloc_boxed_Box_deref_mut_back (t : Type) (_ : t) (x : t) : result t = Return x
-
-// Trait instance
-let alloc_boxed_Box_coreopsDerefInst (self : Type0) : core_ops_deref_Deref self = {
- target = self;
- deref = alloc_boxed_Box_deref self;
-}
-
-// Trait instance
-let alloc_boxed_Box_coreopsDerefMutInst (self : Type0) : core_ops_deref_DerefMut self = {
- derefInst = alloc_boxed_Box_coreopsDerefInst self;
- deref_mut = alloc_boxed_Box_deref_mut self;
- deref_mut_back = alloc_boxed_Box_deref_mut_back self;
-}
-
-(*** Array *)
-type array (a : Type0) (n : usize) = s:list a{length s = n}
-
-// We tried putting the normalize_term condition as a refinement on the list
-// but it didn't work. It works with the requires clause.
-let mk_array (a : Type0) (n : usize)
- (l : list a) :
- Pure (array a n)
- (requires (normalize_term(FStar.List.Tot.length l) = n))
- (ensures (fun _ -> True)) =
- normalize_term_spec (FStar.List.Tot.length l);
- l
-
-let array_index_usize (a : Type0) (n : usize) (x : array a n) (i : usize) : result a =
- if i < length x then Return (index x i)
- else Fail Failure
-
-let array_update_usize (a : Type0) (n : usize) (x : array a n) (i : usize) (nx : a) : result (array a n) =
- if i < length x then Return (list_update x i nx)
- else Fail Failure
-
-(*** Slice *)
-type slice (a : Type0) = s:list a{length s <= usize_max}
-
-let slice_len (a : Type0) (s : slice a) : usize = length s
-
-let slice_index_usize (a : Type0) (x : slice a) (i : usize) : result a =
- if i < length x then Return (index x i)
- else Fail Failure
-
-let slice_update_usize (a : Type0) (x : slice a) (i : usize) (nx : a) : result (slice a) =
- if i < length x then Return (list_update x i nx)
- else Fail Failure
-
-(*** Subslices *)
-
-let array_to_slice (a : Type0) (n : usize) (x : array a n) : result (slice a) = Return x
-let array_from_slice (a : Type0) (n : usize) (x : array a n) (s : slice a) : result (array a n) =
- if length s = n then Return s
- else Fail Failure
-
-// TODO: finish the definitions below (there lacks [List.drop] and [List.take] in the standard library *)
-let array_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) : result (slice a) =
- admit()
-
-let array_update_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) (ns : slice a) : result (array a n) =
- admit()
-
-let array_repeat (a : Type0) (n : usize) (x : a) : array a n =
- admit()
-
-let slice_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) : result (slice a) =
- admit()
-
-let slice_update_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) (ns : slice a) : result (slice a) =
- admit()
-
-(*** Vector *)
-type alloc_vec_Vec (a : Type0) = v:list a{length v <= usize_max}
-
-let alloc_vec_Vec_new (a : Type0) : alloc_vec_Vec a = assert_norm(length #a [] == 0); []
-let alloc_vec_Vec_len (a : Type0) (v : alloc_vec_Vec a) : usize = length v
-
-// Helper
-let alloc_vec_Vec_index_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : result a =
- if i < length v then Return (index v i) else Fail Failure
-// Helper
-let alloc_vec_Vec_update_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) =
- if i < length v then Return (list_update v i x) else Fail Failure
-
-// The **forward** function shouldn't be used
-let alloc_vec_Vec_push_fwd (a : Type0) (v : alloc_vec_Vec a) (x : a) : unit = ()
-let alloc_vec_Vec_push (a : Type0) (v : alloc_vec_Vec a) (x : a) :
- Pure (result (alloc_vec_Vec a))
- (requires True)
- (ensures (fun res ->
- match res with
- | Fail e -> e == Failure
- | Return v' -> length v' = length v + 1)) =
- if length v < usize_max then begin
- (**) assert_norm(length [x] == 1);
- (**) append_length v [x];
- (**) assert(length (append v [x]) = length v + 1);
- Return (append v [x])
- end
- else Fail Failure
-
-// The **forward** function shouldn't be used
-let alloc_vec_Vec_insert_fwd (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result unit =
- if i < length v then Return () else Fail Failure
-let alloc_vec_Vec_insert (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) =
- if i < length v then Return (list_update v i x) else Fail Failure
-
-// Trait declaration: [core::slice::index::private_slice_index::Sealed]
-type core_slice_index_private_slice_index_Sealed (self : Type0) = unit
-
-// Trait declaration: [core::slice::index::SliceIndex]
-noeq type core_slice_index_SliceIndex (self t : Type0) = {
- sealedInst : core_slice_index_private_slice_index_Sealed self;
- output : Type0;
- get : self → t → result (option output);
- get_mut : self → t → result (option output);
- get_mut_back : self → t → option output → result t;
- get_unchecked : self → const_raw_ptr t → result (const_raw_ptr output);
- get_unchecked_mut : self → mut_raw_ptr t → result (mut_raw_ptr output);
- index : self → t → result output;
- index_mut : self → t → result output;
- index_mut_back : self → t → output → result t;
-}
-
-// [core::slice::index::[T]::index]: forward function
-let core_slice_index_Slice_index
- (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
- (s : slice t) (i : idx) : result inst.output =
- let* x = inst.get i s in
- match x with
- | None -> Fail Failure
- | Some x -> Return x
-
-// [core::slice::index::Range:::get]: forward function
-let core_slice_index_RangeUsize_get (t : Type0) (i : core_ops_range_Range usize) (s : slice t) :
- result (option (slice t)) =
- admit () // TODO
-
-// [core::slice::index::Range::get_mut]: forward function
-let core_slice_index_RangeUsize_get_mut
- (t : Type0) : core_ops_range_Range usize → slice t → result (option (slice t)) =
- admit () // TODO
-
-// [core::slice::index::Range::get_mut]: backward function 0
-let core_slice_index_RangeUsize_get_mut_back
- (t : Type0) :
- core_ops_range_Range usize → slice t → option (slice t) → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::Range::get_unchecked]: forward function
-let core_slice_index_RangeUsize_get_unchecked
- (t : Type0) :
- core_ops_range_Range usize → const_raw_ptr (slice t) → result (const_raw_ptr (slice t)) =
- // Don't know what the model should be - for now we always fail to make
- // sure code which uses it fails
- fun _ _ -> Fail Failure
-
-// [core::slice::index::Range::get_unchecked_mut]: forward function
-let core_slice_index_RangeUsize_get_unchecked_mut
- (t : Type0) :
- core_ops_range_Range usize → mut_raw_ptr (slice t) → result (mut_raw_ptr (slice t)) =
- // Don't know what the model should be - for now we always fail to make
- // sure code which uses it fails
- fun _ _ -> Fail Failure
-
-// [core::slice::index::Range::index]: forward function
-let core_slice_index_RangeUsize_index
- (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::Range::index_mut]: forward function
-let core_slice_index_RangeUsize_index_mut
- (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::Range::index_mut]: backward function 0
-let core_slice_index_RangeUsize_index_mut_back
- (t : Type0) : core_ops_range_Range usize → slice t → slice t → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::[T]::index_mut]: forward function
-let core_slice_index_Slice_index_mut
- (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) :
- slice t → idx → result inst.output =
- admit () //
-
-// [core::slice::index::[T]::index_mut]: backward function 0
-let core_slice_index_Slice_index_mut_back
- (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) :
- slice t → idx → inst.output → result (slice t) =
- admit () // TODO
-
-// [core::array::[T; N]::index]: forward function
-let core_array_Array_index
- (t idx : Type0) (n : usize) (inst : core_ops_index_Index (slice t) idx)
- (a : array t n) (i : idx) : result inst.output =
- admit () // TODO
-
-// [core::array::[T; N]::index_mut]: forward function
-let core_array_Array_index_mut
- (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx)
- (a : array t n) (i : idx) : result inst.indexInst.output =
- admit () // TODO
-
-// [core::array::[T; N]::index_mut]: backward function 0
-let core_array_Array_index_mut_back
- (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx)
- (a : array t n) (i : idx) (x : inst.indexInst.output) : result (array t n) =
- admit () // TODO
-
-// Trait implementation: [core::slice::index::private_slice_index::Range]
-let core_slice_index_private_slice_index_SealedRangeUsizeInst
- : core_slice_index_private_slice_index_Sealed (core_ops_range_Range usize) = ()
-
-// Trait implementation: [core::slice::index::Range]
-let core_slice_index_SliceIndexRangeUsizeSliceTInst (t : Type0) :
- core_slice_index_SliceIndex (core_ops_range_Range usize) (slice t) = {
- sealedInst = core_slice_index_private_slice_index_SealedRangeUsizeInst;
- output = slice t;
- get = core_slice_index_RangeUsize_get t;
- get_mut = core_slice_index_RangeUsize_get_mut t;
- get_mut_back = core_slice_index_RangeUsize_get_mut_back t;
- get_unchecked = core_slice_index_RangeUsize_get_unchecked t;
- get_unchecked_mut = core_slice_index_RangeUsize_get_unchecked_mut t;
- index = core_slice_index_RangeUsize_index t;
- index_mut = core_slice_index_RangeUsize_index_mut t;
- index_mut_back = core_slice_index_RangeUsize_index_mut_back t;
-}
-
-// Trait implementation: [core::slice::index::[T]]
-let core_ops_index_IndexSliceTIInst (t idx : Type0)
- (inst : core_slice_index_SliceIndex idx (slice t)) :
- core_ops_index_Index (slice t) idx = {
- output = inst.output;
- index = core_slice_index_Slice_index t idx inst;
-}
-
-// Trait implementation: [core::slice::index::[T]]
-let core_ops_index_IndexMutSliceTIInst (t idx : Type0)
- (inst : core_slice_index_SliceIndex idx (slice t)) :
- core_ops_index_IndexMut (slice t) idx = {
- indexInst = core_ops_index_IndexSliceTIInst t idx inst;
- index_mut = core_slice_index_Slice_index_mut t idx inst;
- index_mut_back = core_slice_index_Slice_index_mut_back t idx inst;
-}
-
-// Trait implementation: [core::array::[T; N]]
-let core_ops_index_IndexArrayInst (t idx : Type0) (n : usize)
- (inst : core_ops_index_Index (slice t) idx) :
- core_ops_index_Index (array t n) idx = {
- output = inst.output;
- index = core_array_Array_index t idx n inst;
-}
-
-// Trait implementation: [core::array::[T; N]]
-let core_ops_index_IndexMutArrayIInst (t idx : Type0) (n : usize)
- (inst : core_ops_index_IndexMut (slice t) idx) :
- core_ops_index_IndexMut (array t n) idx = {
- indexInst = core_ops_index_IndexArrayInst t idx n inst.indexInst;
- index_mut = core_array_Array_index_mut t idx n inst;
- index_mut_back = core_array_Array_index_mut_back t idx n inst;
-}
-
-// [core::slice::index::usize::get]: forward function
-let core_slice_index_usize_get
- (t : Type0) : usize → slice t → result (option t) =
- admit () // TODO
-
-// [core::slice::index::usize::get_mut]: forward function
-let core_slice_index_usize_get_mut
- (t : Type0) : usize → slice t → result (option t) =
- admit () // TODO
-
-// [core::slice::index::usize::get_mut]: backward function 0
-let core_slice_index_usize_get_mut_back
- (t : Type0) : usize → slice t → option t → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::usize::get_unchecked]: forward function
-let core_slice_index_usize_get_unchecked
- (t : Type0) : usize → const_raw_ptr (slice t) → result (const_raw_ptr t) =
- admit () // TODO
-
-// [core::slice::index::usize::get_unchecked_mut]: forward function
-let core_slice_index_usize_get_unchecked_mut
- (t : Type0) : usize → mut_raw_ptr (slice t) → result (mut_raw_ptr t) =
- admit () // TODO
-
-// [core::slice::index::usize::index]: forward function
-let core_slice_index_usize_index (t : Type0) : usize → slice t → result t =
- admit () // TODO
-
-// [core::slice::index::usize::index_mut]: forward function
-let core_slice_index_usize_index_mut (t : Type0) : usize → slice t → result t =
- admit () // TODO
-
-// [core::slice::index::usize::index_mut]: backward function 0
-let core_slice_index_usize_index_mut_back
- (t : Type0) : usize → slice t → t → result (slice t) =
- admit () // TODO
-
-// Trait implementation: [core::slice::index::private_slice_index::usize]
-let core_slice_index_private_slice_index_SealedUsizeInst
- : core_slice_index_private_slice_index_Sealed usize = ()
-
-// Trait implementation: [core::slice::index::usize]
-let core_slice_index_SliceIndexUsizeSliceTInst (t : Type0) :
- core_slice_index_SliceIndex usize (slice t) = {
- sealedInst = core_slice_index_private_slice_index_SealedUsizeInst;
- output = t;
- get = core_slice_index_usize_get t;
- get_mut = core_slice_index_usize_get_mut t;
- get_mut_back = core_slice_index_usize_get_mut_back t;
- get_unchecked = core_slice_index_usize_get_unchecked t;
- get_unchecked_mut = core_slice_index_usize_get_unchecked_mut t;
- index = core_slice_index_usize_index t;
- index_mut = core_slice_index_usize_index_mut t;
- index_mut_back = core_slice_index_usize_index_mut_back t;
-}
-
-// [alloc::vec::Vec::index]: forward function
-let alloc_vec_Vec_index (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
- (self : alloc_vec_Vec t) (i : idx) : result inst.output =
- admit () // TODO
-
-// [alloc::vec::Vec::index_mut]: forward function
-let alloc_vec_Vec_index_mut (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
- (self : alloc_vec_Vec t) (i : idx) : result inst.output =
- admit () // TODO
-
-// [alloc::vec::Vec::index_mut]: backward function 0
-let alloc_vec_Vec_index_mut_back
- (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
- (self : alloc_vec_Vec t) (i : idx) (x : inst.output) : result (alloc_vec_Vec t) =
- admit () // TODO
-
-// Trait implementation: [alloc::vec::Vec]
-let alloc_vec_Vec_coreopsindexIndexInst (t idx : Type0)
- (inst : core_slice_index_SliceIndex idx (slice t)) :
- core_ops_index_Index (alloc_vec_Vec t) idx = {
- output = inst.output;
- index = alloc_vec_Vec_index t idx inst;
-}
-
-// Trait implementation: [alloc::vec::Vec]
-let alloc_vec_Vec_coreopsindexIndexMutInst (t idx : Type0)
- (inst : core_slice_index_SliceIndex idx (slice t)) :
- core_ops_index_IndexMut (alloc_vec_Vec t) idx = {
- indexInst = alloc_vec_Vec_coreopsindexIndexInst t idx inst;
- index_mut = alloc_vec_Vec_index_mut t idx inst;
- index_mut_back = alloc_vec_Vec_index_mut_back t idx inst;
-}
-
-(*** Theorems *)
-
-let alloc_vec_Vec_index_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) :
- Lemma (
- alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i ==
- alloc_vec_Vec_index_usize v i)
- [SMTPat (alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)]
- =
- admit()
-
-let alloc_vec_Vec_index_mut_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) :
- Lemma (
- alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i ==
- alloc_vec_Vec_index_usize v i)
- [SMTPat (alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)]
- =
- admit()
-
-let alloc_vec_Vec_index_mut_back_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) :
- Lemma (
- alloc_vec_Vec_index_mut_back a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i x ==
- alloc_vec_Vec_update_usize v i x)
- [SMTPat (alloc_vec_Vec_index_mut_back a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i x)]
- =
- admit()
diff --git a/tests/fstar-split/misc/Bitwise.fst b/tests/fstar-split/misc/Bitwise.fst
deleted file mode 100644
index d7ba2c57..00000000
--- a/tests/fstar-split/misc/Bitwise.fst
+++ /dev/null
@@ -1,32 +0,0 @@
-(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)
-(** [bitwise] *)
-module Bitwise
-open Primitives
-
-#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
-
-(** [bitwise::shift_u32]: forward function
- Source: 'src/bitwise.rs', lines 3:0-3:31 *)
-let shift_u32 (a : u32) : result u32 =
- let* t = u32_shr #Usize a 16 in u32_shl #Usize t 16
-
-(** [bitwise::shift_i32]: forward function
- Source: 'src/bitwise.rs', lines 10:0-10:31 *)
-let shift_i32 (a : i32) : result i32 =
- let* t = i32_shr #Isize a 16 in i32_shl #Isize t 16
-
-(** [bitwise::xor_u32]: forward function
- Source: 'src/bitwise.rs', lines 17:0-17:37 *)
-let xor_u32 (a : u32) (b : u32) : result u32 =
- Return (u32_xor a b)
-
-(** [bitwise::or_u32]: forward function
- Source: 'src/bitwise.rs', lines 21:0-21:36 *)
-let or_u32 (a : u32) (b : u32) : result u32 =
- Return (u32_or a b)
-
-(** [bitwise::and_u32]: forward function
- Source: 'src/bitwise.rs', lines 25:0-25:37 *)
-let and_u32 (a : u32) (b : u32) : result u32 =
- Return (u32_and a b)
-
diff --git a/tests/fstar-split/misc/Constants.fst b/tests/fstar-split/misc/Constants.fst
deleted file mode 100644
index 7e56cc20..00000000
--- a/tests/fstar-split/misc/Constants.fst
+++ /dev/null
@@ -1,145 +0,0 @@
-(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)
-(** [constants] *)
-module Constants
-open Primitives
-
-#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
-
-(** [constants::X0]
- Source: 'src/constants.rs', lines 5:0-5:17 *)
-let x0_body : result u32 = Return 0
-let x0_c : u32 = eval_global x0_body
-
-(** [constants::X1]
- Source: 'src/constants.rs', lines 7:0-7:17 *)
-let x1_body : result u32 = Return core_u32_max
-let x1_c : u32 = eval_global x1_body
-
-(** [constants::X2]
- Source: 'src/constants.rs', lines 10:0-10:17 *)
-let x2_body : result u32 = Return 3
-let x2_c : u32 = eval_global x2_body
-
-(** [constants::incr]: forward function
- Source: 'src/constants.rs', lines 17:0-17:32 *)
-let incr (n : u32) : result u32 =
- u32_add n 1
-
-(** [constants::X3]
- Source: 'src/constants.rs', lines 15:0-15:17 *)
-let x3_body : result u32 = incr 32
-let x3_c : u32 = eval_global x3_body
-
-(** [constants::mk_pair0]: forward function
- Source: 'src/constants.rs', lines 23:0-23:51 *)
-let mk_pair0 (x : u32) (y : u32) : result (u32 & u32) =
- Return (x, y)
-
-(** [constants::Pair]
- Source: 'src/constants.rs', lines 36:0-36:23 *)
-type pair_t (t1 t2 : Type0) = { x : t1; y : t2; }
-
-(** [constants::mk_pair1]: forward function
- Source: 'src/constants.rs', lines 27:0-27:55 *)
-let mk_pair1 (x : u32) (y : u32) : result (pair_t u32 u32) =
- Return { x = x; y = y }
-
-(** [constants::P0]
- Source: 'src/constants.rs', lines 31:0-31:24 *)
-let p0_body : result (u32 & u32) = mk_pair0 0 1
-let p0_c : (u32 & u32) = eval_global p0_body
-
-(** [constants::P1]
- Source: 'src/constants.rs', lines 32:0-32:28 *)
-let p1_body : result (pair_t u32 u32) = mk_pair1 0 1
-let p1_c : pair_t u32 u32 = eval_global p1_body
-
-(** [constants::P2]
- Source: 'src/constants.rs', lines 33:0-33:24 *)
-let p2_body : result (u32 & u32) = Return (0, 1)
-let p2_c : (u32 & u32) = eval_global p2_body
-
-(** [constants::P3]
- Source: 'src/constants.rs', lines 34:0-34:28 *)
-let p3_body : result (pair_t u32 u32) = Return { x = 0; y = 1 }
-let p3_c : pair_t u32 u32 = eval_global p3_body
-
-(** [constants::Wrap]
- Source: 'src/constants.rs', lines 49:0-49:18 *)
-type wrap_t (t : Type0) = { value : t; }
-
-(** [constants::{constants::Wrap<T>}::new]: forward function
- Source: 'src/constants.rs', lines 54:4-54:41 *)
-let wrap_new (t : Type0) (value : t) : result (wrap_t t) =
- Return { value = value }
-
-(** [constants::Y]
- Source: 'src/constants.rs', lines 41:0-41:22 *)
-let y_body : result (wrap_t i32) = wrap_new i32 2
-let y_c : wrap_t i32 = eval_global y_body
-
-(** [constants::unwrap_y]: forward function
- Source: 'src/constants.rs', lines 43:0-43:30 *)
-let unwrap_y : result i32 =
- Return y_c.value
-
-(** [constants::YVAL]
- Source: 'src/constants.rs', lines 47:0-47:19 *)
-let yval_body : result i32 = unwrap_y
-let yval_c : i32 = eval_global yval_body
-
-(** [constants::get_z1::Z1]
- Source: 'src/constants.rs', lines 62:4-62:17 *)
-let get_z1_z1_body : result i32 = Return 3
-let get_z1_z1_c : i32 = eval_global get_z1_z1_body
-
-(** [constants::get_z1]: forward function
- Source: 'src/constants.rs', lines 61:0-61:28 *)
-let get_z1 : result i32 =
- Return get_z1_z1_c
-
-(** [constants::add]: forward function
- Source: 'src/constants.rs', lines 66:0-66:39 *)
-let add (a : i32) (b : i32) : result i32 =
- i32_add a b
-
-(** [constants::Q1]
- Source: 'src/constants.rs', lines 74:0-74:17 *)
-let q1_body : result i32 = Return 5
-let q1_c : i32 = eval_global q1_body
-
-(** [constants::Q2]
- Source: 'src/constants.rs', lines 75:0-75:17 *)
-let q2_body : result i32 = Return q1_c
-let q2_c : i32 = eval_global q2_body
-
-(** [constants::Q3]
- Source: 'src/constants.rs', lines 76:0-76:17 *)
-let q3_body : result i32 = add q2_c 3
-let q3_c : i32 = eval_global q3_body
-
-(** [constants::get_z2]: forward function
- Source: 'src/constants.rs', lines 70:0-70:28 *)
-let get_z2 : result i32 =
- let* i = get_z1 in let* i1 = add i q3_c in add q1_c i1
-
-(** [constants::S1]
- Source: 'src/constants.rs', lines 80:0-80:18 *)
-let s1_body : result u32 = Return 6
-let s1_c : u32 = eval_global s1_body
-
-(** [constants::S2]
- Source: 'src/constants.rs', lines 81:0-81:18 *)
-let s2_body : result u32 = incr s1_c
-let s2_c : u32 = eval_global s2_body
-
-(** [constants::S3]
- Source: 'src/constants.rs', lines 82:0-82:29 *)
-let s3_body : result (pair_t u32 u32) = Return p3_c
-let s3_c : pair_t u32 u32 = eval_global s3_body
-
-(** [constants::S4]
- Source: 'src/constants.rs', lines 83:0-83:29 *)
-let s4_body : result (pair_t u32 u32) = mk_pair1 7 8
-let s4_c : pair_t u32 u32 = eval_global s4_body
-
diff --git a/tests/fstar-split/misc/External.Funs.fst b/tests/fstar-split/misc/External.Funs.fst
deleted file mode 100644
index 65382549..00000000
--- a/tests/fstar-split/misc/External.Funs.fst
+++ /dev/null
@@ -1,82 +0,0 @@
-(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)
-(** [external]: function definitions *)
-module External.Funs
-open Primitives
-include External.Types
-include External.FunsExternal
-
-#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
-
-(** [external::swap]: forward function
- Source: 'src/external.rs', lines 6:0-6:46 *)
-let swap (t : Type0) (x : t) (y : t) (st : state) : result (state & unit) =
- let* (st1, _) = core_mem_swap t x y st in
- let* (st2, _) = core_mem_swap_back0 t x y st st1 in
- let* (st3, _) = core_mem_swap_back1 t x y st st2 in
- Return (st3, ())
-
-(** [external::swap]: backward function 0
- Source: 'src/external.rs', lines 6:0-6:46 *)
-let swap_back
- (t : Type0) (x : t) (y : t) (st : state) (st1 : state) :
- result (state & (t & t))
- =
- let* (st2, _) = core_mem_swap t x y st in
- let* (st3, x1) = core_mem_swap_back0 t x y st st2 in
- let* (_, y1) = core_mem_swap_back1 t x y st st3 in
- Return (st1, (x1, y1))
-
-(** [external::test_new_non_zero_u32]: forward function
- Source: 'src/external.rs', lines 11:0-11:60 *)
-let test_new_non_zero_u32
- (x : u32) (st : state) : result (state & core_num_nonzero_NonZeroU32_t) =
- let* (st1, o) = core_num_nonzero_NonZeroU32_new x st in
- core_option_Option_unwrap core_num_nonzero_NonZeroU32_t o st1
-
-(** [external::test_vec]: forward function
- Source: 'src/external.rs', lines 17:0-17:17 *)
-let test_vec : result unit =
- let* _ = alloc_vec_Vec_push u32 (alloc_vec_Vec_new u32) 0 in Return ()
-
-(** Unit test for [external::test_vec] *)
-let _ = assert_norm (test_vec = Return ())
-
-(** [external::custom_swap]: forward function
- Source: 'src/external.rs', lines 24:0-24:66 *)
-let custom_swap (t : Type0) (x : t) (y : t) (st : state) : result (state & t) =
- let* (st1, _) = core_mem_swap t x y st in
- let* (st2, x1) = core_mem_swap_back0 t x y st st1 in
- let* (st3, _) = core_mem_swap_back1 t x y st st2 in
- Return (st3, x1)
-
-(** [external::custom_swap]: backward function 0
- Source: 'src/external.rs', lines 24:0-24:66 *)
-let custom_swap_back
- (t : Type0) (x : t) (y : t) (st : state) (ret : t) (st1 : state) :
- result (state & (t & t))
- =
- let* (st2, _) = core_mem_swap t x y st in
- let* (st3, _) = core_mem_swap_back0 t x y st st2 in
- let* (_, y1) = core_mem_swap_back1 t x y st st3 in
- Return (st1, (ret, y1))
-
-(** [external::test_custom_swap]: forward function
- Source: 'src/external.rs', lines 29:0-29:59 *)
-let test_custom_swap (x : u32) (y : u32) (st : state) : result (state & unit) =
- let* (st1, _) = custom_swap u32 x y st in Return (st1, ())
-
-(** [external::test_custom_swap]: backward function 0
- Source: 'src/external.rs', lines 29:0-29:59 *)
-let test_custom_swap_back
- (x : u32) (y : u32) (st : state) (st1 : state) :
- result (state & (u32 & u32))
- =
- custom_swap_back u32 x y st 1 st1
-
-(** [external::test_swap_non_zero]: forward function
- Source: 'src/external.rs', lines 35:0-35:44 *)
-let test_swap_non_zero (x : u32) (st : state) : result (state & u32) =
- let* (st1, _) = swap u32 x 0 st in
- let* (st2, (x1, _)) = swap_back u32 x 0 st st1 in
- if x1 = 0 then Fail Failure else Return (st2, x1)
-
diff --git a/tests/fstar-split/misc/External.FunsExternal.fsti b/tests/fstar-split/misc/External.FunsExternal.fsti
deleted file mode 100644
index 923a1101..00000000
--- a/tests/fstar-split/misc/External.FunsExternal.fsti
+++ /dev/null
@@ -1,32 +0,0 @@
-(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)
-(** [external]: external function declarations *)
-module External.FunsExternal
-open Primitives
-include External.Types
-
-#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
-
-(** [core::mem::swap]: forward function
- Source: '/rustc/d59363ad0b6391b7fc5bbb02c9ccf9300eef3753/library/core/src/mem/mod.rs', lines 726:0-726:42 *)
-val core_mem_swap (t : Type0) : t -> t -> state -> result (state & unit)
-
-(** [core::mem::swap]: backward function 0
- Source: '/rustc/d59363ad0b6391b7fc5bbb02c9ccf9300eef3753/library/core/src/mem/mod.rs', lines 726:0-726:42 *)
-val core_mem_swap_back0
- (t : Type0) : t -> t -> state -> state -> result (state & t)
-
-(** [core::mem::swap]: backward function 1
- Source: '/rustc/d59363ad0b6391b7fc5bbb02c9ccf9300eef3753/library/core/src/mem/mod.rs', lines 726:0-726:42 *)
-val core_mem_swap_back1
- (t : Type0) : t -> t -> state -> state -> result (state & t)
-
-(** [core::num::nonzero::{core::num::nonzero::NonZeroU32#14}::new]: forward function
- Source: '/rustc/d59363ad0b6391b7fc5bbb02c9ccf9300eef3753/library/core/src/num/nonzero.rs', lines 79:16-79:57 *)
-val core_num_nonzero_NonZeroU32_new
- : u32 -> state -> result (state & (option core_num_nonzero_NonZeroU32_t))
-
-(** [core::option::{core::option::Option<T>}::unwrap]: forward function
- Source: '/rustc/d59363ad0b6391b7fc5bbb02c9ccf9300eef3753/library/core/src/option.rs', lines 932:4-932:34 *)
-val core_option_Option_unwrap
- (t : Type0) : option t -> state -> result (state & t)
-
diff --git a/tests/fstar-split/misc/External.Types.fst b/tests/fstar-split/misc/External.Types.fst
deleted file mode 100644
index 4fbcec47..00000000
--- a/tests/fstar-split/misc/External.Types.fst
+++ /dev/null
@@ -1,8 +0,0 @@
-(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)
-(** [external]: type definitions *)
-module External.Types
-open Primitives
-include External.TypesExternal
-
-#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
-
diff --git a/tests/fstar-split/misc/External.TypesExternal.fsti b/tests/fstar-split/misc/External.TypesExternal.fsti
deleted file mode 100644
index 4bfbe0c5..00000000
--- a/tests/fstar-split/misc/External.TypesExternal.fsti
+++ /dev/null
@@ -1,14 +0,0 @@
-(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)
-(** [external]: external type declarations *)
-module External.TypesExternal
-open Primitives
-
-#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
-
-(** [core::num::nonzero::NonZeroU32]
- Source: '/rustc/d59363ad0b6391b7fc5bbb02c9ccf9300eef3753/library/core/src/num/nonzero.rs', lines 50:12-50:33 *)
-val core_num_nonzero_NonZeroU32_t : Type0
-
-(** The state type used in the state-error monad *)
-val state : Type0
-
diff --git a/tests/fstar-split/misc/Loops.Clauses.Template.fst b/tests/fstar-split/misc/Loops.Clauses.Template.fst
deleted file mode 100644
index 244761d3..00000000
--- a/tests/fstar-split/misc/Loops.Clauses.Template.fst
+++ /dev/null
@@ -1,138 +0,0 @@
-(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)
-(** [loops]: templates for the decreases clauses *)
-module Loops.Clauses.Template
-open Primitives
-open Loops.Types
-
-#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
-
-(** [loops::sum]: decreases clause
- Source: 'src/loops.rs', lines 4:0-14:1 *)
-unfold let sum_loop_decreases (max : u32) (i : u32) (s : u32) : nat = admit ()
-
-(** [loops::sum_with_mut_borrows]: decreases clause
- Source: 'src/loops.rs', lines 19:0-31:1 *)
-unfold
-let sum_with_mut_borrows_loop_decreases (max : u32) (mi : u32) (ms : u32) : nat
- =
- admit ()
-
-(** [loops::sum_with_shared_borrows]: decreases clause
- Source: 'src/loops.rs', lines 34:0-48:1 *)
-unfold
-let sum_with_shared_borrows_loop_decreases (max : u32) (i : u32) (s : u32) :
- nat =
- admit ()
-
-(** [loops::sum_array]: decreases clause
- Source: 'src/loops.rs', lines 50:0-58:1 *)
-unfold
-let sum_array_loop_decreases (n : usize) (a : array u32 n) (i : usize)
- (s : u32) : nat =
- admit ()
-
-(** [loops::clear]: decreases clause
- Source: 'src/loops.rs', lines 62:0-68:1 *)
-unfold
-let clear_loop_decreases (v : alloc_vec_Vec u32) (i : usize) : nat = admit ()
-
-(** [loops::list_mem]: decreases clause
- Source: 'src/loops.rs', lines 76:0-85:1 *)
-unfold let list_mem_loop_decreases (x : u32) (ls : list_t u32) : nat = admit ()
-
-(** [loops::list_nth_mut_loop]: decreases clause
- Source: 'src/loops.rs', lines 88:0-98:1 *)
-unfold
-let list_nth_mut_loop_loop_decreases (t : Type0) (ls : list_t t) (i : u32) :
- nat =
- admit ()
-
-(** [loops::list_nth_shared_loop]: decreases clause
- Source: 'src/loops.rs', lines 101:0-111:1 *)
-unfold
-let list_nth_shared_loop_loop_decreases (t : Type0) (ls : list_t t) (i : u32) :
- nat =
- admit ()
-
-(** [loops::get_elem_mut]: decreases clause
- Source: 'src/loops.rs', lines 113:0-127:1 *)
-unfold
-let get_elem_mut_loop_decreases (x : usize) (ls : list_t usize) : nat =
- admit ()
-
-(** [loops::get_elem_shared]: decreases clause
- Source: 'src/loops.rs', lines 129:0-143:1 *)
-unfold
-let get_elem_shared_loop_decreases (x : usize) (ls : list_t usize) : nat =
- admit ()
-
-(** [loops::list_nth_mut_loop_with_id]: decreases clause
- Source: 'src/loops.rs', lines 154:0-165:1 *)
-unfold
-let list_nth_mut_loop_with_id_loop_decreases (t : Type0) (i : u32)
- (ls : list_t t) : nat =
- admit ()
-
-(** [loops::list_nth_shared_loop_with_id]: decreases clause
- Source: 'src/loops.rs', lines 168:0-179:1 *)
-unfold
-let list_nth_shared_loop_with_id_loop_decreases (t : Type0) (i : u32)
- (ls : list_t t) : nat =
- admit ()
-
-(** [loops::list_nth_mut_loop_pair]: decreases clause
- Source: 'src/loops.rs', lines 184:0-205:1 *)
-unfold
-let list_nth_mut_loop_pair_loop_decreases (t : Type0) (ls0 : list_t t)
- (ls1 : list_t t) (i : u32) : nat =
- admit ()
-
-(** [loops::list_nth_shared_loop_pair]: decreases clause
- Source: 'src/loops.rs', lines 208:0-229:1 *)
-unfold
-let list_nth_shared_loop_pair_loop_decreases (t : Type0) (ls0 : list_t t)
- (ls1 : list_t t) (i : u32) : nat =
- admit ()
-
-(** [loops::list_nth_mut_loop_pair_merge]: decreases clause
- Source: 'src/loops.rs', lines 233:0-248:1 *)
-unfold
-let list_nth_mut_loop_pair_merge_loop_decreases (t : Type0) (ls0 : list_t t)
- (ls1 : list_t t) (i : u32) : nat =
- admit ()
-
-(** [loops::list_nth_shared_loop_pair_merge]: decreases clause
- Source: 'src/loops.rs', lines 251:0-266:1 *)
-unfold
-let list_nth_shared_loop_pair_merge_loop_decreases (t : Type0) (ls0 : list_t t)
- (ls1 : list_t t) (i : u32) : nat =
- admit ()
-
-(** [loops::list_nth_mut_shared_loop_pair]: decreases clause
- Source: 'src/loops.rs', lines 269:0-284:1 *)
-unfold
-let list_nth_mut_shared_loop_pair_loop_decreases (t : Type0) (ls0 : list_t t)
- (ls1 : list_t t) (i : u32) : nat =
- admit ()
-
-(** [loops::list_nth_mut_shared_loop_pair_merge]: decreases clause
- Source: 'src/loops.rs', lines 288:0-303:1 *)
-unfold
-let list_nth_mut_shared_loop_pair_merge_loop_decreases (t : Type0)
- (ls0 : list_t t) (ls1 : list_t t) (i : u32) : nat =
- admit ()
-
-(** [loops::list_nth_shared_mut_loop_pair]: decreases clause
- Source: 'src/loops.rs', lines 307:0-322:1 *)
-unfold
-let list_nth_shared_mut_loop_pair_loop_decreases (t : Type0) (ls0 : list_t t)
- (ls1 : list_t t) (i : u32) : nat =
- admit ()
-
-(** [loops::list_nth_shared_mut_loop_pair_merge]: decreases clause
- Source: 'src/loops.rs', lines 326:0-341:1 *)
-unfold
-let list_nth_shared_mut_loop_pair_merge_loop_decreases (t : Type0)
- (ls0 : list_t t) (ls1 : list_t t) (i : u32) : nat =
- admit ()
-
diff --git a/tests/fstar-split/misc/Loops.Clauses.fst b/tests/fstar-split/misc/Loops.Clauses.fst
deleted file mode 100644
index 13f5513d..00000000
--- a/tests/fstar-split/misc/Loops.Clauses.fst
+++ /dev/null
@@ -1,112 +0,0 @@
-(** [loops]: templates for the decreases clauses *)
-module Loops.Clauses
-open Primitives
-open Loops.Types
-
-#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
-
-(** [loops::sum]: decreases clause *)
-unfold let sum_loop_decreases (max : u32) (i : u32) (s : u32) : nat =
- if i <= max then max - i else 0
-
-(** [loops::sum_with_mut_borrows]: decreases clause *)
-unfold
-let sum_with_mut_borrows_loop_decreases (max : u32) (mi : u32) (ms : u32) : nat =
- if max >= mi then max - mi else 0
-
-(** [loops::sum_with_shared_borrows]: decreases clause *)
-unfold
-let sum_with_shared_borrows_loop_decreases (max : u32) (i : u32) (s : u32) : nat =
- if max >= i then max - i else 0
-
-(** [loops::sum_array]: decreases clause *)
-unfold
-let sum_array_loop_decreases (n : usize) (_ : array u32 n) (i : usize) (_ : u32) : nat =
- if n >= i then n - i else 0
-
-(** [loops::clear]: decreases clause *)
-unfold let clear_loop_decreases (v : alloc_vec_Vec u32) (i : usize) : nat =
- if i <= List.Tot.length v then List.Tot.length v - i else 0
-
-(** [loops::list_mem]: decreases clause *)
-unfold let list_mem_loop_decreases (i : u32) (ls : list_t u32) : list_t u32 =
- ls
-
-(** [loops::list_nth_mut_loop]: decreases clause *)
-unfold
-let list_nth_mut_loop_loop_decreases (t : Type0) (ls : list_t t) (i : u32) : nat =
- i
-
-(** [loops::list_nth_shared_loop]: decreases clause *)
-unfold
-let list_nth_shared_loop_loop_decreases (t : Type0) (ls : list_t t) (i : u32) : list_t t =
- ls
-
-(** [loops::get_elem_mut]: decreases clause *)
-unfold
-let get_elem_mut_loop_decreases (x : usize) (ls : list_t usize) : list_t usize = ls
-
-(** [loops::get_elem_shared]: decreases clause *)
-unfold
-let get_elem_shared_loop_decreases (x : usize) (ls : list_t usize) : list_t usize =
- ls
-
-(** [loops::list_nth_mut_loop_with_id]: decreases clause *)
-unfold
-let list_nth_mut_loop_with_id_loop_decreases (t : Type0) (i : u32) (ls : list_t t) :
- list_t t =
- ls
-
-(** [loops::list_nth_shared_loop_with_id]: decreases clause *)
-unfold
-let list_nth_shared_loop_with_id_loop_decreases (t : Type0) (i : u32)
- (ls : list_t t) : list_t t =
- ls
-
-(** [loops::list_nth_mut_loop_pair]: decreases clause *)
-unfold
-let list_nth_mut_loop_pair_loop_decreases (t : Type0) (l : list_t t) (l0 : list_t t)
- (i : u32) : nat =
- i
-
-(** [loops::list_nth_shared_loop_pair]: decreases clause *)
-unfold
-let list_nth_shared_loop_pair_loop_decreases (t : Type0) (l : list_t t)
- (l0 : list_t t) (i : u32) : list_t t =
- l
-
-(** [loops::list_nth_mut_loop_pair_merge]: decreases clause *)
-unfold
-let list_nth_mut_loop_pair_merge_loop_decreases (t : Type0) (l : list_t t)
- (l0 : list_t t) (i : u32) : nat =
- i
-
-(** [loops::list_nth_shared_loop_pair_merge]: decreases clause *)
-unfold
-let list_nth_shared_loop_pair_merge_loop_decreases (t : Type0) (l : list_t t)
- (l0 : list_t t) (i : u32) : list_t t =
- l
-
-(** [loops::list_nth_mut_shared_loop_pair]: decreases clause *)
-unfold
-let list_nth_mut_shared_loop_pair_loop_decreases (t : Type0) (l : list_t t)
- (l0 : list_t t) (i : u32) : list_t t =
- l
-
-(** [loops::list_nth_mut_shared_loop_pair_merge]: decreases clause *)
-unfold
-let list_nth_mut_shared_loop_pair_merge_loop_decreases (t : Type0) (l : list_t t)
- (l0 : list_t t) (i : u32) : list_t t =
- l
-
-(** [loops::list_nth_shared_mut_loop_pair]: decreases clause *)
-unfold
-let list_nth_shared_mut_loop_pair_loop_decreases (t : Type0) (l : list_t t)
- (l0 : list_t t) (i : u32) : list_t t =
- l
-
-(** [loops::list_nth_shared_mut_loop_pair_merge]: decreases clause *)
-unfold
-let list_nth_shared_mut_loop_pair_merge_loop_decreases (t : Type0) (l : list_t t)
- (l0 : list_t t) (i : u32) : list_t t =
- l
diff --git a/tests/fstar-split/misc/Loops.Funs.fst b/tests/fstar-split/misc/Loops.Funs.fst
deleted file mode 100644
index 01d66726..00000000
--- a/tests/fstar-split/misc/Loops.Funs.fst
+++ /dev/null
@@ -1,753 +0,0 @@
-(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)
-(** [loops]: function definitions *)
-module Loops.Funs
-open Primitives
-include Loops.Types
-include Loops.Clauses
-
-#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
-
-(** [loops::sum]: loop 0: forward function
- Source: 'src/loops.rs', lines 4:0-14:1 *)
-let rec sum_loop
- (max : u32) (i : u32) (s : u32) :
- Tot (result u32) (decreases (sum_loop_decreases max i s))
- =
- if i < max
- then let* s1 = u32_add s i in let* i1 = u32_add i 1 in sum_loop max i1 s1
- else u32_mul s 2
-
-(** [loops::sum]: forward function
- Source: 'src/loops.rs', lines 4:0-4:27 *)
-let sum (max : u32) : result u32 =
- sum_loop max 0 0
-
-(** [loops::sum_with_mut_borrows]: loop 0: forward function
- Source: 'src/loops.rs', lines 19:0-31:1 *)
-let rec sum_with_mut_borrows_loop
- (max : u32) (mi : u32) (ms : u32) :
- Tot (result u32) (decreases (sum_with_mut_borrows_loop_decreases max mi ms))
- =
- if mi < max
- then
- let* ms1 = u32_add ms mi in
- let* mi1 = u32_add mi 1 in
- sum_with_mut_borrows_loop max mi1 ms1
- else u32_mul ms 2
-
-(** [loops::sum_with_mut_borrows]: forward function
- Source: 'src/loops.rs', lines 19:0-19:44 *)
-let sum_with_mut_borrows (max : u32) : result u32 =
- sum_with_mut_borrows_loop max 0 0
-
-(** [loops::sum_with_shared_borrows]: loop 0: forward function
- Source: 'src/loops.rs', lines 34:0-48:1 *)
-let rec sum_with_shared_borrows_loop
- (max : u32) (i : u32) (s : u32) :
- Tot (result u32) (decreases (sum_with_shared_borrows_loop_decreases max i s))
- =
- if i < max
- then
- let* i1 = u32_add i 1 in
- let* s1 = u32_add s i1 in
- sum_with_shared_borrows_loop max i1 s1
- else u32_mul s 2
-
-(** [loops::sum_with_shared_borrows]: forward function
- Source: 'src/loops.rs', lines 34:0-34:47 *)
-let sum_with_shared_borrows (max : u32) : result u32 =
- sum_with_shared_borrows_loop max 0 0
-
-(** [loops::sum_array]: loop 0: forward function
- Source: 'src/loops.rs', lines 50:0-58:1 *)
-let rec sum_array_loop
- (n : usize) (a : array u32 n) (i : usize) (s : u32) :
- Tot (result u32) (decreases (sum_array_loop_decreases n a i s))
- =
- if i < n
- then
- let* i1 = array_index_usize u32 n a i in
- let* s1 = u32_add s i1 in
- let* i2 = usize_add i 1 in
- sum_array_loop n a i2 s1
- else Return s
-
-(** [loops::sum_array]: forward function
- Source: 'src/loops.rs', lines 50:0-50:52 *)
-let sum_array (n : usize) (a : array u32 n) : result u32 =
- sum_array_loop n a 0 0
-
-(** [loops::clear]: loop 0: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/loops.rs', lines 62:0-68:1 *)
-let rec clear_loop
- (v : alloc_vec_Vec u32) (i : usize) :
- Tot (result (alloc_vec_Vec u32)) (decreases (clear_loop_decreases v i))
- =
- let i1 = alloc_vec_Vec_len u32 v in
- if i < i1
- then
- let* i2 = usize_add i 1 in
- let* v1 =
- alloc_vec_Vec_index_mut_back u32 usize
- (core_slice_index_SliceIndexUsizeSliceTInst u32) v i 0 in
- clear_loop v1 i2
- else Return v
-
-(** [loops::clear]: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/loops.rs', lines 62:0-62:30 *)
-let clear (v : alloc_vec_Vec u32) : result (alloc_vec_Vec u32) =
- clear_loop v 0
-
-(** [loops::list_mem]: loop 0: forward function
- Source: 'src/loops.rs', lines 76:0-85:1 *)
-let rec list_mem_loop
- (x : u32) (ls : list_t u32) :
- Tot (result bool) (decreases (list_mem_loop_decreases x ls))
- =
- begin match ls with
- | List_Cons y tl -> if y = x then Return true else list_mem_loop x tl
- | List_Nil -> Return false
- end
-
-(** [loops::list_mem]: forward function
- Source: 'src/loops.rs', lines 76:0-76:52 *)
-let list_mem (x : u32) (ls : list_t u32) : result bool =
- list_mem_loop x ls
-
-(** [loops::list_nth_mut_loop]: loop 0: forward function
- Source: 'src/loops.rs', lines 88:0-98:1 *)
-let rec list_nth_mut_loop_loop
- (t : Type0) (ls : list_t t) (i : u32) :
- Tot (result t) (decreases (list_nth_mut_loop_loop_decreases t ls i))
- =
- begin match ls with
- | List_Cons x tl ->
- if i = 0
- then Return x
- else let* i1 = u32_sub i 1 in list_nth_mut_loop_loop t tl i1
- | List_Nil -> Fail Failure
- end
-
-(** [loops::list_nth_mut_loop]: forward function
- Source: 'src/loops.rs', lines 88:0-88:71 *)
-let list_nth_mut_loop (t : Type0) (ls : list_t t) (i : u32) : result t =
- list_nth_mut_loop_loop t ls i
-
-(** [loops::list_nth_mut_loop]: loop 0: backward function 0
- Source: 'src/loops.rs', lines 88:0-98:1 *)
-let rec list_nth_mut_loop_loop_back
- (t : Type0) (ls : list_t t) (i : u32) (ret : t) :
- Tot (result (list_t t)) (decreases (list_nth_mut_loop_loop_decreases t ls i))
- =
- begin match ls with
- | List_Cons x tl ->
- if i = 0
- then Return (List_Cons ret tl)
- else
- let* i1 = u32_sub i 1 in
- let* tl1 = list_nth_mut_loop_loop_back t tl i1 ret in
- Return (List_Cons x tl1)
- | List_Nil -> Fail Failure
- end
-
-(** [loops::list_nth_mut_loop]: backward function 0
- Source: 'src/loops.rs', lines 88:0-88:71 *)
-let list_nth_mut_loop_back
- (t : Type0) (ls : list_t t) (i : u32) (ret : t) : result (list_t t) =
- list_nth_mut_loop_loop_back t ls i ret
-
-(** [loops::list_nth_shared_loop]: loop 0: forward function
- Source: 'src/loops.rs', lines 101:0-111:1 *)
-let rec list_nth_shared_loop_loop
- (t : Type0) (ls : list_t t) (i : u32) :
- Tot (result t) (decreases (list_nth_shared_loop_loop_decreases t ls i))
- =
- begin match ls with
- | List_Cons x tl ->
- if i = 0
- then Return x
- else let* i1 = u32_sub i 1 in list_nth_shared_loop_loop t tl i1
- | List_Nil -> Fail Failure
- end
-
-(** [loops::list_nth_shared_loop]: forward function
- Source: 'src/loops.rs', lines 101:0-101:66 *)
-let list_nth_shared_loop (t : Type0) (ls : list_t t) (i : u32) : result t =
- list_nth_shared_loop_loop t ls i
-
-(** [loops::get_elem_mut]: loop 0: forward function
- Source: 'src/loops.rs', lines 113:0-127:1 *)
-let rec get_elem_mut_loop
- (x : usize) (ls : list_t usize) :
- Tot (result usize) (decreases (get_elem_mut_loop_decreases x ls))
- =
- begin match ls with
- | List_Cons y tl -> if y = x then Return y else get_elem_mut_loop x tl
- | List_Nil -> Fail Failure
- end
-
-(** [loops::get_elem_mut]: forward function
- Source: 'src/loops.rs', lines 113:0-113:73 *)
-let get_elem_mut
- (slots : alloc_vec_Vec (list_t usize)) (x : usize) : result usize =
- let* l =
- alloc_vec_Vec_index_mut (list_t usize) usize
- (core_slice_index_SliceIndexUsizeSliceTInst (list_t usize)) slots 0 in
- get_elem_mut_loop x l
-
-(** [loops::get_elem_mut]: loop 0: backward function 0
- Source: 'src/loops.rs', lines 113:0-127:1 *)
-let rec get_elem_mut_loop_back
- (x : usize) (ls : list_t usize) (ret : usize) :
- Tot (result (list_t usize)) (decreases (get_elem_mut_loop_decreases x ls))
- =
- begin match ls with
- | List_Cons y tl ->
- if y = x
- then Return (List_Cons ret tl)
- else let* tl1 = get_elem_mut_loop_back x tl ret in Return (List_Cons y tl1)
- | List_Nil -> Fail Failure
- end
-
-(** [loops::get_elem_mut]: backward function 0
- Source: 'src/loops.rs', lines 113:0-113:73 *)
-let get_elem_mut_back
- (slots : alloc_vec_Vec (list_t usize)) (x : usize) (ret : usize) :
- result (alloc_vec_Vec (list_t usize))
- =
- let* l =
- alloc_vec_Vec_index_mut (list_t usize) usize
- (core_slice_index_SliceIndexUsizeSliceTInst (list_t usize)) slots 0 in
- let* l1 = get_elem_mut_loop_back x l ret in
- alloc_vec_Vec_index_mut_back (list_t usize) usize
- (core_slice_index_SliceIndexUsizeSliceTInst (list_t usize)) slots 0 l1
-
-(** [loops::get_elem_shared]: loop 0: forward function
- Source: 'src/loops.rs', lines 129:0-143:1 *)
-let rec get_elem_shared_loop
- (x : usize) (ls : list_t usize) :
- Tot (result usize) (decreases (get_elem_shared_loop_decreases x ls))
- =
- begin match ls with
- | List_Cons y tl -> if y = x then Return y else get_elem_shared_loop x tl
- | List_Nil -> Fail Failure
- end
-
-(** [loops::get_elem_shared]: forward function
- Source: 'src/loops.rs', lines 129:0-129:68 *)
-let get_elem_shared
- (slots : alloc_vec_Vec (list_t usize)) (x : usize) : result usize =
- let* l =
- alloc_vec_Vec_index (list_t usize) usize
- (core_slice_index_SliceIndexUsizeSliceTInst (list_t usize)) slots 0 in
- get_elem_shared_loop x l
-
-(** [loops::id_mut]: forward function
- Source: 'src/loops.rs', lines 145:0-145:50 *)
-let id_mut (t : Type0) (ls : list_t t) : result (list_t t) =
- Return ls
-
-(** [loops::id_mut]: backward function 0
- Source: 'src/loops.rs', lines 145:0-145:50 *)
-let id_mut_back
- (t : Type0) (ls : list_t t) (ret : list_t t) : result (list_t t) =
- Return ret
-
-(** [loops::id_shared]: forward function
- Source: 'src/loops.rs', lines 149:0-149:45 *)
-let id_shared (t : Type0) (ls : list_t t) : result (list_t t) =
- Return ls
-
-(** [loops::list_nth_mut_loop_with_id]: loop 0: forward function
- Source: 'src/loops.rs', lines 154:0-165:1 *)
-let rec list_nth_mut_loop_with_id_loop
- (t : Type0) (i : u32) (ls : list_t t) :
- Tot (result t) (decreases (list_nth_mut_loop_with_id_loop_decreases t i ls))
- =
- begin match ls with
- | List_Cons x tl ->
- if i = 0
- then Return x
- else let* i1 = u32_sub i 1 in list_nth_mut_loop_with_id_loop t i1 tl
- | List_Nil -> Fail Failure
- end
-
-(** [loops::list_nth_mut_loop_with_id]: forward function
- Source: 'src/loops.rs', lines 154:0-154:75 *)
-let list_nth_mut_loop_with_id
- (t : Type0) (ls : list_t t) (i : u32) : result t =
- let* ls1 = id_mut t ls in list_nth_mut_loop_with_id_loop t i ls1
-
-(** [loops::list_nth_mut_loop_with_id]: loop 0: backward function 0
- Source: 'src/loops.rs', lines 154:0-165:1 *)
-let rec list_nth_mut_loop_with_id_loop_back
- (t : Type0) (i : u32) (ls : list_t t) (ret : t) :
- Tot (result (list_t t))
- (decreases (list_nth_mut_loop_with_id_loop_decreases t i ls))
- =
- begin match ls with
- | List_Cons x tl ->
- if i = 0
- then Return (List_Cons ret tl)
- else
- let* i1 = u32_sub i 1 in
- let* tl1 = list_nth_mut_loop_with_id_loop_back t i1 tl ret in
- Return (List_Cons x tl1)
- | List_Nil -> Fail Failure
- end
-
-(** [loops::list_nth_mut_loop_with_id]: backward function 0
- Source: 'src/loops.rs', lines 154:0-154:75 *)
-let list_nth_mut_loop_with_id_back
- (t : Type0) (ls : list_t t) (i : u32) (ret : t) : result (list_t t) =
- let* ls1 = id_mut t ls in
- let* l = list_nth_mut_loop_with_id_loop_back t i ls1 ret in
- id_mut_back t ls l
-
-(** [loops::list_nth_shared_loop_with_id]: loop 0: forward function
- Source: 'src/loops.rs', lines 168:0-179:1 *)
-let rec list_nth_shared_loop_with_id_loop
- (t : Type0) (i : u32) (ls : list_t t) :
- Tot (result t)
- (decreases (list_nth_shared_loop_with_id_loop_decreases t i ls))
- =
- begin match ls with
- | List_Cons x tl ->
- if i = 0
- then Return x
- else let* i1 = u32_sub i 1 in list_nth_shared_loop_with_id_loop t i1 tl
- | List_Nil -> Fail Failure
- end
-
-(** [loops::list_nth_shared_loop_with_id]: forward function
- Source: 'src/loops.rs', lines 168:0-168:70 *)
-let list_nth_shared_loop_with_id
- (t : Type0) (ls : list_t t) (i : u32) : result t =
- let* ls1 = id_shared t ls in list_nth_shared_loop_with_id_loop t i ls1
-
-(** [loops::list_nth_mut_loop_pair]: loop 0: forward function
- Source: 'src/loops.rs', lines 184:0-205:1 *)
-let rec list_nth_mut_loop_pair_loop
- (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) :
- Tot (result (t & t))
- (decreases (list_nth_mut_loop_pair_loop_decreases t ls0 ls1 i))
- =
- begin match ls0 with
- | List_Cons x0 tl0 ->
- begin match ls1 with
- | List_Cons x1 tl1 ->
- if i = 0
- then Return (x0, x1)
- else let* i1 = u32_sub i 1 in list_nth_mut_loop_pair_loop t tl0 tl1 i1
- | List_Nil -> Fail Failure
- end
- | List_Nil -> Fail Failure
- end
-
-(** [loops::list_nth_mut_loop_pair]: forward function
- Source: 'src/loops.rs', lines 184:0-188:27 *)
-let list_nth_mut_loop_pair
- (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) : result (t & t) =
- list_nth_mut_loop_pair_loop t ls0 ls1 i
-
-(** [loops::list_nth_mut_loop_pair]: loop 0: backward function 0
- Source: 'src/loops.rs', lines 184:0-205:1 *)
-let rec list_nth_mut_loop_pair_loop_back'a
- (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) (ret : t) :
- Tot (result (list_t t))
- (decreases (list_nth_mut_loop_pair_loop_decreases t ls0 ls1 i))
- =
- begin match ls0 with
- | List_Cons x0 tl0 ->
- begin match ls1 with
- | List_Cons _ tl1 ->
- if i = 0
- then Return (List_Cons ret tl0)
- else
- let* i1 = u32_sub i 1 in
- let* tl01 = list_nth_mut_loop_pair_loop_back'a t tl0 tl1 i1 ret in
- Return (List_Cons x0 tl01)
- | List_Nil -> Fail Failure
- end
- | List_Nil -> Fail Failure
- end
-
-(** [loops::list_nth_mut_loop_pair]: backward function 0
- Source: 'src/loops.rs', lines 184:0-188:27 *)
-let list_nth_mut_loop_pair_back'a
- (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) (ret : t) :
- result (list_t t)
- =
- list_nth_mut_loop_pair_loop_back'a t ls0 ls1 i ret
-
-(** [loops::list_nth_mut_loop_pair]: loop 0: backward function 1
- Source: 'src/loops.rs', lines 184:0-205:1 *)
-let rec list_nth_mut_loop_pair_loop_back'b
- (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) (ret : t) :
- Tot (result (list_t t))
- (decreases (list_nth_mut_loop_pair_loop_decreases t ls0 ls1 i))
- =
- begin match ls0 with
- | List_Cons _ tl0 ->
- begin match ls1 with
- | List_Cons x1 tl1 ->
- if i = 0
- then Return (List_Cons ret tl1)
- else
- let* i1 = u32_sub i 1 in
- let* tl11 = list_nth_mut_loop_pair_loop_back'b t tl0 tl1 i1 ret in
- Return (List_Cons x1 tl11)
- | List_Nil -> Fail Failure
- end
- | List_Nil -> Fail Failure
- end
-
-(** [loops::list_nth_mut_loop_pair]: backward function 1
- Source: 'src/loops.rs', lines 184:0-188:27 *)
-let list_nth_mut_loop_pair_back'b
- (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) (ret : t) :
- result (list_t t)
- =
- list_nth_mut_loop_pair_loop_back'b t ls0 ls1 i ret
-
-(** [loops::list_nth_shared_loop_pair]: loop 0: forward function
- Source: 'src/loops.rs', lines 208:0-229:1 *)
-let rec list_nth_shared_loop_pair_loop
- (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) :
- Tot (result (t & t))
- (decreases (list_nth_shared_loop_pair_loop_decreases t ls0 ls1 i))
- =
- begin match ls0 with
- | List_Cons x0 tl0 ->
- begin match ls1 with
- | List_Cons x1 tl1 ->
- if i = 0
- then Return (x0, x1)
- else let* i1 = u32_sub i 1 in list_nth_shared_loop_pair_loop t tl0 tl1 i1
- | List_Nil -> Fail Failure
- end
- | List_Nil -> Fail Failure
- end
-
-(** [loops::list_nth_shared_loop_pair]: forward function
- Source: 'src/loops.rs', lines 208:0-212:19 *)
-let list_nth_shared_loop_pair
- (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) : result (t & t) =
- list_nth_shared_loop_pair_loop t ls0 ls1 i
-
-(** [loops::list_nth_mut_loop_pair_merge]: loop 0: forward function
- Source: 'src/loops.rs', lines 233:0-248:1 *)
-let rec list_nth_mut_loop_pair_merge_loop
- (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) :
- Tot (result (t & t))
- (decreases (list_nth_mut_loop_pair_merge_loop_decreases t ls0 ls1 i))
- =
- begin match ls0 with
- | List_Cons x0 tl0 ->
- begin match ls1 with
- | List_Cons x1 tl1 ->
- if i = 0
- then Return (x0, x1)
- else
- let* i1 = u32_sub i 1 in list_nth_mut_loop_pair_merge_loop t tl0 tl1 i1
- | List_Nil -> Fail Failure
- end
- | List_Nil -> Fail Failure
- end
-
-(** [loops::list_nth_mut_loop_pair_merge]: forward function
- Source: 'src/loops.rs', lines 233:0-237:27 *)
-let list_nth_mut_loop_pair_merge
- (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) : result (t & t) =
- list_nth_mut_loop_pair_merge_loop t ls0 ls1 i
-
-(** [loops::list_nth_mut_loop_pair_merge]: loop 0: backward function 0
- Source: 'src/loops.rs', lines 233:0-248:1 *)
-let rec list_nth_mut_loop_pair_merge_loop_back
- (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) (ret : (t & t)) :
- Tot (result ((list_t t) & (list_t t)))
- (decreases (list_nth_mut_loop_pair_merge_loop_decreases t ls0 ls1 i))
- =
- begin match ls0 with
- | List_Cons x0 tl0 ->
- begin match ls1 with
- | List_Cons x1 tl1 ->
- if i = 0
- then let (x, x2) = ret in Return (List_Cons x tl0, List_Cons x2 tl1)
- else
- let* i1 = u32_sub i 1 in
- let* (tl01, tl11) =
- list_nth_mut_loop_pair_merge_loop_back t tl0 tl1 i1 ret in
- Return (List_Cons x0 tl01, List_Cons x1 tl11)
- | List_Nil -> Fail Failure
- end
- | List_Nil -> Fail Failure
- end
-
-(** [loops::list_nth_mut_loop_pair_merge]: backward function 0
- Source: 'src/loops.rs', lines 233:0-237:27 *)
-let list_nth_mut_loop_pair_merge_back
- (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) (ret : (t & t)) :
- result ((list_t t) & (list_t t))
- =
- list_nth_mut_loop_pair_merge_loop_back t ls0 ls1 i ret
-
-(** [loops::list_nth_shared_loop_pair_merge]: loop 0: forward function
- Source: 'src/loops.rs', lines 251:0-266:1 *)
-let rec list_nth_shared_loop_pair_merge_loop
- (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) :
- Tot (result (t & t))
- (decreases (list_nth_shared_loop_pair_merge_loop_decreases t ls0 ls1 i))
- =
- begin match ls0 with
- | List_Cons x0 tl0 ->
- begin match ls1 with
- | List_Cons x1 tl1 ->
- if i = 0
- then Return (x0, x1)
- else
- let* i1 = u32_sub i 1 in
- list_nth_shared_loop_pair_merge_loop t tl0 tl1 i1
- | List_Nil -> Fail Failure
- end
- | List_Nil -> Fail Failure
- end
-
-(** [loops::list_nth_shared_loop_pair_merge]: forward function
- Source: 'src/loops.rs', lines 251:0-255:19 *)
-let list_nth_shared_loop_pair_merge
- (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) : result (t & t) =
- list_nth_shared_loop_pair_merge_loop t ls0 ls1 i
-
-(** [loops::list_nth_mut_shared_loop_pair]: loop 0: forward function
- Source: 'src/loops.rs', lines 269:0-284:1 *)
-let rec list_nth_mut_shared_loop_pair_loop
- (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) :
- Tot (result (t & t))
- (decreases (list_nth_mut_shared_loop_pair_loop_decreases t ls0 ls1 i))
- =
- begin match ls0 with
- | List_Cons x0 tl0 ->
- begin match ls1 with
- | List_Cons x1 tl1 ->
- if i = 0
- then Return (x0, x1)
- else
- let* i1 = u32_sub i 1 in
- list_nth_mut_shared_loop_pair_loop t tl0 tl1 i1
- | List_Nil -> Fail Failure
- end
- | List_Nil -> Fail Failure
- end
-
-(** [loops::list_nth_mut_shared_loop_pair]: forward function
- Source: 'src/loops.rs', lines 269:0-273:23 *)
-let list_nth_mut_shared_loop_pair
- (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) : result (t & t) =
- list_nth_mut_shared_loop_pair_loop t ls0 ls1 i
-
-(** [loops::list_nth_mut_shared_loop_pair]: loop 0: backward function 0
- Source: 'src/loops.rs', lines 269:0-284:1 *)
-let rec list_nth_mut_shared_loop_pair_loop_back
- (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) (ret : t) :
- Tot (result (list_t t))
- (decreases (list_nth_mut_shared_loop_pair_loop_decreases t ls0 ls1 i))
- =
- begin match ls0 with
- | List_Cons x0 tl0 ->
- begin match ls1 with
- | List_Cons _ tl1 ->
- if i = 0
- then Return (List_Cons ret tl0)
- else
- let* i1 = u32_sub i 1 in
- let* tl01 = list_nth_mut_shared_loop_pair_loop_back t tl0 tl1 i1 ret in
- Return (List_Cons x0 tl01)
- | List_Nil -> Fail Failure
- end
- | List_Nil -> Fail Failure
- end
-
-(** [loops::list_nth_mut_shared_loop_pair]: backward function 0
- Source: 'src/loops.rs', lines 269:0-273:23 *)
-let list_nth_mut_shared_loop_pair_back
- (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) (ret : t) :
- result (list_t t)
- =
- list_nth_mut_shared_loop_pair_loop_back t ls0 ls1 i ret
-
-(** [loops::list_nth_mut_shared_loop_pair_merge]: loop 0: forward function
- Source: 'src/loops.rs', lines 288:0-303:1 *)
-let rec list_nth_mut_shared_loop_pair_merge_loop
- (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) :
- Tot (result (t & t))
- (decreases (list_nth_mut_shared_loop_pair_merge_loop_decreases t ls0 ls1 i))
- =
- begin match ls0 with
- | List_Cons x0 tl0 ->
- begin match ls1 with
- | List_Cons x1 tl1 ->
- if i = 0
- then Return (x0, x1)
- else
- let* i1 = u32_sub i 1 in
- list_nth_mut_shared_loop_pair_merge_loop t tl0 tl1 i1
- | List_Nil -> Fail Failure
- end
- | List_Nil -> Fail Failure
- end
-
-(** [loops::list_nth_mut_shared_loop_pair_merge]: forward function
- Source: 'src/loops.rs', lines 288:0-292:23 *)
-let list_nth_mut_shared_loop_pair_merge
- (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) : result (t & t) =
- list_nth_mut_shared_loop_pair_merge_loop t ls0 ls1 i
-
-(** [loops::list_nth_mut_shared_loop_pair_merge]: loop 0: backward function 0
- Source: 'src/loops.rs', lines 288:0-303:1 *)
-let rec list_nth_mut_shared_loop_pair_merge_loop_back
- (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) (ret : t) :
- Tot (result (list_t t))
- (decreases (list_nth_mut_shared_loop_pair_merge_loop_decreases t ls0 ls1 i))
- =
- begin match ls0 with
- | List_Cons x0 tl0 ->
- begin match ls1 with
- | List_Cons _ tl1 ->
- if i = 0
- then Return (List_Cons ret tl0)
- else
- let* i1 = u32_sub i 1 in
- let* tl01 =
- list_nth_mut_shared_loop_pair_merge_loop_back t tl0 tl1 i1 ret in
- Return (List_Cons x0 tl01)
- | List_Nil -> Fail Failure
- end
- | List_Nil -> Fail Failure
- end
-
-(** [loops::list_nth_mut_shared_loop_pair_merge]: backward function 0
- Source: 'src/loops.rs', lines 288:0-292:23 *)
-let list_nth_mut_shared_loop_pair_merge_back
- (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) (ret : t) :
- result (list_t t)
- =
- list_nth_mut_shared_loop_pair_merge_loop_back t ls0 ls1 i ret
-
-(** [loops::list_nth_shared_mut_loop_pair]: loop 0: forward function
- Source: 'src/loops.rs', lines 307:0-322:1 *)
-let rec list_nth_shared_mut_loop_pair_loop
- (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) :
- Tot (result (t & t))
- (decreases (list_nth_shared_mut_loop_pair_loop_decreases t ls0 ls1 i))
- =
- begin match ls0 with
- | List_Cons x0 tl0 ->
- begin match ls1 with
- | List_Cons x1 tl1 ->
- if i = 0
- then Return (x0, x1)
- else
- let* i1 = u32_sub i 1 in
- list_nth_shared_mut_loop_pair_loop t tl0 tl1 i1
- | List_Nil -> Fail Failure
- end
- | List_Nil -> Fail Failure
- end
-
-(** [loops::list_nth_shared_mut_loop_pair]: forward function
- Source: 'src/loops.rs', lines 307:0-311:23 *)
-let list_nth_shared_mut_loop_pair
- (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) : result (t & t) =
- list_nth_shared_mut_loop_pair_loop t ls0 ls1 i
-
-(** [loops::list_nth_shared_mut_loop_pair]: loop 0: backward function 1
- Source: 'src/loops.rs', lines 307:0-322:1 *)
-let rec list_nth_shared_mut_loop_pair_loop_back
- (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) (ret : t) :
- Tot (result (list_t t))
- (decreases (list_nth_shared_mut_loop_pair_loop_decreases t ls0 ls1 i))
- =
- begin match ls0 with
- | List_Cons _ tl0 ->
- begin match ls1 with
- | List_Cons x1 tl1 ->
- if i = 0
- then Return (List_Cons ret tl1)
- else
- let* i1 = u32_sub i 1 in
- let* tl11 = list_nth_shared_mut_loop_pair_loop_back t tl0 tl1 i1 ret in
- Return (List_Cons x1 tl11)
- | List_Nil -> Fail Failure
- end
- | List_Nil -> Fail Failure
- end
-
-(** [loops::list_nth_shared_mut_loop_pair]: backward function 1
- Source: 'src/loops.rs', lines 307:0-311:23 *)
-let list_nth_shared_mut_loop_pair_back
- (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) (ret : t) :
- result (list_t t)
- =
- list_nth_shared_mut_loop_pair_loop_back t ls0 ls1 i ret
-
-(** [loops::list_nth_shared_mut_loop_pair_merge]: loop 0: forward function
- Source: 'src/loops.rs', lines 326:0-341:1 *)
-let rec list_nth_shared_mut_loop_pair_merge_loop
- (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) :
- Tot (result (t & t))
- (decreases (list_nth_shared_mut_loop_pair_merge_loop_decreases t ls0 ls1 i))
- =
- begin match ls0 with
- | List_Cons x0 tl0 ->
- begin match ls1 with
- | List_Cons x1 tl1 ->
- if i = 0
- then Return (x0, x1)
- else
- let* i1 = u32_sub i 1 in
- list_nth_shared_mut_loop_pair_merge_loop t tl0 tl1 i1
- | List_Nil -> Fail Failure
- end
- | List_Nil -> Fail Failure
- end
-
-(** [loops::list_nth_shared_mut_loop_pair_merge]: forward function
- Source: 'src/loops.rs', lines 326:0-330:23 *)
-let list_nth_shared_mut_loop_pair_merge
- (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) : result (t & t) =
- list_nth_shared_mut_loop_pair_merge_loop t ls0 ls1 i
-
-(** [loops::list_nth_shared_mut_loop_pair_merge]: loop 0: backward function 0
- Source: 'src/loops.rs', lines 326:0-341:1 *)
-let rec list_nth_shared_mut_loop_pair_merge_loop_back
- (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) (ret : t) :
- Tot (result (list_t t))
- (decreases (list_nth_shared_mut_loop_pair_merge_loop_decreases t ls0 ls1 i))
- =
- begin match ls0 with
- | List_Cons _ tl0 ->
- begin match ls1 with
- | List_Cons x1 tl1 ->
- if i = 0
- then Return (List_Cons ret tl1)
- else
- let* i1 = u32_sub i 1 in
- let* tl11 =
- list_nth_shared_mut_loop_pair_merge_loop_back t tl0 tl1 i1 ret in
- Return (List_Cons x1 tl11)
- | List_Nil -> Fail Failure
- end
- | List_Nil -> Fail Failure
- end
-
-(** [loops::list_nth_shared_mut_loop_pair_merge]: backward function 0
- Source: 'src/loops.rs', lines 326:0-330:23 *)
-let list_nth_shared_mut_loop_pair_merge_back
- (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) (ret : t) :
- result (list_t t)
- =
- list_nth_shared_mut_loop_pair_merge_loop_back t ls0 ls1 i ret
-
diff --git a/tests/fstar-split/misc/Loops.Types.fst b/tests/fstar-split/misc/Loops.Types.fst
deleted file mode 100644
index 29f56e1b..00000000
--- a/tests/fstar-split/misc/Loops.Types.fst
+++ /dev/null
@@ -1,13 +0,0 @@
-(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)
-(** [loops]: type definitions *)
-module Loops.Types
-open Primitives
-
-#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
-
-(** [loops::List]
- Source: 'src/loops.rs', lines 70:0-70:16 *)
-type list_t (t : Type0) =
-| List_Cons : t -> list_t t -> list_t t
-| List_Nil : list_t t
-
diff --git a/tests/fstar-split/misc/Makefile b/tests/fstar-split/misc/Makefile
deleted file mode 100644
index fa7d1f36..00000000
--- a/tests/fstar-split/misc/Makefile
+++ /dev/null
@@ -1,49 +0,0 @@
-# This file was automatically generated - modify ../Makefile.template instead
-INCLUDE_DIRS = .
-
-FSTAR_INCLUDES = $(addprefix --include ,$(INCLUDE_DIRS))
-
-FSTAR_HINTS ?= --use_hints --use_hint_hashes --record_hints
-
-FSTAR_OPTIONS = $(FSTAR_HINTS) \
- --cache_checked_modules $(FSTAR_INCLUDES) --cmi \
- --warn_error '+241@247+285-274' \
-
-FSTAR_EXE ?= fstar.exe
-FSTAR_NO_FLAGS = $(FSTAR_EXE) --already_cached 'Prims FStar LowStar Steel' --odir obj --cache_dir obj
-
-FSTAR = $(FSTAR_NO_FLAGS) $(FSTAR_OPTIONS)
-
-# The F* roots are used to compute the dependency graph, and generate the .depend file
-FSTAR_ROOTS ?= $(wildcard *.fst *.fsti)
-
-# Build all the files
-all: $(addprefix obj/,$(addsuffix .checked,$(FSTAR_ROOTS)))
-
-# This is the right way to ensure the .depend file always gets re-built.
-ifeq (,$(filter %-in,$(MAKECMDGOALS)))
-ifndef NODEPEND
-ifndef MAKE_RESTARTS
-.depend: .FORCE
- $(FSTAR_NO_FLAGS) --dep full $(notdir $(FSTAR_ROOTS)) > $@
-
-.PHONY: .FORCE
-.FORCE:
-endif
-endif
-
-include .depend
-endif
-
-# For the interactive mode
-%.fst-in %.fsti-in:
- @echo $(FSTAR_OPTIONS)
-
-# Generete the .checked files in batch mode
-%.checked:
- $(FSTAR) $(FSTAR_OPTIONS) $< && \
- touch -c $@
-
-.PHONY: clean
-clean:
- rm -f obj/*
diff --git a/tests/fstar-split/misc/NoNestedBorrows.fst b/tests/fstar-split/misc/NoNestedBorrows.fst
deleted file mode 100644
index 53e1d300..00000000
--- a/tests/fstar-split/misc/NoNestedBorrows.fst
+++ /dev/null
@@ -1,618 +0,0 @@
-(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)
-(** [no_nested_borrows] *)
-module NoNestedBorrows
-open Primitives
-
-#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
-
-(** [no_nested_borrows::Pair]
- Source: 'src/no_nested_borrows.rs', lines 4:0-4:23 *)
-type pair_t (t1 t2 : Type0) = { x : t1; y : t2; }
-
-(** [no_nested_borrows::List]
- Source: 'src/no_nested_borrows.rs', lines 9:0-9:16 *)
-type list_t (t : Type0) =
-| List_Cons : t -> list_t t -> list_t t
-| List_Nil : list_t t
-
-(** [no_nested_borrows::One]
- Source: 'src/no_nested_borrows.rs', lines 20:0-20:16 *)
-type one_t (t1 : Type0) = | One_One : t1 -> one_t t1
-
-(** [no_nested_borrows::EmptyEnum]
- Source: 'src/no_nested_borrows.rs', lines 26:0-26:18 *)
-type emptyEnum_t = | EmptyEnum_Empty : emptyEnum_t
-
-(** [no_nested_borrows::Enum]
- Source: 'src/no_nested_borrows.rs', lines 32:0-32:13 *)
-type enum_t = | Enum_Variant1 : enum_t | Enum_Variant2 : enum_t
-
-(** [no_nested_borrows::EmptyStruct]
- Source: 'src/no_nested_borrows.rs', lines 39:0-39:22 *)
-type emptyStruct_t = unit
-
-(** [no_nested_borrows::Sum]
- Source: 'src/no_nested_borrows.rs', lines 41:0-41:20 *)
-type sum_t (t1 t2 : Type0) =
-| Sum_Left : t1 -> sum_t t1 t2
-| Sum_Right : t2 -> sum_t t1 t2
-
-(** [no_nested_borrows::neg_test]: forward function
- Source: 'src/no_nested_borrows.rs', lines 48:0-48:30 *)
-let neg_test (x : i32) : result i32 =
- i32_neg x
-
-(** [no_nested_borrows::add_u32]: forward function
- Source: 'src/no_nested_borrows.rs', lines 54:0-54:37 *)
-let add_u32 (x : u32) (y : u32) : result u32 =
- u32_add x y
-
-(** [no_nested_borrows::subs_u32]: forward function
- Source: 'src/no_nested_borrows.rs', lines 60:0-60:38 *)
-let subs_u32 (x : u32) (y : u32) : result u32 =
- u32_sub x y
-
-(** [no_nested_borrows::div_u32]: forward function
- Source: 'src/no_nested_borrows.rs', lines 66:0-66:37 *)
-let div_u32 (x : u32) (y : u32) : result u32 =
- u32_div x y
-
-(** [no_nested_borrows::div_u32_const]: forward function
- Source: 'src/no_nested_borrows.rs', lines 73:0-73:35 *)
-let div_u32_const (x : u32) : result u32 =
- u32_div x 2
-
-(** [no_nested_borrows::rem_u32]: forward function
- Source: 'src/no_nested_borrows.rs', lines 78:0-78:37 *)
-let rem_u32 (x : u32) (y : u32) : result u32 =
- u32_rem x y
-
-(** [no_nested_borrows::mul_u32]: forward function
- Source: 'src/no_nested_borrows.rs', lines 82:0-82:37 *)
-let mul_u32 (x : u32) (y : u32) : result u32 =
- u32_mul x y
-
-(** [no_nested_borrows::add_i32]: forward function
- Source: 'src/no_nested_borrows.rs', lines 88:0-88:37 *)
-let add_i32 (x : i32) (y : i32) : result i32 =
- i32_add x y
-
-(** [no_nested_borrows::subs_i32]: forward function
- Source: 'src/no_nested_borrows.rs', lines 92:0-92:38 *)
-let subs_i32 (x : i32) (y : i32) : result i32 =
- i32_sub x y
-
-(** [no_nested_borrows::div_i32]: forward function
- Source: 'src/no_nested_borrows.rs', lines 96:0-96:37 *)
-let div_i32 (x : i32) (y : i32) : result i32 =
- i32_div x y
-
-(** [no_nested_borrows::div_i32_const]: forward function
- Source: 'src/no_nested_borrows.rs', lines 100:0-100:35 *)
-let div_i32_const (x : i32) : result i32 =
- i32_div x 2
-
-(** [no_nested_borrows::rem_i32]: forward function
- Source: 'src/no_nested_borrows.rs', lines 104:0-104:37 *)
-let rem_i32 (x : i32) (y : i32) : result i32 =
- i32_rem x y
-
-(** [no_nested_borrows::mul_i32]: forward function
- Source: 'src/no_nested_borrows.rs', lines 108:0-108:37 *)
-let mul_i32 (x : i32) (y : i32) : result i32 =
- i32_mul x y
-
-(** [no_nested_borrows::mix_arith_u32]: forward function
- Source: 'src/no_nested_borrows.rs', lines 112:0-112:51 *)
-let mix_arith_u32 (x : u32) (y : u32) (z : u32) : result u32 =
- let* i = u32_add x y in
- let* i1 = u32_div x y in
- let* i2 = u32_mul i i1 in
- let* i3 = u32_rem z y in
- let* i4 = u32_sub x i3 in
- let* i5 = u32_add i2 i4 in
- let* i6 = u32_add x y in
- let* i7 = u32_add i6 z in
- u32_rem i5 i7
-
-(** [no_nested_borrows::mix_arith_i32]: forward function
- Source: 'src/no_nested_borrows.rs', lines 116:0-116:51 *)
-let mix_arith_i32 (x : i32) (y : i32) (z : i32) : result i32 =
- let* i = i32_add x y in
- let* i1 = i32_div x y in
- let* i2 = i32_mul i i1 in
- let* i3 = i32_rem z y in
- let* i4 = i32_sub x i3 in
- let* i5 = i32_add i2 i4 in
- let* i6 = i32_add x y in
- let* i7 = i32_add i6 z in
- i32_rem i5 i7
-
-(** [no_nested_borrows::CONST0]
- Source: 'src/no_nested_borrows.rs', lines 125:0-125:23 *)
-let const0_body : result usize = usize_add 1 1
-let const0_c : usize = eval_global const0_body
-
-(** [no_nested_borrows::CONST1]
- Source: 'src/no_nested_borrows.rs', lines 126:0-126:23 *)
-let const1_body : result usize = usize_mul 2 2
-let const1_c : usize = eval_global const1_body
-
-(** [no_nested_borrows::cast_u32_to_i32]: forward function
- Source: 'src/no_nested_borrows.rs', lines 128:0-128:37 *)
-let cast_u32_to_i32 (x : u32) : result i32 =
- scalar_cast U32 I32 x
-
-(** [no_nested_borrows::cast_bool_to_i32]: forward function
- Source: 'src/no_nested_borrows.rs', lines 132:0-132:39 *)
-let cast_bool_to_i32 (x : bool) : result i32 =
- scalar_cast_bool I32 x
-
-(** [no_nested_borrows::cast_bool_to_bool]: forward function
- Source: 'src/no_nested_borrows.rs', lines 137:0-137:41 *)
-let cast_bool_to_bool (x : bool) : result bool =
- Return x
-
-(** [no_nested_borrows::test2]: forward function
- Source: 'src/no_nested_borrows.rs', lines 142:0-142:14 *)
-let test2 : result unit =
- let* _ = u32_add 23 44 in Return ()
-
-(** Unit test for [no_nested_borrows::test2] *)
-let _ = assert_norm (test2 = Return ())
-
-(** [no_nested_borrows::get_max]: forward function
- Source: 'src/no_nested_borrows.rs', lines 154:0-154:37 *)
-let get_max (x : u32) (y : u32) : result u32 =
- if x >= y then Return x else Return y
-
-(** [no_nested_borrows::test3]: forward function
- Source: 'src/no_nested_borrows.rs', lines 162:0-162:14 *)
-let test3 : result unit =
- let* x = get_max 4 3 in
- let* y = get_max 10 11 in
- let* z = u32_add x y in
- if not (z = 15) then Fail Failure else Return ()
-
-(** Unit test for [no_nested_borrows::test3] *)
-let _ = assert_norm (test3 = Return ())
-
-(** [no_nested_borrows::test_neg1]: forward function
- Source: 'src/no_nested_borrows.rs', lines 169:0-169:18 *)
-let test_neg1 : result unit =
- let* y = i32_neg 3 in if not (y = -3) then Fail Failure else Return ()
-
-(** Unit test for [no_nested_borrows::test_neg1] *)
-let _ = assert_norm (test_neg1 = Return ())
-
-(** [no_nested_borrows::refs_test1]: forward function
- Source: 'src/no_nested_borrows.rs', lines 176:0-176:19 *)
-let refs_test1 : result unit =
- if not (1 = 1) then Fail Failure else Return ()
-
-(** Unit test for [no_nested_borrows::refs_test1] *)
-let _ = assert_norm (refs_test1 = Return ())
-
-(** [no_nested_borrows::refs_test2]: forward function
- Source: 'src/no_nested_borrows.rs', lines 187:0-187:19 *)
-let refs_test2 : result unit =
- if not (2 = 2)
- then Fail Failure
- else
- if not (0 = 0)
- then Fail Failure
- else
- if not (2 = 2)
- then Fail Failure
- else if not (2 = 2) then Fail Failure else Return ()
-
-(** Unit test for [no_nested_borrows::refs_test2] *)
-let _ = assert_norm (refs_test2 = Return ())
-
-(** [no_nested_borrows::test_list1]: forward function
- Source: 'src/no_nested_borrows.rs', lines 203:0-203:19 *)
-let test_list1 : result unit =
- Return ()
-
-(** Unit test for [no_nested_borrows::test_list1] *)
-let _ = assert_norm (test_list1 = Return ())
-
-(** [no_nested_borrows::test_box1]: forward function
- Source: 'src/no_nested_borrows.rs', lines 208:0-208:18 *)
-let test_box1 : result unit =
- let* b = alloc_boxed_Box_deref_mut_back i32 0 1 in
- let* x = alloc_boxed_Box_deref i32 b in
- if not (x = 1) then Fail Failure else Return ()
-
-(** Unit test for [no_nested_borrows::test_box1] *)
-let _ = assert_norm (test_box1 = Return ())
-
-(** [no_nested_borrows::copy_int]: forward function
- Source: 'src/no_nested_borrows.rs', lines 218:0-218:30 *)
-let copy_int (x : i32) : result i32 =
- Return x
-
-(** [no_nested_borrows::test_unreachable]: forward function
- Source: 'src/no_nested_borrows.rs', lines 224:0-224:32 *)
-let test_unreachable (b : bool) : result unit =
- if b then Fail Failure else Return ()
-
-(** [no_nested_borrows::test_panic]: forward function
- Source: 'src/no_nested_borrows.rs', lines 232:0-232:26 *)
-let test_panic (b : bool) : result unit =
- if b then Fail Failure else Return ()
-
-(** [no_nested_borrows::test_copy_int]: forward function
- Source: 'src/no_nested_borrows.rs', lines 239:0-239:22 *)
-let test_copy_int : result unit =
- let* y = copy_int 0 in if not (0 = y) then Fail Failure else Return ()
-
-(** Unit test for [no_nested_borrows::test_copy_int] *)
-let _ = assert_norm (test_copy_int = Return ())
-
-(** [no_nested_borrows::is_cons]: forward function
- Source: 'src/no_nested_borrows.rs', lines 246:0-246:38 *)
-let is_cons (t : Type0) (l : list_t t) : result bool =
- begin match l with
- | List_Cons _ _ -> Return true
- | List_Nil -> Return false
- end
-
-(** [no_nested_borrows::test_is_cons]: forward function
- Source: 'src/no_nested_borrows.rs', lines 253:0-253:21 *)
-let test_is_cons : result unit =
- let* b = is_cons i32 (List_Cons 0 List_Nil) in
- if not b then Fail Failure else Return ()
-
-(** Unit test for [no_nested_borrows::test_is_cons] *)
-let _ = assert_norm (test_is_cons = Return ())
-
-(** [no_nested_borrows::split_list]: forward function
- Source: 'src/no_nested_borrows.rs', lines 259:0-259:48 *)
-let split_list (t : Type0) (l : list_t t) : result (t & (list_t t)) =
- begin match l with
- | List_Cons hd tl -> Return (hd, tl)
- | List_Nil -> Fail Failure
- end
-
-(** [no_nested_borrows::test_split_list]: forward function
- Source: 'src/no_nested_borrows.rs', lines 267:0-267:24 *)
-let test_split_list : result unit =
- let* p = split_list i32 (List_Cons 0 List_Nil) in
- let (hd, _) = p in
- if not (hd = 0) then Fail Failure else Return ()
-
-(** Unit test for [no_nested_borrows::test_split_list] *)
-let _ = assert_norm (test_split_list = Return ())
-
-(** [no_nested_borrows::choose]: forward function
- Source: 'src/no_nested_borrows.rs', lines 274:0-274:70 *)
-let choose (t : Type0) (b : bool) (x : t) (y : t) : result t =
- if b then Return x else Return y
-
-(** [no_nested_borrows::choose]: backward function 0
- Source: 'src/no_nested_borrows.rs', lines 274:0-274:70 *)
-let choose_back
- (t : Type0) (b : bool) (x : t) (y : t) (ret : t) : result (t & t) =
- if b then Return (ret, y) else Return (x, ret)
-
-(** [no_nested_borrows::choose_test]: forward function
- Source: 'src/no_nested_borrows.rs', lines 282:0-282:20 *)
-let choose_test : result unit =
- let* z = choose i32 true 0 0 in
- let* z1 = i32_add z 1 in
- if not (z1 = 1)
- then Fail Failure
- else
- let* (x, y) = choose_back i32 true 0 0 z1 in
- if not (x = 1)
- then Fail Failure
- else if not (y = 0) then Fail Failure else Return ()
-
-(** Unit test for [no_nested_borrows::choose_test] *)
-let _ = assert_norm (choose_test = Return ())
-
-(** [no_nested_borrows::test_char]: forward function
- Source: 'src/no_nested_borrows.rs', lines 294:0-294:26 *)
-let test_char : result char =
- Return 'a'
-
-(** [no_nested_borrows::Tree]
- Source: 'src/no_nested_borrows.rs', lines 299:0-299:16 *)
-type tree_t (t : Type0) =
-| Tree_Leaf : t -> tree_t t
-| Tree_Node : t -> nodeElem_t t -> tree_t t -> tree_t t
-
-(** [no_nested_borrows::NodeElem]
- Source: 'src/no_nested_borrows.rs', lines 304:0-304:20 *)
-and nodeElem_t (t : Type0) =
-| NodeElem_Cons : tree_t t -> nodeElem_t t -> nodeElem_t t
-| NodeElem_Nil : nodeElem_t t
-
-(** [no_nested_borrows::list_length]: forward function
- Source: 'src/no_nested_borrows.rs', lines 339:0-339:48 *)
-let rec list_length (t : Type0) (l : list_t t) : result u32 =
- begin match l with
- | List_Cons _ l1 -> let* i = list_length t l1 in u32_add 1 i
- | List_Nil -> Return 0
- end
-
-(** [no_nested_borrows::list_nth_shared]: forward function
- Source: 'src/no_nested_borrows.rs', lines 347:0-347:62 *)
-let rec list_nth_shared (t : Type0) (l : list_t t) (i : u32) : result t =
- begin match l with
- | List_Cons x tl ->
- if i = 0
- then Return x
- else let* i1 = u32_sub i 1 in list_nth_shared t tl i1
- | List_Nil -> Fail Failure
- end
-
-(** [no_nested_borrows::list_nth_mut]: forward function
- Source: 'src/no_nested_borrows.rs', lines 363:0-363:67 *)
-let rec list_nth_mut (t : Type0) (l : list_t t) (i : u32) : result t =
- begin match l with
- | List_Cons x tl ->
- if i = 0 then Return x else let* i1 = u32_sub i 1 in list_nth_mut t tl i1
- | List_Nil -> Fail Failure
- end
-
-(** [no_nested_borrows::list_nth_mut]: backward function 0
- Source: 'src/no_nested_borrows.rs', lines 363:0-363:67 *)
-let rec list_nth_mut_back
- (t : Type0) (l : list_t t) (i : u32) (ret : t) : result (list_t t) =
- begin match l with
- | List_Cons x tl ->
- if i = 0
- then Return (List_Cons ret tl)
- else
- let* i1 = u32_sub i 1 in
- let* tl1 = list_nth_mut_back t tl i1 ret in
- Return (List_Cons x tl1)
- | List_Nil -> Fail Failure
- end
-
-(** [no_nested_borrows::list_rev_aux]: forward function
- Source: 'src/no_nested_borrows.rs', lines 379:0-379:63 *)
-let rec list_rev_aux
- (t : Type0) (li : list_t t) (lo : list_t t) : result (list_t t) =
- begin match li with
- | List_Cons hd tl -> list_rev_aux t tl (List_Cons hd lo)
- | List_Nil -> Return lo
- end
-
-(** [no_nested_borrows::list_rev]: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/no_nested_borrows.rs', lines 393:0-393:42 *)
-let list_rev (t : Type0) (l : list_t t) : result (list_t t) =
- let li = core_mem_replace (list_t t) l List_Nil in list_rev_aux t li List_Nil
-
-(** [no_nested_borrows::test_list_functions]: forward function
- Source: 'src/no_nested_borrows.rs', lines 398:0-398:28 *)
-let test_list_functions : result unit =
- let l = List_Cons 2 List_Nil in
- let l1 = List_Cons 1 l in
- let* i = list_length i32 (List_Cons 0 l1) in
- if not (i = 3)
- then Fail Failure
- else
- let* i1 = list_nth_shared i32 (List_Cons 0 l1) 0 in
- if not (i1 = 0)
- then Fail Failure
- else
- let* i2 = list_nth_shared i32 (List_Cons 0 l1) 1 in
- if not (i2 = 1)
- then Fail Failure
- else
- let* i3 = list_nth_shared i32 (List_Cons 0 l1) 2 in
- if not (i3 = 2)
- then Fail Failure
- else
- let* ls = list_nth_mut_back i32 (List_Cons 0 l1) 1 3 in
- let* i4 = list_nth_shared i32 ls 0 in
- if not (i4 = 0)
- then Fail Failure
- else
- let* i5 = list_nth_shared i32 ls 1 in
- if not (i5 = 3)
- then Fail Failure
- else
- let* i6 = list_nth_shared i32 ls 2 in
- if not (i6 = 2) then Fail Failure else Return ()
-
-(** Unit test for [no_nested_borrows::test_list_functions] *)
-let _ = assert_norm (test_list_functions = Return ())
-
-(** [no_nested_borrows::id_mut_pair1]: forward function
- Source: 'src/no_nested_borrows.rs', lines 414:0-414:89 *)
-let id_mut_pair1 (t1 t2 : Type0) (x : t1) (y : t2) : result (t1 & t2) =
- Return (x, y)
-
-(** [no_nested_borrows::id_mut_pair1]: backward function 0
- Source: 'src/no_nested_borrows.rs', lines 414:0-414:89 *)
-let id_mut_pair1_back
- (t1 t2 : Type0) (x : t1) (y : t2) (ret : (t1 & t2)) : result (t1 & t2) =
- let (x1, x2) = ret in Return (x1, x2)
-
-(** [no_nested_borrows::id_mut_pair2]: forward function
- Source: 'src/no_nested_borrows.rs', lines 418:0-418:88 *)
-let id_mut_pair2 (t1 t2 : Type0) (p : (t1 & t2)) : result (t1 & t2) =
- let (x, x1) = p in Return (x, x1)
-
-(** [no_nested_borrows::id_mut_pair2]: backward function 0
- Source: 'src/no_nested_borrows.rs', lines 418:0-418:88 *)
-let id_mut_pair2_back
- (t1 t2 : Type0) (p : (t1 & t2)) (ret : (t1 & t2)) : result (t1 & t2) =
- let (x, x1) = ret in Return (x, x1)
-
-(** [no_nested_borrows::id_mut_pair3]: forward function
- Source: 'src/no_nested_borrows.rs', lines 422:0-422:93 *)
-let id_mut_pair3 (t1 t2 : Type0) (x : t1) (y : t2) : result (t1 & t2) =
- Return (x, y)
-
-(** [no_nested_borrows::id_mut_pair3]: backward function 0
- Source: 'src/no_nested_borrows.rs', lines 422:0-422:93 *)
-let id_mut_pair3_back'a
- (t1 t2 : Type0) (x : t1) (y : t2) (ret : t1) : result t1 =
- Return ret
-
-(** [no_nested_borrows::id_mut_pair3]: backward function 1
- Source: 'src/no_nested_borrows.rs', lines 422:0-422:93 *)
-let id_mut_pair3_back'b
- (t1 t2 : Type0) (x : t1) (y : t2) (ret : t2) : result t2 =
- Return ret
-
-(** [no_nested_borrows::id_mut_pair4]: forward function
- Source: 'src/no_nested_borrows.rs', lines 426:0-426:92 *)
-let id_mut_pair4 (t1 t2 : Type0) (p : (t1 & t2)) : result (t1 & t2) =
- let (x, x1) = p in Return (x, x1)
-
-(** [no_nested_borrows::id_mut_pair4]: backward function 0
- Source: 'src/no_nested_borrows.rs', lines 426:0-426:92 *)
-let id_mut_pair4_back'a
- (t1 t2 : Type0) (p : (t1 & t2)) (ret : t1) : result t1 =
- Return ret
-
-(** [no_nested_borrows::id_mut_pair4]: backward function 1
- Source: 'src/no_nested_borrows.rs', lines 426:0-426:92 *)
-let id_mut_pair4_back'b
- (t1 t2 : Type0) (p : (t1 & t2)) (ret : t2) : result t2 =
- Return ret
-
-(** [no_nested_borrows::StructWithTuple]
- Source: 'src/no_nested_borrows.rs', lines 433:0-433:34 *)
-type structWithTuple_t (t1 t2 : Type0) = { p : (t1 & t2); }
-
-(** [no_nested_borrows::new_tuple1]: forward function
- Source: 'src/no_nested_borrows.rs', lines 437:0-437:48 *)
-let new_tuple1 : result (structWithTuple_t u32 u32) =
- Return { p = (1, 2) }
-
-(** [no_nested_borrows::new_tuple2]: forward function
- Source: 'src/no_nested_borrows.rs', lines 441:0-441:48 *)
-let new_tuple2 : result (structWithTuple_t i16 i16) =
- Return { p = (1, 2) }
-
-(** [no_nested_borrows::new_tuple3]: forward function
- Source: 'src/no_nested_borrows.rs', lines 445:0-445:48 *)
-let new_tuple3 : result (structWithTuple_t u64 i64) =
- Return { p = (1, 2) }
-
-(** [no_nested_borrows::StructWithPair]
- Source: 'src/no_nested_borrows.rs', lines 450:0-450:33 *)
-type structWithPair_t (t1 t2 : Type0) = { p : pair_t t1 t2; }
-
-(** [no_nested_borrows::new_pair1]: forward function
- Source: 'src/no_nested_borrows.rs', lines 454:0-454:46 *)
-let new_pair1 : result (structWithPair_t u32 u32) =
- Return { p = { x = 1; y = 2 } }
-
-(** [no_nested_borrows::test_constants]: forward function
- Source: 'src/no_nested_borrows.rs', lines 462:0-462:23 *)
-let test_constants : result unit =
- let* swt = new_tuple1 in
- let (i, _) = swt.p in
- if not (i = 1)
- then Fail Failure
- else
- let* swt1 = new_tuple2 in
- let (i1, _) = swt1.p in
- if not (i1 = 1)
- then Fail Failure
- else
- let* swt2 = new_tuple3 in
- let (i2, _) = swt2.p in
- if not (i2 = 1)
- then Fail Failure
- else
- let* swp = new_pair1 in
- if not (swp.p.x = 1) then Fail Failure else Return ()
-
-(** Unit test for [no_nested_borrows::test_constants] *)
-let _ = assert_norm (test_constants = Return ())
-
-(** [no_nested_borrows::test_weird_borrows1]: forward function
- Source: 'src/no_nested_borrows.rs', lines 471:0-471:28 *)
-let test_weird_borrows1 : result unit =
- Return ()
-
-(** Unit test for [no_nested_borrows::test_weird_borrows1] *)
-let _ = assert_norm (test_weird_borrows1 = Return ())
-
-(** [no_nested_borrows::test_mem_replace]: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/no_nested_borrows.rs', lines 481:0-481:37 *)
-let test_mem_replace (px : u32) : result u32 =
- let y = core_mem_replace u32 px 1 in
- if not (y = 0) then Fail Failure else Return 2
-
-(** [no_nested_borrows::test_shared_borrow_bool1]: forward function
- Source: 'src/no_nested_borrows.rs', lines 488:0-488:47 *)
-let test_shared_borrow_bool1 (b : bool) : result u32 =
- if b then Return 0 else Return 1
-
-(** [no_nested_borrows::test_shared_borrow_bool2]: forward function
- Source: 'src/no_nested_borrows.rs', lines 501:0-501:40 *)
-let test_shared_borrow_bool2 : result u32 =
- Return 0
-
-(** [no_nested_borrows::test_shared_borrow_enum1]: forward function
- Source: 'src/no_nested_borrows.rs', lines 516:0-516:52 *)
-let test_shared_borrow_enum1 (l : list_t u32) : result u32 =
- begin match l with | List_Cons _ _ -> Return 1 | List_Nil -> Return 0 end
-
-(** [no_nested_borrows::test_shared_borrow_enum2]: forward function
- Source: 'src/no_nested_borrows.rs', lines 528:0-528:40 *)
-let test_shared_borrow_enum2 : result u32 =
- Return 0
-
-(** [no_nested_borrows::incr]: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/no_nested_borrows.rs', lines 539:0-539:24 *)
-let incr (x : u32) : result u32 =
- u32_add x 1
-
-(** [no_nested_borrows::call_incr]: forward function
- Source: 'src/no_nested_borrows.rs', lines 543:0-543:35 *)
-let call_incr (x : u32) : result u32 =
- incr x
-
-(** [no_nested_borrows::read_then_incr]: forward function
- Source: 'src/no_nested_borrows.rs', lines 548:0-548:41 *)
-let read_then_incr (x : u32) : result u32 =
- let* _ = u32_add x 1 in Return x
-
-(** [no_nested_borrows::read_then_incr]: backward function 0
- Source: 'src/no_nested_borrows.rs', lines 548:0-548:41 *)
-let read_then_incr_back (x : u32) : result u32 =
- u32_add x 1
-
-(** [no_nested_borrows::Tuple]
- Source: 'src/no_nested_borrows.rs', lines 554:0-554:24 *)
-type tuple_t (t1 t2 : Type0) = t1 * t2
-
-(** [no_nested_borrows::use_tuple_struct]: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/no_nested_borrows.rs', lines 556:0-556:48 *)
-let use_tuple_struct (x : tuple_t u32 u32) : result (tuple_t u32 u32) =
- let (_, i) = x in Return (1, i)
-
-(** [no_nested_borrows::create_tuple_struct]: forward function
- Source: 'src/no_nested_borrows.rs', lines 560:0-560:61 *)
-let create_tuple_struct (x : u32) (y : u64) : result (tuple_t u32 u64) =
- Return (x, y)
-
-(** [no_nested_borrows::IdType]
- Source: 'src/no_nested_borrows.rs', lines 565:0-565:20 *)
-type idType_t (t : Type0) = t
-
-(** [no_nested_borrows::use_id_type]: forward function
- Source: 'src/no_nested_borrows.rs', lines 567:0-567:40 *)
-let use_id_type (t : Type0) (x : idType_t t) : result t =
- Return x
-
-(** [no_nested_borrows::create_id_type]: forward function
- Source: 'src/no_nested_borrows.rs', lines 571:0-571:43 *)
-let create_id_type (t : Type0) (x : t) : result (idType_t t) =
- Return x
-
diff --git a/tests/fstar-split/misc/Paper.fst b/tests/fstar-split/misc/Paper.fst
deleted file mode 100644
index 0c44d78b..00000000
--- a/tests/fstar-split/misc/Paper.fst
+++ /dev/null
@@ -1,109 +0,0 @@
-(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)
-(** [paper] *)
-module Paper
-open Primitives
-
-#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
-
-(** [paper::ref_incr]: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/paper.rs', lines 4:0-4:28 *)
-let ref_incr (x : i32) : result i32 =
- i32_add x 1
-
-(** [paper::test_incr]: forward function
- Source: 'src/paper.rs', lines 8:0-8:18 *)
-let test_incr : result unit =
- let* x = ref_incr 0 in if not (x = 1) then Fail Failure else Return ()
-
-(** Unit test for [paper::test_incr] *)
-let _ = assert_norm (test_incr = Return ())
-
-(** [paper::choose]: forward function
- Source: 'src/paper.rs', lines 15:0-15:70 *)
-let choose (t : Type0) (b : bool) (x : t) (y : t) : result t =
- if b then Return x else Return y
-
-(** [paper::choose]: backward function 0
- Source: 'src/paper.rs', lines 15:0-15:70 *)
-let choose_back
- (t : Type0) (b : bool) (x : t) (y : t) (ret : t) : result (t & t) =
- if b then Return (ret, y) else Return (x, ret)
-
-(** [paper::test_choose]: forward function
- Source: 'src/paper.rs', lines 23:0-23:20 *)
-let test_choose : result unit =
- let* z = choose i32 true 0 0 in
- let* z1 = i32_add z 1 in
- if not (z1 = 1)
- then Fail Failure
- else
- let* (x, y) = choose_back i32 true 0 0 z1 in
- if not (x = 1)
- then Fail Failure
- else if not (y = 0) then Fail Failure else Return ()
-
-(** Unit test for [paper::test_choose] *)
-let _ = assert_norm (test_choose = Return ())
-
-(** [paper::List]
- Source: 'src/paper.rs', lines 35:0-35:16 *)
-type list_t (t : Type0) =
-| List_Cons : t -> list_t t -> list_t t
-| List_Nil : list_t t
-
-(** [paper::list_nth_mut]: forward function
- Source: 'src/paper.rs', lines 42:0-42:67 *)
-let rec list_nth_mut (t : Type0) (l : list_t t) (i : u32) : result t =
- begin match l with
- | List_Cons x tl ->
- if i = 0 then Return x else let* i1 = u32_sub i 1 in list_nth_mut t tl i1
- | List_Nil -> Fail Failure
- end
-
-(** [paper::list_nth_mut]: backward function 0
- Source: 'src/paper.rs', lines 42:0-42:67 *)
-let rec list_nth_mut_back
- (t : Type0) (l : list_t t) (i : u32) (ret : t) : result (list_t t) =
- begin match l with
- | List_Cons x tl ->
- if i = 0
- then Return (List_Cons ret tl)
- else
- let* i1 = u32_sub i 1 in
- let* tl1 = list_nth_mut_back t tl i1 ret in
- Return (List_Cons x tl1)
- | List_Nil -> Fail Failure
- end
-
-(** [paper::sum]: forward function
- Source: 'src/paper.rs', lines 57:0-57:32 *)
-let rec sum (l : list_t i32) : result i32 =
- begin match l with
- | List_Cons x tl -> let* i = sum tl in i32_add x i
- | List_Nil -> Return 0
- end
-
-(** [paper::test_nth]: forward function
- Source: 'src/paper.rs', lines 68:0-68:17 *)
-let test_nth : result unit =
- let l = List_Cons 3 List_Nil in
- let l1 = List_Cons 2 l in
- let* x = list_nth_mut i32 (List_Cons 1 l1) 2 in
- let* x1 = i32_add x 1 in
- let* l2 = list_nth_mut_back i32 (List_Cons 1 l1) 2 x1 in
- let* i = sum l2 in
- if not (i = 7) then Fail Failure else Return ()
-
-(** Unit test for [paper::test_nth] *)
-let _ = assert_norm (test_nth = Return ())
-
-(** [paper::call_choose]: forward function
- Source: 'src/paper.rs', lines 76:0-76:44 *)
-let call_choose (p : (u32 & u32)) : result u32 =
- let (px, py) = p in
- let* pz = choose u32 true px py in
- let* pz1 = u32_add pz 1 in
- let* (px1, _) = choose_back u32 true px py pz1 in
- Return px1
-
diff --git a/tests/fstar-split/misc/PoloniusList.fst b/tests/fstar-split/misc/PoloniusList.fst
deleted file mode 100644
index 8a8b7ae3..00000000
--- a/tests/fstar-split/misc/PoloniusList.fst
+++ /dev/null
@@ -1,34 +0,0 @@
-(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)
-(** [polonius_list] *)
-module PoloniusList
-open Primitives
-
-#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
-
-(** [polonius_list::List]
- Source: 'src/polonius_list.rs', lines 3:0-3:16 *)
-type list_t (t : Type0) =
-| List_Cons : t -> list_t t -> list_t t
-| List_Nil : list_t t
-
-(** [polonius_list::get_list_at_x]: forward function
- Source: 'src/polonius_list.rs', lines 13:0-13:76 *)
-let rec get_list_at_x (ls : list_t u32) (x : u32) : result (list_t u32) =
- begin match ls with
- | List_Cons hd tl ->
- if hd = x then Return (List_Cons hd tl) else get_list_at_x tl x
- | List_Nil -> Return List_Nil
- end
-
-(** [polonius_list::get_list_at_x]: backward function 0
- Source: 'src/polonius_list.rs', lines 13:0-13:76 *)
-let rec get_list_at_x_back
- (ls : list_t u32) (x : u32) (ret : list_t u32) : result (list_t u32) =
- begin match ls with
- | List_Cons hd tl ->
- if hd = x
- then Return ret
- else let* tl1 = get_list_at_x_back tl x ret in Return (List_Cons hd tl1)
- | List_Nil -> Return ret
- end
-
diff --git a/tests/fstar-split/misc/Primitives.fst b/tests/fstar-split/misc/Primitives.fst
deleted file mode 100644
index a3ffbde4..00000000
--- a/tests/fstar-split/misc/Primitives.fst
+++ /dev/null
@@ -1,884 +0,0 @@
-/// This file lists primitive and assumed functions and types
-module Primitives
-open FStar.Mul
-open FStar.List.Tot
-
-#set-options "--z3rlimit 15 --fuel 0 --ifuel 1"
-
-(*** Utilities *)
-val list_update (#a : Type0) (ls : list a) (i : nat{i < length ls}) (x : a) :
- ls':list a{
- length ls' = length ls /\
- index ls' i == x
- }
-#push-options "--fuel 1"
-let rec list_update #a ls i x =
- match ls with
- | x' :: ls -> if i = 0 then x :: ls else x' :: list_update ls (i-1) x
-#pop-options
-
-(*** Result *)
-type error : Type0 =
-| Failure
-| OutOfFuel
-
-type result (a : Type0) : Type0 =
-| Return : v:a -> result a
-| Fail : e:error -> result a
-
-// Monadic return operator
-unfold let return (#a : Type0) (x : a) : result a = Return x
-
-// Monadic bind operator.
-// Allows to use the notation:
-// ```
-// let* x = y in
-// ...
-// ```
-unfold let (let*) (#a #b : Type0) (m: result a)
- (f: (x:a) -> Pure (result b) (requires (m == Return x)) (ensures fun _ -> True)) :
- result b =
- match m with
- | Return x -> f x
- | Fail e -> Fail e
-
-// Monadic assert(...)
-let massert (b:bool) : result unit = if b then Return () else Fail Failure
-
-// Normalize and unwrap a successful result (used for globals).
-let eval_global (#a : Type0) (x : result a{Return? (normalize_term x)}) : a = Return?.v x
-
-(*** Misc *)
-type char = FStar.Char.char
-type string = string
-
-let is_zero (n: nat) : bool = n = 0
-let decrease (n: nat{n > 0}) : nat = n - 1
-
-let core_mem_replace (a : Type0) (x : a) (y : a) : a = x
-let core_mem_replace_back (a : Type0) (x : a) (y : a) : a = y
-
-// We don't really use raw pointers for now
-type mut_raw_ptr (t : Type0) = { v : t }
-type const_raw_ptr (t : Type0) = { v : t }
-
-(*** Scalars *)
-/// Rem.: most of the following code was partially generated
-
-assume val size_numbits : pos
-
-// TODO: we could use FStar.Int.int_t and FStar.UInt.int_t
-
-let isize_min : int = -9223372036854775808 // TODO: should be opaque
-let isize_max : int = 9223372036854775807 // TODO: should be opaque
-let i8_min : int = -128
-let i8_max : int = 127
-let i16_min : int = -32768
-let i16_max : int = 32767
-let i32_min : int = -2147483648
-let i32_max : int = 2147483647
-let i64_min : int = -9223372036854775808
-let i64_max : int = 9223372036854775807
-let i128_min : int = -170141183460469231731687303715884105728
-let i128_max : int = 170141183460469231731687303715884105727
-let usize_min : int = 0
-let usize_max : int = 4294967295 // TODO: should be opaque
-let u8_min : int = 0
-let u8_max : int = 255
-let u16_min : int = 0
-let u16_max : int = 65535
-let u32_min : int = 0
-let u32_max : int = 4294967295
-let u64_min : int = 0
-let u64_max : int = 18446744073709551615
-let u128_min : int = 0
-let u128_max : int = 340282366920938463463374607431768211455
-
-type scalar_ty =
-| Isize
-| I8
-| I16
-| I32
-| I64
-| I128
-| Usize
-| U8
-| U16
-| U32
-| U64
-| U128
-
-let is_unsigned = function
- | Isize | I8 | I16 | I32 | I64 | I128 -> false
- | Usize | U8 | U16 | U32 | U64 | U128 -> true
-
-let scalar_min (ty : scalar_ty) : int =
- match ty with
- | Isize -> isize_min
- | I8 -> i8_min
- | I16 -> i16_min
- | I32 -> i32_min
- | I64 -> i64_min
- | I128 -> i128_min
- | Usize -> usize_min
- | U8 -> u8_min
- | U16 -> u16_min
- | U32 -> u32_min
- | U64 -> u64_min
- | U128 -> u128_min
-
-let scalar_max (ty : scalar_ty) : int =
- match ty with
- | Isize -> isize_max
- | I8 -> i8_max
- | I16 -> i16_max
- | I32 -> i32_max
- | I64 -> i64_max
- | I128 -> i128_max
- | Usize -> usize_max
- | U8 -> u8_max
- | U16 -> u16_max
- | U32 -> u32_max
- | U64 -> u64_max
- | U128 -> u128_max
-
-type scalar (ty : scalar_ty) : eqtype = x:int{scalar_min ty <= x && x <= scalar_max ty}
-
-let mk_scalar (ty : scalar_ty) (x : int) : result (scalar ty) =
- if scalar_min ty <= x && scalar_max ty >= x then Return x else Fail Failure
-
-let scalar_neg (#ty : scalar_ty) (x : scalar ty) : result (scalar ty) = mk_scalar ty (-x)
-
-let scalar_div (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- if y <> 0 then mk_scalar ty (x / y) else Fail Failure
-
-/// The remainder operation
-let int_rem (x : int) (y : int{y <> 0}) : int =
- if x >= 0 then (x % y) else -(x % y)
-
-(* Checking consistency with Rust *)
-let _ = assert_norm(int_rem 1 2 = 1)
-let _ = assert_norm(int_rem (-1) 2 = -1)
-let _ = assert_norm(int_rem 1 (-2) = 1)
-let _ = assert_norm(int_rem (-1) (-2) = -1)
-
-let scalar_rem (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- if y <> 0 then mk_scalar ty (int_rem x y) else Fail Failure
-
-let scalar_add (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- mk_scalar ty (x + y)
-
-let scalar_sub (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- mk_scalar ty (x - y)
-
-let scalar_mul (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- mk_scalar ty (x * y)
-
-let scalar_xor (#ty : scalar_ty)
- (x : scalar ty) (y : scalar ty) : scalar ty =
- match ty with
- | U8 -> FStar.UInt.logxor #8 x y
- | U16 -> FStar.UInt.logxor #16 x y
- | U32 -> FStar.UInt.logxor #32 x y
- | U64 -> FStar.UInt.logxor #64 x y
- | U128 -> FStar.UInt.logxor #128 x y
- | Usize -> admit() // TODO
- | I8 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 8);
- normalize_spec (scalar I8);
- FStar.Int.logxor #8 x y
- | I16 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 16);
- normalize_spec (scalar I16);
- FStar.Int.logxor #16 x y
- | I32 -> FStar.Int.logxor #32 x y
- | I64 -> FStar.Int.logxor #64 x y
- | I128 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 128);
- normalize_spec (scalar I128);
- FStar.Int.logxor #128 x y
- | Isize -> admit() // TODO
-
-let scalar_or (#ty : scalar_ty)
- (x : scalar ty) (y : scalar ty) : scalar ty =
- match ty with
- | U8 -> FStar.UInt.logor #8 x y
- | U16 -> FStar.UInt.logor #16 x y
- | U32 -> FStar.UInt.logor #32 x y
- | U64 -> FStar.UInt.logor #64 x y
- | U128 -> FStar.UInt.logor #128 x y
- | Usize -> admit() // TODO
- | I8 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 8);
- normalize_spec (scalar I8);
- FStar.Int.logor #8 x y
- | I16 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 16);
- normalize_spec (scalar I16);
- FStar.Int.logor #16 x y
- | I32 -> FStar.Int.logor #32 x y
- | I64 -> FStar.Int.logor #64 x y
- | I128 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 128);
- normalize_spec (scalar I128);
- FStar.Int.logor #128 x y
- | Isize -> admit() // TODO
-
-let scalar_and (#ty : scalar_ty)
- (x : scalar ty) (y : scalar ty) : scalar ty =
- match ty with
- | U8 -> FStar.UInt.logand #8 x y
- | U16 -> FStar.UInt.logand #16 x y
- | U32 -> FStar.UInt.logand #32 x y
- | U64 -> FStar.UInt.logand #64 x y
- | U128 -> FStar.UInt.logand #128 x y
- | Usize -> admit() // TODO
- | I8 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 8);
- normalize_spec (scalar I8);
- FStar.Int.logand #8 x y
- | I16 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 16);
- normalize_spec (scalar I16);
- FStar.Int.logand #16 x y
- | I32 -> FStar.Int.logand #32 x y
- | I64 -> FStar.Int.logand #64 x y
- | I128 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 128);
- normalize_spec (scalar I128);
- FStar.Int.logand #128 x y
- | Isize -> admit() // TODO
-
-// Shift left
-let scalar_shl (#ty0 #ty1 : scalar_ty)
- (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) =
- admit()
-
-// Shift right
-let scalar_shr (#ty0 #ty1 : scalar_ty)
- (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) =
- admit()
-
-(** Cast an integer from a [src_ty] to a [tgt_ty] *)
-// TODO: check the semantics of casts in Rust
-let scalar_cast (src_ty : scalar_ty) (tgt_ty : scalar_ty) (x : scalar src_ty) : result (scalar tgt_ty) =
- mk_scalar tgt_ty x
-
-// This can't fail, but for now we make all casts faillible (easier for the translation)
-let scalar_cast_bool (tgt_ty : scalar_ty) (x : bool) : result (scalar tgt_ty) =
- mk_scalar tgt_ty (if x then 1 else 0)
-
-/// The scalar types
-type isize : eqtype = scalar Isize
-type i8 : eqtype = scalar I8
-type i16 : eqtype = scalar I16
-type i32 : eqtype = scalar I32
-type i64 : eqtype = scalar I64
-type i128 : eqtype = scalar I128
-type usize : eqtype = scalar Usize
-type u8 : eqtype = scalar U8
-type u16 : eqtype = scalar U16
-type u32 : eqtype = scalar U32
-type u64 : eqtype = scalar U64
-type u128 : eqtype = scalar U128
-
-
-let core_isize_min : isize = isize_min
-let core_isize_max : isize = isize_max
-let core_i8_min : i8 = i8_min
-let core_i8_max : i8 = i8_max
-let core_i16_min : i16 = i16_min
-let core_i16_max : i16 = i16_max
-let core_i32_min : i32 = i32_min
-let core_i32_max : i32 = i32_max
-let core_i64_min : i64 = i64_min
-let core_i64_max : i64 = i64_max
-let core_i128_min : i128 = i128_min
-let core_i128_max : i128 = i128_max
-
-let core_usize_min : usize = usize_min
-let core_usize_max : usize = usize_max
-let core_u8_min : u8 = u8_min
-let core_u8_max : u8 = u8_max
-let core_u16_min : u16 = u16_min
-let core_u16_max : u16 = u16_max
-let core_u32_min : u32 = u32_min
-let core_u32_max : u32 = u32_max
-let core_u64_min : u64 = u64_min
-let core_u64_max : u64 = u64_max
-let core_u128_min : u128 = u128_min
-let core_u128_max : u128 = u128_max
-
-/// Negation
-let isize_neg = scalar_neg #Isize
-let i8_neg = scalar_neg #I8
-let i16_neg = scalar_neg #I16
-let i32_neg = scalar_neg #I32
-let i64_neg = scalar_neg #I64
-let i128_neg = scalar_neg #I128
-
-/// Division
-let isize_div = scalar_div #Isize
-let i8_div = scalar_div #I8
-let i16_div = scalar_div #I16
-let i32_div = scalar_div #I32
-let i64_div = scalar_div #I64
-let i128_div = scalar_div #I128
-let usize_div = scalar_div #Usize
-let u8_div = scalar_div #U8
-let u16_div = scalar_div #U16
-let u32_div = scalar_div #U32
-let u64_div = scalar_div #U64
-let u128_div = scalar_div #U128
-
-/// Remainder
-let isize_rem = scalar_rem #Isize
-let i8_rem = scalar_rem #I8
-let i16_rem = scalar_rem #I16
-let i32_rem = scalar_rem #I32
-let i64_rem = scalar_rem #I64
-let i128_rem = scalar_rem #I128
-let usize_rem = scalar_rem #Usize
-let u8_rem = scalar_rem #U8
-let u16_rem = scalar_rem #U16
-let u32_rem = scalar_rem #U32
-let u64_rem = scalar_rem #U64
-let u128_rem = scalar_rem #U128
-
-/// Addition
-let isize_add = scalar_add #Isize
-let i8_add = scalar_add #I8
-let i16_add = scalar_add #I16
-let i32_add = scalar_add #I32
-let i64_add = scalar_add #I64
-let i128_add = scalar_add #I128
-let usize_add = scalar_add #Usize
-let u8_add = scalar_add #U8
-let u16_add = scalar_add #U16
-let u32_add = scalar_add #U32
-let u64_add = scalar_add #U64
-let u128_add = scalar_add #U128
-
-/// Subtraction
-let isize_sub = scalar_sub #Isize
-let i8_sub = scalar_sub #I8
-let i16_sub = scalar_sub #I16
-let i32_sub = scalar_sub #I32
-let i64_sub = scalar_sub #I64
-let i128_sub = scalar_sub #I128
-let usize_sub = scalar_sub #Usize
-let u8_sub = scalar_sub #U8
-let u16_sub = scalar_sub #U16
-let u32_sub = scalar_sub #U32
-let u64_sub = scalar_sub #U64
-let u128_sub = scalar_sub #U128
-
-/// Multiplication
-let isize_mul = scalar_mul #Isize
-let i8_mul = scalar_mul #I8
-let i16_mul = scalar_mul #I16
-let i32_mul = scalar_mul #I32
-let i64_mul = scalar_mul #I64
-let i128_mul = scalar_mul #I128
-let usize_mul = scalar_mul #Usize
-let u8_mul = scalar_mul #U8
-let u16_mul = scalar_mul #U16
-let u32_mul = scalar_mul #U32
-let u64_mul = scalar_mul #U64
-let u128_mul = scalar_mul #U128
-
-/// Xor
-let u8_xor = scalar_xor #U8
-let u16_xor = scalar_xor #U16
-let u32_xor = scalar_xor #U32
-let u64_xor = scalar_xor #U64
-let u128_xor = scalar_xor #U128
-let usize_xor = scalar_xor #Usize
-let i8_xor = scalar_xor #I8
-let i16_xor = scalar_xor #I16
-let i32_xor = scalar_xor #I32
-let i64_xor = scalar_xor #I64
-let i128_xor = scalar_xor #I128
-let isize_xor = scalar_xor #Isize
-
-/// Or
-let u8_or = scalar_or #U8
-let u16_or = scalar_or #U16
-let u32_or = scalar_or #U32
-let u64_or = scalar_or #U64
-let u128_or = scalar_or #U128
-let usize_or = scalar_or #Usize
-let i8_or = scalar_or #I8
-let i16_or = scalar_or #I16
-let i32_or = scalar_or #I32
-let i64_or = scalar_or #I64
-let i128_or = scalar_or #I128
-let isize_or = scalar_or #Isize
-
-/// And
-let u8_and = scalar_and #U8
-let u16_and = scalar_and #U16
-let u32_and = scalar_and #U32
-let u64_and = scalar_and #U64
-let u128_and = scalar_and #U128
-let usize_and = scalar_and #Usize
-let i8_and = scalar_and #I8
-let i16_and = scalar_and #I16
-let i32_and = scalar_and #I32
-let i64_and = scalar_and #I64
-let i128_and = scalar_and #I128
-let isize_and = scalar_and #Isize
-
-/// Shift left
-let u8_shl #ty = scalar_shl #U8 #ty
-let u16_shl #ty = scalar_shl #U16 #ty
-let u32_shl #ty = scalar_shl #U32 #ty
-let u64_shl #ty = scalar_shl #U64 #ty
-let u128_shl #ty = scalar_shl #U128 #ty
-let usize_shl #ty = scalar_shl #Usize #ty
-let i8_shl #ty = scalar_shl #I8 #ty
-let i16_shl #ty = scalar_shl #I16 #ty
-let i32_shl #ty = scalar_shl #I32 #ty
-let i64_shl #ty = scalar_shl #I64 #ty
-let i128_shl #ty = scalar_shl #I128 #ty
-let isize_shl #ty = scalar_shl #Isize #ty
-
-/// Shift right
-let u8_shr #ty = scalar_shr #U8 #ty
-let u16_shr #ty = scalar_shr #U16 #ty
-let u32_shr #ty = scalar_shr #U32 #ty
-let u64_shr #ty = scalar_shr #U64 #ty
-let u128_shr #ty = scalar_shr #U128 #ty
-let usize_shr #ty = scalar_shr #Usize #ty
-let i8_shr #ty = scalar_shr #I8 #ty
-let i16_shr #ty = scalar_shr #I16 #ty
-let i32_shr #ty = scalar_shr #I32 #ty
-let i64_shr #ty = scalar_shr #I64 #ty
-let i128_shr #ty = scalar_shr #I128 #ty
-let isize_shr #ty = scalar_shr #Isize #ty
-
-(*** core::ops *)
-
-// Trait declaration: [core::ops::index::Index]
-noeq type core_ops_index_Index (self idx : Type0) = {
- output : Type0;
- index : self → idx → result output
-}
-
-// Trait declaration: [core::ops::index::IndexMut]
-noeq type core_ops_index_IndexMut (self idx : Type0) = {
- indexInst : core_ops_index_Index self idx;
- index_mut : self → idx → result indexInst.output;
- index_mut_back : self → idx → indexInst.output → result self;
-}
-
-// Trait declaration [core::ops::deref::Deref]
-noeq type core_ops_deref_Deref (self : Type0) = {
- target : Type0;
- deref : self → result target;
-}
-
-// Trait declaration [core::ops::deref::DerefMut]
-noeq type core_ops_deref_DerefMut (self : Type0) = {
- derefInst : core_ops_deref_Deref self;
- deref_mut : self → result derefInst.target;
- deref_mut_back : self → derefInst.target → result self;
-}
-
-type core_ops_range_Range (a : Type0) = {
- start : a;
- end_ : a;
-}
-
-(*** [alloc] *)
-
-let alloc_boxed_Box_deref (t : Type0) (x : t) : result t = Return x
-let alloc_boxed_Box_deref_mut (t : Type0) (x : t) : result t = Return x
-let alloc_boxed_Box_deref_mut_back (t : Type) (_ : t) (x : t) : result t = Return x
-
-// Trait instance
-let alloc_boxed_Box_coreopsDerefInst (self : Type0) : core_ops_deref_Deref self = {
- target = self;
- deref = alloc_boxed_Box_deref self;
-}
-
-// Trait instance
-let alloc_boxed_Box_coreopsDerefMutInst (self : Type0) : core_ops_deref_DerefMut self = {
- derefInst = alloc_boxed_Box_coreopsDerefInst self;
- deref_mut = alloc_boxed_Box_deref_mut self;
- deref_mut_back = alloc_boxed_Box_deref_mut_back self;
-}
-
-(*** Array *)
-type array (a : Type0) (n : usize) = s:list a{length s = n}
-
-// We tried putting the normalize_term condition as a refinement on the list
-// but it didn't work. It works with the requires clause.
-let mk_array (a : Type0) (n : usize)
- (l : list a) :
- Pure (array a n)
- (requires (normalize_term(FStar.List.Tot.length l) = n))
- (ensures (fun _ -> True)) =
- normalize_term_spec (FStar.List.Tot.length l);
- l
-
-let array_index_usize (a : Type0) (n : usize) (x : array a n) (i : usize) : result a =
- if i < length x then Return (index x i)
- else Fail Failure
-
-let array_update_usize (a : Type0) (n : usize) (x : array a n) (i : usize) (nx : a) : result (array a n) =
- if i < length x then Return (list_update x i nx)
- else Fail Failure
-
-(*** Slice *)
-type slice (a : Type0) = s:list a{length s <= usize_max}
-
-let slice_len (a : Type0) (s : slice a) : usize = length s
-
-let slice_index_usize (a : Type0) (x : slice a) (i : usize) : result a =
- if i < length x then Return (index x i)
- else Fail Failure
-
-let slice_update_usize (a : Type0) (x : slice a) (i : usize) (nx : a) : result (slice a) =
- if i < length x then Return (list_update x i nx)
- else Fail Failure
-
-(*** Subslices *)
-
-let array_to_slice (a : Type0) (n : usize) (x : array a n) : result (slice a) = Return x
-let array_from_slice (a : Type0) (n : usize) (x : array a n) (s : slice a) : result (array a n) =
- if length s = n then Return s
- else Fail Failure
-
-// TODO: finish the definitions below (there lacks [List.drop] and [List.take] in the standard library *)
-let array_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) : result (slice a) =
- admit()
-
-let array_update_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) (ns : slice a) : result (array a n) =
- admit()
-
-let array_repeat (a : Type0) (n : usize) (x : a) : array a n =
- admit()
-
-let slice_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) : result (slice a) =
- admit()
-
-let slice_update_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) (ns : slice a) : result (slice a) =
- admit()
-
-(*** Vector *)
-type alloc_vec_Vec (a : Type0) = v:list a{length v <= usize_max}
-
-let alloc_vec_Vec_new (a : Type0) : alloc_vec_Vec a = assert_norm(length #a [] == 0); []
-let alloc_vec_Vec_len (a : Type0) (v : alloc_vec_Vec a) : usize = length v
-
-// Helper
-let alloc_vec_Vec_index_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : result a =
- if i < length v then Return (index v i) else Fail Failure
-// Helper
-let alloc_vec_Vec_update_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) =
- if i < length v then Return (list_update v i x) else Fail Failure
-
-// The **forward** function shouldn't be used
-let alloc_vec_Vec_push_fwd (a : Type0) (v : alloc_vec_Vec a) (x : a) : unit = ()
-let alloc_vec_Vec_push (a : Type0) (v : alloc_vec_Vec a) (x : a) :
- Pure (result (alloc_vec_Vec a))
- (requires True)
- (ensures (fun res ->
- match res with
- | Fail e -> e == Failure
- | Return v' -> length v' = length v + 1)) =
- if length v < usize_max then begin
- (**) assert_norm(length [x] == 1);
- (**) append_length v [x];
- (**) assert(length (append v [x]) = length v + 1);
- Return (append v [x])
- end
- else Fail Failure
-
-// The **forward** function shouldn't be used
-let alloc_vec_Vec_insert_fwd (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result unit =
- if i < length v then Return () else Fail Failure
-let alloc_vec_Vec_insert (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) =
- if i < length v then Return (list_update v i x) else Fail Failure
-
-// Trait declaration: [core::slice::index::private_slice_index::Sealed]
-type core_slice_index_private_slice_index_Sealed (self : Type0) = unit
-
-// Trait declaration: [core::slice::index::SliceIndex]
-noeq type core_slice_index_SliceIndex (self t : Type0) = {
- sealedInst : core_slice_index_private_slice_index_Sealed self;
- output : Type0;
- get : self → t → result (option output);
- get_mut : self → t → result (option output);
- get_mut_back : self → t → option output → result t;
- get_unchecked : self → const_raw_ptr t → result (const_raw_ptr output);
- get_unchecked_mut : self → mut_raw_ptr t → result (mut_raw_ptr output);
- index : self → t → result output;
- index_mut : self → t → result output;
- index_mut_back : self → t → output → result t;
-}
-
-// [core::slice::index::[T]::index]: forward function
-let core_slice_index_Slice_index
- (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
- (s : slice t) (i : idx) : result inst.output =
- let* x = inst.get i s in
- match x with
- | None -> Fail Failure
- | Some x -> Return x
-
-// [core::slice::index::Range:::get]: forward function
-let core_slice_index_RangeUsize_get (t : Type0) (i : core_ops_range_Range usize) (s : slice t) :
- result (option (slice t)) =
- admit () // TODO
-
-// [core::slice::index::Range::get_mut]: forward function
-let core_slice_index_RangeUsize_get_mut
- (t : Type0) : core_ops_range_Range usize → slice t → result (option (slice t)) =
- admit () // TODO
-
-// [core::slice::index::Range::get_mut]: backward function 0
-let core_slice_index_RangeUsize_get_mut_back
- (t : Type0) :
- core_ops_range_Range usize → slice t → option (slice t) → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::Range::get_unchecked]: forward function
-let core_slice_index_RangeUsize_get_unchecked
- (t : Type0) :
- core_ops_range_Range usize → const_raw_ptr (slice t) → result (const_raw_ptr (slice t)) =
- // Don't know what the model should be - for now we always fail to make
- // sure code which uses it fails
- fun _ _ -> Fail Failure
-
-// [core::slice::index::Range::get_unchecked_mut]: forward function
-let core_slice_index_RangeUsize_get_unchecked_mut
- (t : Type0) :
- core_ops_range_Range usize → mut_raw_ptr (slice t) → result (mut_raw_ptr (slice t)) =
- // Don't know what the model should be - for now we always fail to make
- // sure code which uses it fails
- fun _ _ -> Fail Failure
-
-// [core::slice::index::Range::index]: forward function
-let core_slice_index_RangeUsize_index
- (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::Range::index_mut]: forward function
-let core_slice_index_RangeUsize_index_mut
- (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::Range::index_mut]: backward function 0
-let core_slice_index_RangeUsize_index_mut_back
- (t : Type0) : core_ops_range_Range usize → slice t → slice t → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::[T]::index_mut]: forward function
-let core_slice_index_Slice_index_mut
- (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) :
- slice t → idx → result inst.output =
- admit () //
-
-// [core::slice::index::[T]::index_mut]: backward function 0
-let core_slice_index_Slice_index_mut_back
- (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) :
- slice t → idx → inst.output → result (slice t) =
- admit () // TODO
-
-// [core::array::[T; N]::index]: forward function
-let core_array_Array_index
- (t idx : Type0) (n : usize) (inst : core_ops_index_Index (slice t) idx)
- (a : array t n) (i : idx) : result inst.output =
- admit () // TODO
-
-// [core::array::[T; N]::index_mut]: forward function
-let core_array_Array_index_mut
- (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx)
- (a : array t n) (i : idx) : result inst.indexInst.output =
- admit () // TODO
-
-// [core::array::[T; N]::index_mut]: backward function 0
-let core_array_Array_index_mut_back
- (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx)
- (a : array t n) (i : idx) (x : inst.indexInst.output) : result (array t n) =
- admit () // TODO
-
-// Trait implementation: [core::slice::index::private_slice_index::Range]
-let core_slice_index_private_slice_index_SealedRangeUsizeInst
- : core_slice_index_private_slice_index_Sealed (core_ops_range_Range usize) = ()
-
-// Trait implementation: [core::slice::index::Range]
-let core_slice_index_SliceIndexRangeUsizeSliceTInst (t : Type0) :
- core_slice_index_SliceIndex (core_ops_range_Range usize) (slice t) = {
- sealedInst = core_slice_index_private_slice_index_SealedRangeUsizeInst;
- output = slice t;
- get = core_slice_index_RangeUsize_get t;
- get_mut = core_slice_index_RangeUsize_get_mut t;
- get_mut_back = core_slice_index_RangeUsize_get_mut_back t;
- get_unchecked = core_slice_index_RangeUsize_get_unchecked t;
- get_unchecked_mut = core_slice_index_RangeUsize_get_unchecked_mut t;
- index = core_slice_index_RangeUsize_index t;
- index_mut = core_slice_index_RangeUsize_index_mut t;
- index_mut_back = core_slice_index_RangeUsize_index_mut_back t;
-}
-
-// Trait implementation: [core::slice::index::[T]]
-let core_ops_index_IndexSliceTIInst (t idx : Type0)
- (inst : core_slice_index_SliceIndex idx (slice t)) :
- core_ops_index_Index (slice t) idx = {
- output = inst.output;
- index = core_slice_index_Slice_index t idx inst;
-}
-
-// Trait implementation: [core::slice::index::[T]]
-let core_ops_index_IndexMutSliceTIInst (t idx : Type0)
- (inst : core_slice_index_SliceIndex idx (slice t)) :
- core_ops_index_IndexMut (slice t) idx = {
- indexInst = core_ops_index_IndexSliceTIInst t idx inst;
- index_mut = core_slice_index_Slice_index_mut t idx inst;
- index_mut_back = core_slice_index_Slice_index_mut_back t idx inst;
-}
-
-// Trait implementation: [core::array::[T; N]]
-let core_ops_index_IndexArrayInst (t idx : Type0) (n : usize)
- (inst : core_ops_index_Index (slice t) idx) :
- core_ops_index_Index (array t n) idx = {
- output = inst.output;
- index = core_array_Array_index t idx n inst;
-}
-
-// Trait implementation: [core::array::[T; N]]
-let core_ops_index_IndexMutArrayIInst (t idx : Type0) (n : usize)
- (inst : core_ops_index_IndexMut (slice t) idx) :
- core_ops_index_IndexMut (array t n) idx = {
- indexInst = core_ops_index_IndexArrayInst t idx n inst.indexInst;
- index_mut = core_array_Array_index_mut t idx n inst;
- index_mut_back = core_array_Array_index_mut_back t idx n inst;
-}
-
-// [core::slice::index::usize::get]: forward function
-let core_slice_index_usize_get
- (t : Type0) : usize → slice t → result (option t) =
- admit () // TODO
-
-// [core::slice::index::usize::get_mut]: forward function
-let core_slice_index_usize_get_mut
- (t : Type0) : usize → slice t → result (option t) =
- admit () // TODO
-
-// [core::slice::index::usize::get_mut]: backward function 0
-let core_slice_index_usize_get_mut_back
- (t : Type0) : usize → slice t → option t → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::usize::get_unchecked]: forward function
-let core_slice_index_usize_get_unchecked
- (t : Type0) : usize → const_raw_ptr (slice t) → result (const_raw_ptr t) =
- admit () // TODO
-
-// [core::slice::index::usize::get_unchecked_mut]: forward function
-let core_slice_index_usize_get_unchecked_mut
- (t : Type0) : usize → mut_raw_ptr (slice t) → result (mut_raw_ptr t) =
- admit () // TODO
-
-// [core::slice::index::usize::index]: forward function
-let core_slice_index_usize_index (t : Type0) : usize → slice t → result t =
- admit () // TODO
-
-// [core::slice::index::usize::index_mut]: forward function
-let core_slice_index_usize_index_mut (t : Type0) : usize → slice t → result t =
- admit () // TODO
-
-// [core::slice::index::usize::index_mut]: backward function 0
-let core_slice_index_usize_index_mut_back
- (t : Type0) : usize → slice t → t → result (slice t) =
- admit () // TODO
-
-// Trait implementation: [core::slice::index::private_slice_index::usize]
-let core_slice_index_private_slice_index_SealedUsizeInst
- : core_slice_index_private_slice_index_Sealed usize = ()
-
-// Trait implementation: [core::slice::index::usize]
-let core_slice_index_SliceIndexUsizeSliceTInst (t : Type0) :
- core_slice_index_SliceIndex usize (slice t) = {
- sealedInst = core_slice_index_private_slice_index_SealedUsizeInst;
- output = t;
- get = core_slice_index_usize_get t;
- get_mut = core_slice_index_usize_get_mut t;
- get_mut_back = core_slice_index_usize_get_mut_back t;
- get_unchecked = core_slice_index_usize_get_unchecked t;
- get_unchecked_mut = core_slice_index_usize_get_unchecked_mut t;
- index = core_slice_index_usize_index t;
- index_mut = core_slice_index_usize_index_mut t;
- index_mut_back = core_slice_index_usize_index_mut_back t;
-}
-
-// [alloc::vec::Vec::index]: forward function
-let alloc_vec_Vec_index (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
- (self : alloc_vec_Vec t) (i : idx) : result inst.output =
- admit () // TODO
-
-// [alloc::vec::Vec::index_mut]: forward function
-let alloc_vec_Vec_index_mut (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
- (self : alloc_vec_Vec t) (i : idx) : result inst.output =
- admit () // TODO
-
-// [alloc::vec::Vec::index_mut]: backward function 0
-let alloc_vec_Vec_index_mut_back
- (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
- (self : alloc_vec_Vec t) (i : idx) (x : inst.output) : result (alloc_vec_Vec t) =
- admit () // TODO
-
-// Trait implementation: [alloc::vec::Vec]
-let alloc_vec_Vec_coreopsindexIndexInst (t idx : Type0)
- (inst : core_slice_index_SliceIndex idx (slice t)) :
- core_ops_index_Index (alloc_vec_Vec t) idx = {
- output = inst.output;
- index = alloc_vec_Vec_index t idx inst;
-}
-
-// Trait implementation: [alloc::vec::Vec]
-let alloc_vec_Vec_coreopsindexIndexMutInst (t idx : Type0)
- (inst : core_slice_index_SliceIndex idx (slice t)) :
- core_ops_index_IndexMut (alloc_vec_Vec t) idx = {
- indexInst = alloc_vec_Vec_coreopsindexIndexInst t idx inst;
- index_mut = alloc_vec_Vec_index_mut t idx inst;
- index_mut_back = alloc_vec_Vec_index_mut_back t idx inst;
-}
-
-(*** Theorems *)
-
-let alloc_vec_Vec_index_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) :
- Lemma (
- alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i ==
- alloc_vec_Vec_index_usize v i)
- [SMTPat (alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)]
- =
- admit()
-
-let alloc_vec_Vec_index_mut_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) :
- Lemma (
- alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i ==
- alloc_vec_Vec_index_usize v i)
- [SMTPat (alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)]
- =
- admit()
-
-let alloc_vec_Vec_index_mut_back_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) :
- Lemma (
- alloc_vec_Vec_index_mut_back a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i x ==
- alloc_vec_Vec_update_usize v i x)
- [SMTPat (alloc_vec_Vec_index_mut_back a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i x)]
- =
- admit()
diff --git a/tests/fstar-split/traits/Makefile b/tests/fstar-split/traits/Makefile
deleted file mode 100644
index fa7d1f36..00000000
--- a/tests/fstar-split/traits/Makefile
+++ /dev/null
@@ -1,49 +0,0 @@
-# This file was automatically generated - modify ../Makefile.template instead
-INCLUDE_DIRS = .
-
-FSTAR_INCLUDES = $(addprefix --include ,$(INCLUDE_DIRS))
-
-FSTAR_HINTS ?= --use_hints --use_hint_hashes --record_hints
-
-FSTAR_OPTIONS = $(FSTAR_HINTS) \
- --cache_checked_modules $(FSTAR_INCLUDES) --cmi \
- --warn_error '+241@247+285-274' \
-
-FSTAR_EXE ?= fstar.exe
-FSTAR_NO_FLAGS = $(FSTAR_EXE) --already_cached 'Prims FStar LowStar Steel' --odir obj --cache_dir obj
-
-FSTAR = $(FSTAR_NO_FLAGS) $(FSTAR_OPTIONS)
-
-# The F* roots are used to compute the dependency graph, and generate the .depend file
-FSTAR_ROOTS ?= $(wildcard *.fst *.fsti)
-
-# Build all the files
-all: $(addprefix obj/,$(addsuffix .checked,$(FSTAR_ROOTS)))
-
-# This is the right way to ensure the .depend file always gets re-built.
-ifeq (,$(filter %-in,$(MAKECMDGOALS)))
-ifndef NODEPEND
-ifndef MAKE_RESTARTS
-.depend: .FORCE
- $(FSTAR_NO_FLAGS) --dep full $(notdir $(FSTAR_ROOTS)) > $@
-
-.PHONY: .FORCE
-.FORCE:
-endif
-endif
-
-include .depend
-endif
-
-# For the interactive mode
-%.fst-in %.fsti-in:
- @echo $(FSTAR_OPTIONS)
-
-# Generete the .checked files in batch mode
-%.checked:
- $(FSTAR) $(FSTAR_OPTIONS) $< && \
- touch -c $@
-
-.PHONY: clean
-clean:
- rm -f obj/*
diff --git a/tests/fstar-split/traits/Primitives.fst b/tests/fstar-split/traits/Primitives.fst
deleted file mode 100644
index a3ffbde4..00000000
--- a/tests/fstar-split/traits/Primitives.fst
+++ /dev/null
@@ -1,884 +0,0 @@
-/// This file lists primitive and assumed functions and types
-module Primitives
-open FStar.Mul
-open FStar.List.Tot
-
-#set-options "--z3rlimit 15 --fuel 0 --ifuel 1"
-
-(*** Utilities *)
-val list_update (#a : Type0) (ls : list a) (i : nat{i < length ls}) (x : a) :
- ls':list a{
- length ls' = length ls /\
- index ls' i == x
- }
-#push-options "--fuel 1"
-let rec list_update #a ls i x =
- match ls with
- | x' :: ls -> if i = 0 then x :: ls else x' :: list_update ls (i-1) x
-#pop-options
-
-(*** Result *)
-type error : Type0 =
-| Failure
-| OutOfFuel
-
-type result (a : Type0) : Type0 =
-| Return : v:a -> result a
-| Fail : e:error -> result a
-
-// Monadic return operator
-unfold let return (#a : Type0) (x : a) : result a = Return x
-
-// Monadic bind operator.
-// Allows to use the notation:
-// ```
-// let* x = y in
-// ...
-// ```
-unfold let (let*) (#a #b : Type0) (m: result a)
- (f: (x:a) -> Pure (result b) (requires (m == Return x)) (ensures fun _ -> True)) :
- result b =
- match m with
- | Return x -> f x
- | Fail e -> Fail e
-
-// Monadic assert(...)
-let massert (b:bool) : result unit = if b then Return () else Fail Failure
-
-// Normalize and unwrap a successful result (used for globals).
-let eval_global (#a : Type0) (x : result a{Return? (normalize_term x)}) : a = Return?.v x
-
-(*** Misc *)
-type char = FStar.Char.char
-type string = string
-
-let is_zero (n: nat) : bool = n = 0
-let decrease (n: nat{n > 0}) : nat = n - 1
-
-let core_mem_replace (a : Type0) (x : a) (y : a) : a = x
-let core_mem_replace_back (a : Type0) (x : a) (y : a) : a = y
-
-// We don't really use raw pointers for now
-type mut_raw_ptr (t : Type0) = { v : t }
-type const_raw_ptr (t : Type0) = { v : t }
-
-(*** Scalars *)
-/// Rem.: most of the following code was partially generated
-
-assume val size_numbits : pos
-
-// TODO: we could use FStar.Int.int_t and FStar.UInt.int_t
-
-let isize_min : int = -9223372036854775808 // TODO: should be opaque
-let isize_max : int = 9223372036854775807 // TODO: should be opaque
-let i8_min : int = -128
-let i8_max : int = 127
-let i16_min : int = -32768
-let i16_max : int = 32767
-let i32_min : int = -2147483648
-let i32_max : int = 2147483647
-let i64_min : int = -9223372036854775808
-let i64_max : int = 9223372036854775807
-let i128_min : int = -170141183460469231731687303715884105728
-let i128_max : int = 170141183460469231731687303715884105727
-let usize_min : int = 0
-let usize_max : int = 4294967295 // TODO: should be opaque
-let u8_min : int = 0
-let u8_max : int = 255
-let u16_min : int = 0
-let u16_max : int = 65535
-let u32_min : int = 0
-let u32_max : int = 4294967295
-let u64_min : int = 0
-let u64_max : int = 18446744073709551615
-let u128_min : int = 0
-let u128_max : int = 340282366920938463463374607431768211455
-
-type scalar_ty =
-| Isize
-| I8
-| I16
-| I32
-| I64
-| I128
-| Usize
-| U8
-| U16
-| U32
-| U64
-| U128
-
-let is_unsigned = function
- | Isize | I8 | I16 | I32 | I64 | I128 -> false
- | Usize | U8 | U16 | U32 | U64 | U128 -> true
-
-let scalar_min (ty : scalar_ty) : int =
- match ty with
- | Isize -> isize_min
- | I8 -> i8_min
- | I16 -> i16_min
- | I32 -> i32_min
- | I64 -> i64_min
- | I128 -> i128_min
- | Usize -> usize_min
- | U8 -> u8_min
- | U16 -> u16_min
- | U32 -> u32_min
- | U64 -> u64_min
- | U128 -> u128_min
-
-let scalar_max (ty : scalar_ty) : int =
- match ty with
- | Isize -> isize_max
- | I8 -> i8_max
- | I16 -> i16_max
- | I32 -> i32_max
- | I64 -> i64_max
- | I128 -> i128_max
- | Usize -> usize_max
- | U8 -> u8_max
- | U16 -> u16_max
- | U32 -> u32_max
- | U64 -> u64_max
- | U128 -> u128_max
-
-type scalar (ty : scalar_ty) : eqtype = x:int{scalar_min ty <= x && x <= scalar_max ty}
-
-let mk_scalar (ty : scalar_ty) (x : int) : result (scalar ty) =
- if scalar_min ty <= x && scalar_max ty >= x then Return x else Fail Failure
-
-let scalar_neg (#ty : scalar_ty) (x : scalar ty) : result (scalar ty) = mk_scalar ty (-x)
-
-let scalar_div (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- if y <> 0 then mk_scalar ty (x / y) else Fail Failure
-
-/// The remainder operation
-let int_rem (x : int) (y : int{y <> 0}) : int =
- if x >= 0 then (x % y) else -(x % y)
-
-(* Checking consistency with Rust *)
-let _ = assert_norm(int_rem 1 2 = 1)
-let _ = assert_norm(int_rem (-1) 2 = -1)
-let _ = assert_norm(int_rem 1 (-2) = 1)
-let _ = assert_norm(int_rem (-1) (-2) = -1)
-
-let scalar_rem (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- if y <> 0 then mk_scalar ty (int_rem x y) else Fail Failure
-
-let scalar_add (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- mk_scalar ty (x + y)
-
-let scalar_sub (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- mk_scalar ty (x - y)
-
-let scalar_mul (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
- mk_scalar ty (x * y)
-
-let scalar_xor (#ty : scalar_ty)
- (x : scalar ty) (y : scalar ty) : scalar ty =
- match ty with
- | U8 -> FStar.UInt.logxor #8 x y
- | U16 -> FStar.UInt.logxor #16 x y
- | U32 -> FStar.UInt.logxor #32 x y
- | U64 -> FStar.UInt.logxor #64 x y
- | U128 -> FStar.UInt.logxor #128 x y
- | Usize -> admit() // TODO
- | I8 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 8);
- normalize_spec (scalar I8);
- FStar.Int.logxor #8 x y
- | I16 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 16);
- normalize_spec (scalar I16);
- FStar.Int.logxor #16 x y
- | I32 -> FStar.Int.logxor #32 x y
- | I64 -> FStar.Int.logxor #64 x y
- | I128 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 128);
- normalize_spec (scalar I128);
- FStar.Int.logxor #128 x y
- | Isize -> admit() // TODO
-
-let scalar_or (#ty : scalar_ty)
- (x : scalar ty) (y : scalar ty) : scalar ty =
- match ty with
- | U8 -> FStar.UInt.logor #8 x y
- | U16 -> FStar.UInt.logor #16 x y
- | U32 -> FStar.UInt.logor #32 x y
- | U64 -> FStar.UInt.logor #64 x y
- | U128 -> FStar.UInt.logor #128 x y
- | Usize -> admit() // TODO
- | I8 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 8);
- normalize_spec (scalar I8);
- FStar.Int.logor #8 x y
- | I16 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 16);
- normalize_spec (scalar I16);
- FStar.Int.logor #16 x y
- | I32 -> FStar.Int.logor #32 x y
- | I64 -> FStar.Int.logor #64 x y
- | I128 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 128);
- normalize_spec (scalar I128);
- FStar.Int.logor #128 x y
- | Isize -> admit() // TODO
-
-let scalar_and (#ty : scalar_ty)
- (x : scalar ty) (y : scalar ty) : scalar ty =
- match ty with
- | U8 -> FStar.UInt.logand #8 x y
- | U16 -> FStar.UInt.logand #16 x y
- | U32 -> FStar.UInt.logand #32 x y
- | U64 -> FStar.UInt.logand #64 x y
- | U128 -> FStar.UInt.logand #128 x y
- | Usize -> admit() // TODO
- | I8 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 8);
- normalize_spec (scalar I8);
- FStar.Int.logand #8 x y
- | I16 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 16);
- normalize_spec (scalar I16);
- FStar.Int.logand #16 x y
- | I32 -> FStar.Int.logand #32 x y
- | I64 -> FStar.Int.logand #64 x y
- | I128 ->
- // Encoding issues...
- normalize_spec (FStar.Int.int_t 128);
- normalize_spec (scalar I128);
- FStar.Int.logand #128 x y
- | Isize -> admit() // TODO
-
-// Shift left
-let scalar_shl (#ty0 #ty1 : scalar_ty)
- (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) =
- admit()
-
-// Shift right
-let scalar_shr (#ty0 #ty1 : scalar_ty)
- (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) =
- admit()
-
-(** Cast an integer from a [src_ty] to a [tgt_ty] *)
-// TODO: check the semantics of casts in Rust
-let scalar_cast (src_ty : scalar_ty) (tgt_ty : scalar_ty) (x : scalar src_ty) : result (scalar tgt_ty) =
- mk_scalar tgt_ty x
-
-// This can't fail, but for now we make all casts faillible (easier for the translation)
-let scalar_cast_bool (tgt_ty : scalar_ty) (x : bool) : result (scalar tgt_ty) =
- mk_scalar tgt_ty (if x then 1 else 0)
-
-/// The scalar types
-type isize : eqtype = scalar Isize
-type i8 : eqtype = scalar I8
-type i16 : eqtype = scalar I16
-type i32 : eqtype = scalar I32
-type i64 : eqtype = scalar I64
-type i128 : eqtype = scalar I128
-type usize : eqtype = scalar Usize
-type u8 : eqtype = scalar U8
-type u16 : eqtype = scalar U16
-type u32 : eqtype = scalar U32
-type u64 : eqtype = scalar U64
-type u128 : eqtype = scalar U128
-
-
-let core_isize_min : isize = isize_min
-let core_isize_max : isize = isize_max
-let core_i8_min : i8 = i8_min
-let core_i8_max : i8 = i8_max
-let core_i16_min : i16 = i16_min
-let core_i16_max : i16 = i16_max
-let core_i32_min : i32 = i32_min
-let core_i32_max : i32 = i32_max
-let core_i64_min : i64 = i64_min
-let core_i64_max : i64 = i64_max
-let core_i128_min : i128 = i128_min
-let core_i128_max : i128 = i128_max
-
-let core_usize_min : usize = usize_min
-let core_usize_max : usize = usize_max
-let core_u8_min : u8 = u8_min
-let core_u8_max : u8 = u8_max
-let core_u16_min : u16 = u16_min
-let core_u16_max : u16 = u16_max
-let core_u32_min : u32 = u32_min
-let core_u32_max : u32 = u32_max
-let core_u64_min : u64 = u64_min
-let core_u64_max : u64 = u64_max
-let core_u128_min : u128 = u128_min
-let core_u128_max : u128 = u128_max
-
-/// Negation
-let isize_neg = scalar_neg #Isize
-let i8_neg = scalar_neg #I8
-let i16_neg = scalar_neg #I16
-let i32_neg = scalar_neg #I32
-let i64_neg = scalar_neg #I64
-let i128_neg = scalar_neg #I128
-
-/// Division
-let isize_div = scalar_div #Isize
-let i8_div = scalar_div #I8
-let i16_div = scalar_div #I16
-let i32_div = scalar_div #I32
-let i64_div = scalar_div #I64
-let i128_div = scalar_div #I128
-let usize_div = scalar_div #Usize
-let u8_div = scalar_div #U8
-let u16_div = scalar_div #U16
-let u32_div = scalar_div #U32
-let u64_div = scalar_div #U64
-let u128_div = scalar_div #U128
-
-/// Remainder
-let isize_rem = scalar_rem #Isize
-let i8_rem = scalar_rem #I8
-let i16_rem = scalar_rem #I16
-let i32_rem = scalar_rem #I32
-let i64_rem = scalar_rem #I64
-let i128_rem = scalar_rem #I128
-let usize_rem = scalar_rem #Usize
-let u8_rem = scalar_rem #U8
-let u16_rem = scalar_rem #U16
-let u32_rem = scalar_rem #U32
-let u64_rem = scalar_rem #U64
-let u128_rem = scalar_rem #U128
-
-/// Addition
-let isize_add = scalar_add #Isize
-let i8_add = scalar_add #I8
-let i16_add = scalar_add #I16
-let i32_add = scalar_add #I32
-let i64_add = scalar_add #I64
-let i128_add = scalar_add #I128
-let usize_add = scalar_add #Usize
-let u8_add = scalar_add #U8
-let u16_add = scalar_add #U16
-let u32_add = scalar_add #U32
-let u64_add = scalar_add #U64
-let u128_add = scalar_add #U128
-
-/// Subtraction
-let isize_sub = scalar_sub #Isize
-let i8_sub = scalar_sub #I8
-let i16_sub = scalar_sub #I16
-let i32_sub = scalar_sub #I32
-let i64_sub = scalar_sub #I64
-let i128_sub = scalar_sub #I128
-let usize_sub = scalar_sub #Usize
-let u8_sub = scalar_sub #U8
-let u16_sub = scalar_sub #U16
-let u32_sub = scalar_sub #U32
-let u64_sub = scalar_sub #U64
-let u128_sub = scalar_sub #U128
-
-/// Multiplication
-let isize_mul = scalar_mul #Isize
-let i8_mul = scalar_mul #I8
-let i16_mul = scalar_mul #I16
-let i32_mul = scalar_mul #I32
-let i64_mul = scalar_mul #I64
-let i128_mul = scalar_mul #I128
-let usize_mul = scalar_mul #Usize
-let u8_mul = scalar_mul #U8
-let u16_mul = scalar_mul #U16
-let u32_mul = scalar_mul #U32
-let u64_mul = scalar_mul #U64
-let u128_mul = scalar_mul #U128
-
-/// Xor
-let u8_xor = scalar_xor #U8
-let u16_xor = scalar_xor #U16
-let u32_xor = scalar_xor #U32
-let u64_xor = scalar_xor #U64
-let u128_xor = scalar_xor #U128
-let usize_xor = scalar_xor #Usize
-let i8_xor = scalar_xor #I8
-let i16_xor = scalar_xor #I16
-let i32_xor = scalar_xor #I32
-let i64_xor = scalar_xor #I64
-let i128_xor = scalar_xor #I128
-let isize_xor = scalar_xor #Isize
-
-/// Or
-let u8_or = scalar_or #U8
-let u16_or = scalar_or #U16
-let u32_or = scalar_or #U32
-let u64_or = scalar_or #U64
-let u128_or = scalar_or #U128
-let usize_or = scalar_or #Usize
-let i8_or = scalar_or #I8
-let i16_or = scalar_or #I16
-let i32_or = scalar_or #I32
-let i64_or = scalar_or #I64
-let i128_or = scalar_or #I128
-let isize_or = scalar_or #Isize
-
-/// And
-let u8_and = scalar_and #U8
-let u16_and = scalar_and #U16
-let u32_and = scalar_and #U32
-let u64_and = scalar_and #U64
-let u128_and = scalar_and #U128
-let usize_and = scalar_and #Usize
-let i8_and = scalar_and #I8
-let i16_and = scalar_and #I16
-let i32_and = scalar_and #I32
-let i64_and = scalar_and #I64
-let i128_and = scalar_and #I128
-let isize_and = scalar_and #Isize
-
-/// Shift left
-let u8_shl #ty = scalar_shl #U8 #ty
-let u16_shl #ty = scalar_shl #U16 #ty
-let u32_shl #ty = scalar_shl #U32 #ty
-let u64_shl #ty = scalar_shl #U64 #ty
-let u128_shl #ty = scalar_shl #U128 #ty
-let usize_shl #ty = scalar_shl #Usize #ty
-let i8_shl #ty = scalar_shl #I8 #ty
-let i16_shl #ty = scalar_shl #I16 #ty
-let i32_shl #ty = scalar_shl #I32 #ty
-let i64_shl #ty = scalar_shl #I64 #ty
-let i128_shl #ty = scalar_shl #I128 #ty
-let isize_shl #ty = scalar_shl #Isize #ty
-
-/// Shift right
-let u8_shr #ty = scalar_shr #U8 #ty
-let u16_shr #ty = scalar_shr #U16 #ty
-let u32_shr #ty = scalar_shr #U32 #ty
-let u64_shr #ty = scalar_shr #U64 #ty
-let u128_shr #ty = scalar_shr #U128 #ty
-let usize_shr #ty = scalar_shr #Usize #ty
-let i8_shr #ty = scalar_shr #I8 #ty
-let i16_shr #ty = scalar_shr #I16 #ty
-let i32_shr #ty = scalar_shr #I32 #ty
-let i64_shr #ty = scalar_shr #I64 #ty
-let i128_shr #ty = scalar_shr #I128 #ty
-let isize_shr #ty = scalar_shr #Isize #ty
-
-(*** core::ops *)
-
-// Trait declaration: [core::ops::index::Index]
-noeq type core_ops_index_Index (self idx : Type0) = {
- output : Type0;
- index : self → idx → result output
-}
-
-// Trait declaration: [core::ops::index::IndexMut]
-noeq type core_ops_index_IndexMut (self idx : Type0) = {
- indexInst : core_ops_index_Index self idx;
- index_mut : self → idx → result indexInst.output;
- index_mut_back : self → idx → indexInst.output → result self;
-}
-
-// Trait declaration [core::ops::deref::Deref]
-noeq type core_ops_deref_Deref (self : Type0) = {
- target : Type0;
- deref : self → result target;
-}
-
-// Trait declaration [core::ops::deref::DerefMut]
-noeq type core_ops_deref_DerefMut (self : Type0) = {
- derefInst : core_ops_deref_Deref self;
- deref_mut : self → result derefInst.target;
- deref_mut_back : self → derefInst.target → result self;
-}
-
-type core_ops_range_Range (a : Type0) = {
- start : a;
- end_ : a;
-}
-
-(*** [alloc] *)
-
-let alloc_boxed_Box_deref (t : Type0) (x : t) : result t = Return x
-let alloc_boxed_Box_deref_mut (t : Type0) (x : t) : result t = Return x
-let alloc_boxed_Box_deref_mut_back (t : Type) (_ : t) (x : t) : result t = Return x
-
-// Trait instance
-let alloc_boxed_Box_coreopsDerefInst (self : Type0) : core_ops_deref_Deref self = {
- target = self;
- deref = alloc_boxed_Box_deref self;
-}
-
-// Trait instance
-let alloc_boxed_Box_coreopsDerefMutInst (self : Type0) : core_ops_deref_DerefMut self = {
- derefInst = alloc_boxed_Box_coreopsDerefInst self;
- deref_mut = alloc_boxed_Box_deref_mut self;
- deref_mut_back = alloc_boxed_Box_deref_mut_back self;
-}
-
-(*** Array *)
-type array (a : Type0) (n : usize) = s:list a{length s = n}
-
-// We tried putting the normalize_term condition as a refinement on the list
-// but it didn't work. It works with the requires clause.
-let mk_array (a : Type0) (n : usize)
- (l : list a) :
- Pure (array a n)
- (requires (normalize_term(FStar.List.Tot.length l) = n))
- (ensures (fun _ -> True)) =
- normalize_term_spec (FStar.List.Tot.length l);
- l
-
-let array_index_usize (a : Type0) (n : usize) (x : array a n) (i : usize) : result a =
- if i < length x then Return (index x i)
- else Fail Failure
-
-let array_update_usize (a : Type0) (n : usize) (x : array a n) (i : usize) (nx : a) : result (array a n) =
- if i < length x then Return (list_update x i nx)
- else Fail Failure
-
-(*** Slice *)
-type slice (a : Type0) = s:list a{length s <= usize_max}
-
-let slice_len (a : Type0) (s : slice a) : usize = length s
-
-let slice_index_usize (a : Type0) (x : slice a) (i : usize) : result a =
- if i < length x then Return (index x i)
- else Fail Failure
-
-let slice_update_usize (a : Type0) (x : slice a) (i : usize) (nx : a) : result (slice a) =
- if i < length x then Return (list_update x i nx)
- else Fail Failure
-
-(*** Subslices *)
-
-let array_to_slice (a : Type0) (n : usize) (x : array a n) : result (slice a) = Return x
-let array_from_slice (a : Type0) (n : usize) (x : array a n) (s : slice a) : result (array a n) =
- if length s = n then Return s
- else Fail Failure
-
-// TODO: finish the definitions below (there lacks [List.drop] and [List.take] in the standard library *)
-let array_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) : result (slice a) =
- admit()
-
-let array_update_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) (ns : slice a) : result (array a n) =
- admit()
-
-let array_repeat (a : Type0) (n : usize) (x : a) : array a n =
- admit()
-
-let slice_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) : result (slice a) =
- admit()
-
-let slice_update_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) (ns : slice a) : result (slice a) =
- admit()
-
-(*** Vector *)
-type alloc_vec_Vec (a : Type0) = v:list a{length v <= usize_max}
-
-let alloc_vec_Vec_new (a : Type0) : alloc_vec_Vec a = assert_norm(length #a [] == 0); []
-let alloc_vec_Vec_len (a : Type0) (v : alloc_vec_Vec a) : usize = length v
-
-// Helper
-let alloc_vec_Vec_index_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : result a =
- if i < length v then Return (index v i) else Fail Failure
-// Helper
-let alloc_vec_Vec_update_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) =
- if i < length v then Return (list_update v i x) else Fail Failure
-
-// The **forward** function shouldn't be used
-let alloc_vec_Vec_push_fwd (a : Type0) (v : alloc_vec_Vec a) (x : a) : unit = ()
-let alloc_vec_Vec_push (a : Type0) (v : alloc_vec_Vec a) (x : a) :
- Pure (result (alloc_vec_Vec a))
- (requires True)
- (ensures (fun res ->
- match res with
- | Fail e -> e == Failure
- | Return v' -> length v' = length v + 1)) =
- if length v < usize_max then begin
- (**) assert_norm(length [x] == 1);
- (**) append_length v [x];
- (**) assert(length (append v [x]) = length v + 1);
- Return (append v [x])
- end
- else Fail Failure
-
-// The **forward** function shouldn't be used
-let alloc_vec_Vec_insert_fwd (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result unit =
- if i < length v then Return () else Fail Failure
-let alloc_vec_Vec_insert (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) =
- if i < length v then Return (list_update v i x) else Fail Failure
-
-// Trait declaration: [core::slice::index::private_slice_index::Sealed]
-type core_slice_index_private_slice_index_Sealed (self : Type0) = unit
-
-// Trait declaration: [core::slice::index::SliceIndex]
-noeq type core_slice_index_SliceIndex (self t : Type0) = {
- sealedInst : core_slice_index_private_slice_index_Sealed self;
- output : Type0;
- get : self → t → result (option output);
- get_mut : self → t → result (option output);
- get_mut_back : self → t → option output → result t;
- get_unchecked : self → const_raw_ptr t → result (const_raw_ptr output);
- get_unchecked_mut : self → mut_raw_ptr t → result (mut_raw_ptr output);
- index : self → t → result output;
- index_mut : self → t → result output;
- index_mut_back : self → t → output → result t;
-}
-
-// [core::slice::index::[T]::index]: forward function
-let core_slice_index_Slice_index
- (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
- (s : slice t) (i : idx) : result inst.output =
- let* x = inst.get i s in
- match x with
- | None -> Fail Failure
- | Some x -> Return x
-
-// [core::slice::index::Range:::get]: forward function
-let core_slice_index_RangeUsize_get (t : Type0) (i : core_ops_range_Range usize) (s : slice t) :
- result (option (slice t)) =
- admit () // TODO
-
-// [core::slice::index::Range::get_mut]: forward function
-let core_slice_index_RangeUsize_get_mut
- (t : Type0) : core_ops_range_Range usize → slice t → result (option (slice t)) =
- admit () // TODO
-
-// [core::slice::index::Range::get_mut]: backward function 0
-let core_slice_index_RangeUsize_get_mut_back
- (t : Type0) :
- core_ops_range_Range usize → slice t → option (slice t) → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::Range::get_unchecked]: forward function
-let core_slice_index_RangeUsize_get_unchecked
- (t : Type0) :
- core_ops_range_Range usize → const_raw_ptr (slice t) → result (const_raw_ptr (slice t)) =
- // Don't know what the model should be - for now we always fail to make
- // sure code which uses it fails
- fun _ _ -> Fail Failure
-
-// [core::slice::index::Range::get_unchecked_mut]: forward function
-let core_slice_index_RangeUsize_get_unchecked_mut
- (t : Type0) :
- core_ops_range_Range usize → mut_raw_ptr (slice t) → result (mut_raw_ptr (slice t)) =
- // Don't know what the model should be - for now we always fail to make
- // sure code which uses it fails
- fun _ _ -> Fail Failure
-
-// [core::slice::index::Range::index]: forward function
-let core_slice_index_RangeUsize_index
- (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::Range::index_mut]: forward function
-let core_slice_index_RangeUsize_index_mut
- (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::Range::index_mut]: backward function 0
-let core_slice_index_RangeUsize_index_mut_back
- (t : Type0) : core_ops_range_Range usize → slice t → slice t → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::[T]::index_mut]: forward function
-let core_slice_index_Slice_index_mut
- (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) :
- slice t → idx → result inst.output =
- admit () //
-
-// [core::slice::index::[T]::index_mut]: backward function 0
-let core_slice_index_Slice_index_mut_back
- (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) :
- slice t → idx → inst.output → result (slice t) =
- admit () // TODO
-
-// [core::array::[T; N]::index]: forward function
-let core_array_Array_index
- (t idx : Type0) (n : usize) (inst : core_ops_index_Index (slice t) idx)
- (a : array t n) (i : idx) : result inst.output =
- admit () // TODO
-
-// [core::array::[T; N]::index_mut]: forward function
-let core_array_Array_index_mut
- (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx)
- (a : array t n) (i : idx) : result inst.indexInst.output =
- admit () // TODO
-
-// [core::array::[T; N]::index_mut]: backward function 0
-let core_array_Array_index_mut_back
- (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx)
- (a : array t n) (i : idx) (x : inst.indexInst.output) : result (array t n) =
- admit () // TODO
-
-// Trait implementation: [core::slice::index::private_slice_index::Range]
-let core_slice_index_private_slice_index_SealedRangeUsizeInst
- : core_slice_index_private_slice_index_Sealed (core_ops_range_Range usize) = ()
-
-// Trait implementation: [core::slice::index::Range]
-let core_slice_index_SliceIndexRangeUsizeSliceTInst (t : Type0) :
- core_slice_index_SliceIndex (core_ops_range_Range usize) (slice t) = {
- sealedInst = core_slice_index_private_slice_index_SealedRangeUsizeInst;
- output = slice t;
- get = core_slice_index_RangeUsize_get t;
- get_mut = core_slice_index_RangeUsize_get_mut t;
- get_mut_back = core_slice_index_RangeUsize_get_mut_back t;
- get_unchecked = core_slice_index_RangeUsize_get_unchecked t;
- get_unchecked_mut = core_slice_index_RangeUsize_get_unchecked_mut t;
- index = core_slice_index_RangeUsize_index t;
- index_mut = core_slice_index_RangeUsize_index_mut t;
- index_mut_back = core_slice_index_RangeUsize_index_mut_back t;
-}
-
-// Trait implementation: [core::slice::index::[T]]
-let core_ops_index_IndexSliceTIInst (t idx : Type0)
- (inst : core_slice_index_SliceIndex idx (slice t)) :
- core_ops_index_Index (slice t) idx = {
- output = inst.output;
- index = core_slice_index_Slice_index t idx inst;
-}
-
-// Trait implementation: [core::slice::index::[T]]
-let core_ops_index_IndexMutSliceTIInst (t idx : Type0)
- (inst : core_slice_index_SliceIndex idx (slice t)) :
- core_ops_index_IndexMut (slice t) idx = {
- indexInst = core_ops_index_IndexSliceTIInst t idx inst;
- index_mut = core_slice_index_Slice_index_mut t idx inst;
- index_mut_back = core_slice_index_Slice_index_mut_back t idx inst;
-}
-
-// Trait implementation: [core::array::[T; N]]
-let core_ops_index_IndexArrayInst (t idx : Type0) (n : usize)
- (inst : core_ops_index_Index (slice t) idx) :
- core_ops_index_Index (array t n) idx = {
- output = inst.output;
- index = core_array_Array_index t idx n inst;
-}
-
-// Trait implementation: [core::array::[T; N]]
-let core_ops_index_IndexMutArrayIInst (t idx : Type0) (n : usize)
- (inst : core_ops_index_IndexMut (slice t) idx) :
- core_ops_index_IndexMut (array t n) idx = {
- indexInst = core_ops_index_IndexArrayInst t idx n inst.indexInst;
- index_mut = core_array_Array_index_mut t idx n inst;
- index_mut_back = core_array_Array_index_mut_back t idx n inst;
-}
-
-// [core::slice::index::usize::get]: forward function
-let core_slice_index_usize_get
- (t : Type0) : usize → slice t → result (option t) =
- admit () // TODO
-
-// [core::slice::index::usize::get_mut]: forward function
-let core_slice_index_usize_get_mut
- (t : Type0) : usize → slice t → result (option t) =
- admit () // TODO
-
-// [core::slice::index::usize::get_mut]: backward function 0
-let core_slice_index_usize_get_mut_back
- (t : Type0) : usize → slice t → option t → result (slice t) =
- admit () // TODO
-
-// [core::slice::index::usize::get_unchecked]: forward function
-let core_slice_index_usize_get_unchecked
- (t : Type0) : usize → const_raw_ptr (slice t) → result (const_raw_ptr t) =
- admit () // TODO
-
-// [core::slice::index::usize::get_unchecked_mut]: forward function
-let core_slice_index_usize_get_unchecked_mut
- (t : Type0) : usize → mut_raw_ptr (slice t) → result (mut_raw_ptr t) =
- admit () // TODO
-
-// [core::slice::index::usize::index]: forward function
-let core_slice_index_usize_index (t : Type0) : usize → slice t → result t =
- admit () // TODO
-
-// [core::slice::index::usize::index_mut]: forward function
-let core_slice_index_usize_index_mut (t : Type0) : usize → slice t → result t =
- admit () // TODO
-
-// [core::slice::index::usize::index_mut]: backward function 0
-let core_slice_index_usize_index_mut_back
- (t : Type0) : usize → slice t → t → result (slice t) =
- admit () // TODO
-
-// Trait implementation: [core::slice::index::private_slice_index::usize]
-let core_slice_index_private_slice_index_SealedUsizeInst
- : core_slice_index_private_slice_index_Sealed usize = ()
-
-// Trait implementation: [core::slice::index::usize]
-let core_slice_index_SliceIndexUsizeSliceTInst (t : Type0) :
- core_slice_index_SliceIndex usize (slice t) = {
- sealedInst = core_slice_index_private_slice_index_SealedUsizeInst;
- output = t;
- get = core_slice_index_usize_get t;
- get_mut = core_slice_index_usize_get_mut t;
- get_mut_back = core_slice_index_usize_get_mut_back t;
- get_unchecked = core_slice_index_usize_get_unchecked t;
- get_unchecked_mut = core_slice_index_usize_get_unchecked_mut t;
- index = core_slice_index_usize_index t;
- index_mut = core_slice_index_usize_index_mut t;
- index_mut_back = core_slice_index_usize_index_mut_back t;
-}
-
-// [alloc::vec::Vec::index]: forward function
-let alloc_vec_Vec_index (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
- (self : alloc_vec_Vec t) (i : idx) : result inst.output =
- admit () // TODO
-
-// [alloc::vec::Vec::index_mut]: forward function
-let alloc_vec_Vec_index_mut (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
- (self : alloc_vec_Vec t) (i : idx) : result inst.output =
- admit () // TODO
-
-// [alloc::vec::Vec::index_mut]: backward function 0
-let alloc_vec_Vec_index_mut_back
- (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
- (self : alloc_vec_Vec t) (i : idx) (x : inst.output) : result (alloc_vec_Vec t) =
- admit () // TODO
-
-// Trait implementation: [alloc::vec::Vec]
-let alloc_vec_Vec_coreopsindexIndexInst (t idx : Type0)
- (inst : core_slice_index_SliceIndex idx (slice t)) :
- core_ops_index_Index (alloc_vec_Vec t) idx = {
- output = inst.output;
- index = alloc_vec_Vec_index t idx inst;
-}
-
-// Trait implementation: [alloc::vec::Vec]
-let alloc_vec_Vec_coreopsindexIndexMutInst (t idx : Type0)
- (inst : core_slice_index_SliceIndex idx (slice t)) :
- core_ops_index_IndexMut (alloc_vec_Vec t) idx = {
- indexInst = alloc_vec_Vec_coreopsindexIndexInst t idx inst;
- index_mut = alloc_vec_Vec_index_mut t idx inst;
- index_mut_back = alloc_vec_Vec_index_mut_back t idx inst;
-}
-
-(*** Theorems *)
-
-let alloc_vec_Vec_index_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) :
- Lemma (
- alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i ==
- alloc_vec_Vec_index_usize v i)
- [SMTPat (alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)]
- =
- admit()
-
-let alloc_vec_Vec_index_mut_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) :
- Lemma (
- alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i ==
- alloc_vec_Vec_index_usize v i)
- [SMTPat (alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)]
- =
- admit()
-
-let alloc_vec_Vec_index_mut_back_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) :
- Lemma (
- alloc_vec_Vec_index_mut_back a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i x ==
- alloc_vec_Vec_update_usize v i x)
- [SMTPat (alloc_vec_Vec_index_mut_back a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i x)]
- =
- admit()
diff --git a/tests/fstar-split/traits/Traits.fst b/tests/fstar-split/traits/Traits.fst
deleted file mode 100644
index a815406f..00000000
--- a/tests/fstar-split/traits/Traits.fst
+++ /dev/null
@@ -1,468 +0,0 @@
-(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)
-(** [traits] *)
-module Traits
-open Primitives
-
-#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
-
-(** Trait declaration: [traits::BoolTrait]
- Source: 'src/traits.rs', lines 1:0-1:19 *)
-noeq type boolTrait_t (self : Type0) = { get_bool : self -> result bool; }
-
-(** [traits::{bool}::get_bool]: forward function
- Source: 'src/traits.rs', lines 12:4-12:30 *)
-let bool_get_bool (self : bool) : result bool =
- Return self
-
-(** Trait implementation: [traits::{bool}]
- Source: 'src/traits.rs', lines 11:0-11:23 *)
-let traits_BoolTraitBoolInst : boolTrait_t bool = { get_bool = bool_get_bool; }
-
-(** [traits::BoolTrait::ret_true]: forward function
- Source: 'src/traits.rs', lines 6:4-6:30 *)
-let boolTrait_ret_true
- (#self : Type0) (self_clause : boolTrait_t self) (self1 : self) :
- result bool
- =
- Return true
-
-(** [traits::test_bool_trait_bool]: forward function
- Source: 'src/traits.rs', lines 17:0-17:44 *)
-let test_bool_trait_bool (x : bool) : result bool =
- let* b = bool_get_bool x in
- if b then boolTrait_ret_true traits_BoolTraitBoolInst x else Return false
-
-(** [traits::{core::option::Option<T>#1}::get_bool]: forward function
- Source: 'src/traits.rs', lines 23:4-23:30 *)
-let option_get_bool (t : Type0) (self : option t) : result bool =
- begin match self with | None -> Return false | Some _ -> Return true end
-
-(** Trait implementation: [traits::{core::option::Option<T>#1}]
- Source: 'src/traits.rs', lines 22:0-22:31 *)
-let traits_BoolTraitcoreoptionOptionTInst (t : Type0) : boolTrait_t (option t)
- = {
- get_bool = option_get_bool t;
-}
-
-(** [traits::test_bool_trait_option]: forward function
- Source: 'src/traits.rs', lines 31:0-31:54 *)
-let test_bool_trait_option (t : Type0) (x : option t) : result bool =
- let* b = option_get_bool t x in
- if b
- then boolTrait_ret_true (traits_BoolTraitcoreoptionOptionTInst t) x
- else Return false
-
-(** [traits::test_bool_trait]: forward function
- Source: 'src/traits.rs', lines 35:0-35:50 *)
-let test_bool_trait
- (t : Type0) (boolTraitTInst : boolTrait_t t) (x : t) : result bool =
- boolTraitTInst.get_bool x
-
-(** Trait declaration: [traits::ToU64]
- Source: 'src/traits.rs', lines 39:0-39:15 *)
-noeq type toU64_t (self : Type0) = { to_u64 : self -> result u64; }
-
-(** [traits::{u64#2}::to_u64]: forward function
- Source: 'src/traits.rs', lines 44:4-44:26 *)
-let u64_to_u64 (self : u64) : result u64 =
- Return self
-
-(** Trait implementation: [traits::{u64#2}]
- Source: 'src/traits.rs', lines 43:0-43:18 *)
-let traits_ToU64U64Inst : toU64_t u64 = { to_u64 = u64_to_u64; }
-
-(** [traits::{(A, A)#3}::to_u64]: forward function
- Source: 'src/traits.rs', lines 50:4-50:26 *)
-let pair_to_u64
- (a : Type0) (toU64AInst : toU64_t a) (self : (a & a)) : result u64 =
- let (x, x1) = self in
- let* i = toU64AInst.to_u64 x in
- let* i1 = toU64AInst.to_u64 x1 in
- u64_add i i1
-
-(** Trait implementation: [traits::{(A, A)#3}]
- Source: 'src/traits.rs', lines 49:0-49:31 *)
-let traits_ToU64TupleAAInst (a : Type0) (toU64AInst : toU64_t a) : toU64_t (a &
- a) = {
- to_u64 = pair_to_u64 a toU64AInst;
-}
-
-(** [traits::f]: forward function
- Source: 'src/traits.rs', lines 55:0-55:36 *)
-let f (t : Type0) (toU64TInst : toU64_t t) (x : (t & t)) : result u64 =
- pair_to_u64 t toU64TInst x
-
-(** [traits::g]: forward function
- Source: 'src/traits.rs', lines 59:0-61:18 *)
-let g
- (t : Type0) (toU64TupleTTInst : toU64_t (t & t)) (x : (t & t)) : result u64 =
- toU64TupleTTInst.to_u64 x
-
-(** [traits::h0]: forward function
- Source: 'src/traits.rs', lines 66:0-66:24 *)
-let h0 (x : u64) : result u64 =
- u64_to_u64 x
-
-(** [traits::Wrapper]
- Source: 'src/traits.rs', lines 70:0-70:21 *)
-type wrapper_t (t : Type0) = { x : t; }
-
-(** [traits::{traits::Wrapper<T>#4}::to_u64]: forward function
- Source: 'src/traits.rs', lines 75:4-75:26 *)
-let wrapper_to_u64
- (t : Type0) (toU64TInst : toU64_t t) (self : wrapper_t t) : result u64 =
- toU64TInst.to_u64 self.x
-
-(** Trait implementation: [traits::{traits::Wrapper<T>#4}]
- Source: 'src/traits.rs', lines 74:0-74:35 *)
-let traits_ToU64traitsWrapperTInst (t : Type0) (toU64TInst : toU64_t t) :
- toU64_t (wrapper_t t) = {
- to_u64 = wrapper_to_u64 t toU64TInst;
-}
-
-(** [traits::h1]: forward function
- Source: 'src/traits.rs', lines 80:0-80:33 *)
-let h1 (x : wrapper_t u64) : result u64 =
- wrapper_to_u64 u64 traits_ToU64U64Inst x
-
-(** [traits::h2]: forward function
- Source: 'src/traits.rs', lines 84:0-84:41 *)
-let h2 (t : Type0) (toU64TInst : toU64_t t) (x : wrapper_t t) : result u64 =
- wrapper_to_u64 t toU64TInst x
-
-(** Trait declaration: [traits::ToType]
- Source: 'src/traits.rs', lines 88:0-88:19 *)
-noeq type toType_t (self t : Type0) = { to_type : self -> result t; }
-
-(** [traits::{u64#5}::to_type]: forward function
- Source: 'src/traits.rs', lines 93:4-93:28 *)
-let u64_to_type (self : u64) : result bool =
- Return (self > 0)
-
-(** Trait implementation: [traits::{u64#5}]
- Source: 'src/traits.rs', lines 92:0-92:25 *)
-let traits_ToTypeU64BoolInst : toType_t u64 bool = { to_type = u64_to_type; }
-
-(** Trait declaration: [traits::OfType]
- Source: 'src/traits.rs', lines 98:0-98:16 *)
-noeq type ofType_t (self : Type0) = {
- of_type : (t : Type0) -> (toTypeTSelfInst : toType_t t self) -> t -> result
- self;
-}
-
-(** [traits::h3]: forward function
- Source: 'src/traits.rs', lines 104:0-104:50 *)
-let h3
- (t1 t2 : Type0) (ofTypeT1Inst : ofType_t t1) (toTypeT2T1Inst : toType_t t2
- t1) (y : t2) :
- result t1
- =
- ofTypeT1Inst.of_type t2 toTypeT2T1Inst y
-
-(** Trait declaration: [traits::OfTypeBis]
- Source: 'src/traits.rs', lines 109:0-109:36 *)
-noeq type ofTypeBis_t (self t : Type0) = {
- toTypeTSelfInst : toType_t t self;
- of_type : t -> result self;
-}
-
-(** [traits::h4]: forward function
- Source: 'src/traits.rs', lines 118:0-118:57 *)
-let h4
- (t1 t2 : Type0) (ofTypeBisT1T2Inst : ofTypeBis_t t1 t2) (toTypeT2T1Inst :
- toType_t t2 t1) (y : t2) :
- result t1
- =
- ofTypeBisT1T2Inst.of_type y
-
-(** [traits::TestType]
- Source: 'src/traits.rs', lines 122:0-122:22 *)
-type testType_t (t : Type0) = t
-
-(** [traits::{traits::TestType<T>#6}::test::TestType1]
- Source: 'src/traits.rs', lines 127:8-127:24 *)
-type testType_test_TestType1_t = u64
-
-(** Trait declaration: [traits::{traits::TestType<T>#6}::test::TestTrait]
- Source: 'src/traits.rs', lines 128:8-128:23 *)
-noeq type testType_test_TestTrait_t (self : Type0) = {
- test : self -> result bool;
-}
-
-(** [traits::{traits::TestType<T>#6}::test::{traits::{traits::TestType<T>#6}::test::TestType1}::test]: forward function
- Source: 'src/traits.rs', lines 139:12-139:34 *)
-let testType_test_TestType1_test
- (self : testType_test_TestType1_t) : result bool =
- Return (self > 1)
-
-(** Trait implementation: [traits::{traits::TestType<T>#6}::test::{traits::{traits::TestType<T>#6}::test::TestType1}]
- Source: 'src/traits.rs', lines 138:8-138:36 *)
-let traits_TestType_test_TestTraittraitstraitsTestTypeTtestTestType1Inst :
- testType_test_TestTrait_t testType_test_TestType1_t = {
- test = testType_test_TestType1_test;
-}
-
-(** [traits::{traits::TestType<T>#6}::test]: forward function
- Source: 'src/traits.rs', lines 126:4-126:36 *)
-let testType_test
- (t : Type0) (toU64TInst : toU64_t t) (self : testType_t t) (x : t) :
- result bool
- =
- let* x1 = toU64TInst.to_u64 x in
- if x1 > 0 then testType_test_TestType1_test 0 else Return false
-
-(** [traits::BoolWrapper]
- Source: 'src/traits.rs', lines 150:0-150:22 *)
-type boolWrapper_t = bool
-
-(** [traits::{traits::BoolWrapper#7}::to_type]: forward function
- Source: 'src/traits.rs', lines 156:4-156:25 *)
-let boolWrapper_to_type
- (t : Type0) (toTypeBoolTInst : toType_t bool t) (self : boolWrapper_t) :
- result t
- =
- toTypeBoolTInst.to_type self
-
-(** Trait implementation: [traits::{traits::BoolWrapper#7}]
- Source: 'src/traits.rs', lines 152:0-152:33 *)
-let traits_ToTypetraitsBoolWrapperTInst (t : Type0) (toTypeBoolTInst : toType_t
- bool t) : toType_t boolWrapper_t t = {
- to_type = boolWrapper_to_type t toTypeBoolTInst;
-}
-
-(** [traits::WithConstTy::LEN2]
- Source: 'src/traits.rs', lines 164:4-164:21 *)
-let with_const_ty_len2_body : result usize = Return 32
-let with_const_ty_len2_c : usize = eval_global with_const_ty_len2_body
-
-(** Trait declaration: [traits::WithConstTy]
- Source: 'src/traits.rs', lines 161:0-161:39 *)
-noeq type withConstTy_t (self : Type0) (len : usize) = {
- cLEN1 : usize;
- cLEN2 : usize;
- tV : Type0;
- tW : Type0;
- tW_clause_0 : toU64_t tW;
- f : tW -> array u8 len -> result tW;
-}
-
-(** [traits::{bool#8}::LEN1]
- Source: 'src/traits.rs', lines 175:4-175:21 *)
-let bool_len1_body : result usize = Return 12
-let bool_len1_c : usize = eval_global bool_len1_body
-
-(** [traits::{bool#8}::f]: merged forward/backward function
- (there is a single backward function, and the forward function returns ())
- Source: 'src/traits.rs', lines 180:4-180:39 *)
-let bool_f (i : u64) (a : array u8 32) : result u64 =
- Return i
-
-(** Trait implementation: [traits::{bool#8}]
- Source: 'src/traits.rs', lines 174:0-174:29 *)
-let traits_WithConstTyBool32Inst : withConstTy_t bool 32 = {
- cLEN1 = bool_len1_c;
- cLEN2 = with_const_ty_len2_c;
- tV = u8;
- tW = u64;
- tW_clause_0 = traits_ToU64U64Inst;
- f = bool_f;
-}
-
-(** [traits::use_with_const_ty1]: forward function
- Source: 'src/traits.rs', lines 183:0-183:75 *)
-let use_with_const_ty1
- (h : Type0) (len : usize) (withConstTyHLENInst : withConstTy_t h len) :
- result usize
- =
- Return withConstTyHLENInst.cLEN1
-
-(** [traits::use_with_const_ty2]: forward function
- Source: 'src/traits.rs', lines 187:0-187:73 *)
-let use_with_const_ty2
- (h : Type0) (len : usize) (withConstTyHLENInst : withConstTy_t h len)
- (w : withConstTyHLENInst.tW) :
- result unit
- =
- Return ()
-
-(** [traits::use_with_const_ty3]: forward function
- Source: 'src/traits.rs', lines 189:0-189:80 *)
-let use_with_const_ty3
- (h : Type0) (len : usize) (withConstTyHLENInst : withConstTy_t h len)
- (x : withConstTyHLENInst.tW) :
- result u64
- =
- withConstTyHLENInst.tW_clause_0.to_u64 x
-
-(** [traits::test_where1]: forward function
- Source: 'src/traits.rs', lines 193:0-193:40 *)
-let test_where1 (t : Type0) (_x : t) : result unit =
- Return ()
-
-(** [traits::test_where2]: forward function
- Source: 'src/traits.rs', lines 194:0-194:57 *)
-let test_where2
- (t : Type0) (withConstTyT32Inst : withConstTy_t t 32) (_x : u32) :
- result unit
- =
- Return ()
-
-(** Trait declaration: [traits::ParentTrait0]
- Source: 'src/traits.rs', lines 200:0-200:22 *)
-noeq type parentTrait0_t (self : Type0) = {
- tW : Type0;
- get_name : self -> result string;
- get_w : self -> result tW;
-}
-
-(** Trait declaration: [traits::ParentTrait1]
- Source: 'src/traits.rs', lines 205:0-205:22 *)
-type parentTrait1_t (self : Type0) = unit
-
-(** Trait declaration: [traits::ChildTrait]
- Source: 'src/traits.rs', lines 206:0-206:49 *)
-noeq type childTrait_t (self : Type0) = {
- parentTrait0SelfInst : parentTrait0_t self;
- parentTrait1SelfInst : parentTrait1_t self;
-}
-
-(** [traits::test_child_trait1]: forward function
- Source: 'src/traits.rs', lines 209:0-209:56 *)
-let test_child_trait1
- (t : Type0) (childTraitTInst : childTrait_t t) (x : t) : result string =
- childTraitTInst.parentTrait0SelfInst.get_name x
-
-(** [traits::test_child_trait2]: forward function
- Source: 'src/traits.rs', lines 213:0-213:54 *)
-let test_child_trait2
- (t : Type0) (childTraitTInst : childTrait_t t) (x : t) :
- result childTraitTInst.parentTrait0SelfInst.tW
- =
- childTraitTInst.parentTrait0SelfInst.get_w x
-
-(** [traits::order1]: forward function
- Source: 'src/traits.rs', lines 219:0-219:59 *)
-let order1
- (t u : Type0) (parentTrait0TInst : parentTrait0_t t) (parentTrait0UInst :
- parentTrait0_t u) :
- result unit
- =
- Return ()
-
-(** Trait declaration: [traits::ChildTrait1]
- Source: 'src/traits.rs', lines 222:0-222:35 *)
-noeq type childTrait1_t (self : Type0) = {
- parentTrait1SelfInst : parentTrait1_t self;
-}
-
-(** Trait implementation: [traits::{usize#9}]
- Source: 'src/traits.rs', lines 224:0-224:27 *)
-let traits_ParentTrait1UsizeInst : parentTrait1_t usize = ()
-
-(** Trait implementation: [traits::{usize#10}]
- Source: 'src/traits.rs', lines 225:0-225:26 *)
-let traits_ChildTrait1UsizeInst : childTrait1_t usize = {
- parentTrait1SelfInst = traits_ParentTrait1UsizeInst;
-}
-
-(** Trait declaration: [traits::Iterator]
- Source: 'src/traits.rs', lines 229:0-229:18 *)
-noeq type iterator_t (self : Type0) = { tItem : Type0; }
-
-(** Trait declaration: [traits::IntoIterator]
- Source: 'src/traits.rs', lines 233:0-233:22 *)
-noeq type intoIterator_t (self : Type0) = {
- tItem : Type0;
- tIntoIter : Type0;
- tIntoIter_clause_0 : iterator_t tIntoIter;
- into_iter : self -> result tIntoIter;
-}
-
-(** Trait declaration: [traits::FromResidual]
- Source: 'src/traits.rs', lines 250:0-250:21 *)
-type fromResidual_t (self t : Type0) = unit
-
-(** Trait declaration: [traits::Try]
- Source: 'src/traits.rs', lines 246:0-246:48 *)
-noeq type try_t (self : Type0) = {
- tResidual : Type0;
- fromResidualSelftraitsTrySelfResidualInst : fromResidual_t self tResidual;
-}
-
-(** Trait declaration: [traits::WithTarget]
- Source: 'src/traits.rs', lines 252:0-252:20 *)
-noeq type withTarget_t (self : Type0) = { tTarget : Type0; }
-
-(** Trait declaration: [traits::ParentTrait2]
- Source: 'src/traits.rs', lines 256:0-256:22 *)
-noeq type parentTrait2_t (self : Type0) = {
- tU : Type0;
- tU_clause_0 : withTarget_t tU;
-}
-
-(** Trait declaration: [traits::ChildTrait2]
- Source: 'src/traits.rs', lines 260:0-260:35 *)
-noeq type childTrait2_t (self : Type0) = {
- parentTrait2SelfInst : parentTrait2_t self;
- convert : parentTrait2SelfInst.tU -> result
- parentTrait2SelfInst.tU_clause_0.tTarget;
-}
-
-(** Trait implementation: [traits::{u32#11}]
- Source: 'src/traits.rs', lines 264:0-264:23 *)
-let traits_WithTargetU32Inst : withTarget_t u32 = { tTarget = u32; }
-
-(** Trait implementation: [traits::{u32#12}]
- Source: 'src/traits.rs', lines 268:0-268:25 *)
-let traits_ParentTrait2U32Inst : parentTrait2_t u32 = {
- tU = u32;
- tU_clause_0 = traits_WithTargetU32Inst;
-}
-
-(** [traits::{u32#13}::convert]: forward function
- Source: 'src/traits.rs', lines 273:4-273:29 *)
-let u32_convert (x : u32) : result u32 =
- Return x
-
-(** Trait implementation: [traits::{u32#13}]
- Source: 'src/traits.rs', lines 272:0-272:24 *)
-let traits_ChildTrait2U32Inst : childTrait2_t u32 = {
- parentTrait2SelfInst = traits_ParentTrait2U32Inst;
- convert = u32_convert;
-}
-
-(** Trait declaration: [traits::CFnOnce]
- Source: 'src/traits.rs', lines 286:0-286:23 *)
-noeq type cFnOnce_t (self args : Type0) = {
- tOutput : Type0;
- call_once : self -> args -> result tOutput;
-}
-
-(** Trait declaration: [traits::CFnMut]
- Source: 'src/traits.rs', lines 292:0-292:37 *)
-noeq type cFnMut_t (self args : Type0) = {
- cFnOnceSelfArgsInst : cFnOnce_t self args;
- call_mut : self -> args -> result cFnOnceSelfArgsInst.tOutput;
- call_mut_back : self -> args -> result self;
-}
-
-(** Trait declaration: [traits::CFn]
- Source: 'src/traits.rs', lines 296:0-296:33 *)
-noeq type cFn_t (self args : Type0) = {
- cFnMutSelfArgsInst : cFnMut_t self args;
- call : self -> args -> result cFnMutSelfArgsInst.cFnOnceSelfArgsInst.tOutput;
-}
-
-(** Trait declaration: [traits::GetTrait]
- Source: 'src/traits.rs', lines 300:0-300:18 *)
-noeq type getTrait_t (self : Type0) = { tW : Type0; get_w : self -> result tW;
-}
-
-(** [traits::test_get_trait]: forward function
- Source: 'src/traits.rs', lines 305:0-305:49 *)
-let test_get_trait
- (t : Type0) (getTraitTInst : getTrait_t t) (x : t) :
- result getTraitTInst.tW
- =
- getTraitTInst.get_w x
-