From bc154dda94c44b3ae67a3b04d3866cc473aead32 Mon Sep 17 00:00:00 2001 From: Son Ho Date: Fri, 8 Mar 2024 13:41:57 +0100 Subject: Remove the option to split fwd/back functions and update SymbolicToPure --- compiler/Config.ml | 63 --- compiler/ExtractBase.ml | 82 ++-- compiler/ExtractBuiltin.ml | 131 +++---- compiler/Main.ml | 3 - compiler/SymbolicToPure.ml | 936 ++++++++++++++++++--------------------------- 5 files changed, 439 insertions(+), 776 deletions(-) diff --git a/compiler/Config.ml b/compiler/Config.ml index 3b0070c0..6fd866e8 100644 --- a/compiler/Config.ml +++ b/compiler/Config.ml @@ -92,69 +92,6 @@ let loop_fixed_point_max_num_iters = 2 (** {1 Translation} *) -(** If true, do not define separate forward/backward functions, but make the - forward functions return the backward function. - - Example: - {[ - (* Rust *) - pub fn list_nth<'a, T>(l: &'a mut List, i: u32) -> &'a mut T { - match l { - List::Nil => { - panic!() - } - List::Cons(x, tl) => { - if i == 0 { - x - } else { - list_nth(tl, i - 1) - } - } - } - } - - (* Translation, if return_back_funs = false *) - def list_nth (T : Type) (l : List T) (i : U32) : Result T := - match l with - | List.Cons x tl => - if i = 0#u32 - then Result.ret x - else do - let i0 ← i - 1#u32 - list_nth T tl i0 - | List.Nil => Result.fail .panic - - def list_nth_back - (T : Type) (l : List T) (i : U32) (ret : T) : Result (List T) := - match l with - | List.Cons x tl => - if i = 0#u32 - then Result.ret (List.Cons ret tl) - else - do - let i0 ← i - 1#u32 - let tl0 ← list_nth_back T tl i0 ret - Result.ret (List.Cons x tl0) - | List.Nil => Result.fail .panic - - (* Translation, if return_back_funs = true *) - def list_nth (T: Type) (ls : List T) (i : U32) : - Result (T × (T → Result (List T))) := - match ls with - | List.Cons x tl => - if i = 0#u32 - then Result.ret (x, (λ ret => return (ret :: ls))) - else do - let i0 ← i - 1#u32 - let (x, back) ← list_nth ls i0 - Return.ret (x, - (λ ret => do - let ls ← back ret - return (x :: ls))) - ]} - *) -let return_back_funs = ref true - (** Forbids using field projectors for structures. If we don't use field projectors, whenever we symbolically expand a structure diff --git a/compiler/ExtractBase.ml b/compiler/ExtractBase.ml index 5aa8323e..04686705 100644 --- a/compiler/ExtractBase.ml +++ b/compiler/ExtractBase.ml @@ -471,8 +471,7 @@ type names_map_init = { assumed_adts : (assumed_ty * string) list; assumed_structs : (assumed_ty * string) list; assumed_variants : (assumed_ty * VariantId.id * string) list; - assumed_llbc_functions : - (A.assumed_fun_id * RegionGroupId.id option * string) list; + assumed_llbc_functions : (A.assumed_fun_id * string) list; assumed_pure_functions : (pure_assumed_fun_id * string) list; } @@ -1052,63 +1051,28 @@ let assumed_variants () : (assumed_ty * VariantId.id * string) list = (* No Fuel::Succ on purpose *) ] -let assumed_llbc_functions () : - (A.assumed_fun_id * T.RegionGroupId.id option * string) list = - let rg0 = Some T.RegionGroupId.zero in - let regular : (A.assumed_fun_id * T.RegionGroupId.id option * string) list = - match !backend with - | FStar | Coq | HOL4 -> - [ - (ArrayIndexShared, None, "array_index_usize"); - (ArrayToSliceShared, None, "array_to_slice"); - (ArrayRepeat, None, "array_repeat"); - (SliceIndexShared, None, "slice_index_usize"); - ] - | Lean -> - [ - (ArrayIndexShared, None, "Array.index_usize"); - (ArrayToSliceShared, None, "Array.to_slice"); - (ArrayRepeat, None, "Array.repeat"); - (SliceIndexShared, None, "Slice.index_usize"); - ] - in - let mut_funs : (A.assumed_fun_id * T.RegionGroupId.id option * string) list = - if !Config.return_back_funs then - match !backend with - | FStar | Coq | HOL4 -> - [ - (ArrayIndexMut, None, "array_index_mut_usize"); - (ArrayToSliceMut, None, "array_to_slice_mut"); - (SliceIndexMut, None, "slice_index_mut_usize"); - ] - | Lean -> - [ - (ArrayIndexMut, None, "Array.index_mut_usize"); - (ArrayToSliceMut, None, "Array.to_slice_mut"); - (SliceIndexMut, None, "Slice.index_mut_usize"); - ] - else - match !backend with - | FStar | Coq | HOL4 -> - [ - (ArrayIndexMut, None, "array_index_usize"); - (ArrayIndexMut, rg0, "array_update_usize"); - (ArrayToSliceMut, None, "array_to_slice"); - (ArrayToSliceMut, rg0, "array_from_slice"); - (SliceIndexMut, None, "slice_index_usize"); - (SliceIndexMut, rg0, "slice_update_usize"); - ] - | Lean -> - [ - (ArrayIndexMut, None, "Array.index_usize"); - (ArrayIndexMut, rg0, "Array.update_usize"); - (ArrayToSliceMut, None, "Array.to_slice"); - (ArrayToSliceMut, rg0, "Array.from_slice"); - (SliceIndexMut, None, "Slice.index_usize"); - (SliceIndexMut, rg0, "Slice.update_usize"); - ] - in - regular @ mut_funs +let assumed_llbc_functions () : (A.assumed_fun_id * string) list = + match !backend with + | FStar | Coq | HOL4 -> + [ + (ArrayIndexShared, "array_index_usize"); + (ArrayIndexMut, "array_index_mut_usize"); + (ArrayToSliceShared, "array_to_slice"); + (ArrayToSliceMut, "array_to_slice_mut"); + (ArrayRepeat, "array_repeat"); + (SliceIndexShared, "slice_index_usize"); + (SliceIndexMut, "slice_index_mut_usize"); + ] + | Lean -> + [ + (ArrayIndexShared, "Array.index_usize"); + (ArrayIndexMut, "Array.index_mut_usize"); + (ArrayToSliceShared, "Array.to_slice"); + (ArrayToSliceMut, "Array.to_slice_mut"); + (ArrayRepeat, "Array.repeat"); + (SliceIndexShared, "Slice.index_usize"); + (SliceIndexMut, "Slice.index_mut_usize"); + ] let assumed_pure_functions () : (pure_assumed_fun_id * string) list = match !backend with diff --git a/compiler/ExtractBuiltin.ml b/compiler/ExtractBuiltin.ml index ee8d4831..3ea5655a 100644 --- a/compiler/ExtractBuiltin.ml +++ b/compiler/ExtractBuiltin.ml @@ -213,11 +213,7 @@ let mk_builtin_types_map () = let builtin_types_map = mk_memoized mk_builtin_types_map -type builtin_fun_info = { - rg : Types.RegionGroupId.id option; - extract_name : string; -} -[@@deriving show] +type builtin_fun_info = { extract_name : string } [@@deriving show] (** The assumed functions. @@ -227,19 +223,10 @@ type builtin_fun_info = { *) let builtin_funs () : (pattern * bool list option * builtin_fun_info list) list = - let rg0 = Some Types.RegionGroupId.zero in (* Small utility *) let mk_fun (rust_name : string) (extract_name : string option) - (filter : bool list option) (with_back : bool) (back_no_suffix : bool) : + (filter : bool list option) : pattern * bool list option * builtin_fun_info list = - (* [back_no_suffix] is used to control whether the backward function should - have the suffix "_back" or not (if not, then the forward function has the - prefix "_fwd", and is filtered anyway). This is pertinent only if we split - the fwd/back functions. *) - let back_no_suffix = back_no_suffix && not !Config.return_back_funs in - (* Same for the [with_back] option: this is pertinent only if we split - the fwd/back functions *) - let with_back = with_back && not !Config.return_back_funs in let rust_name = try parse_pattern rust_name with Failure _ -> @@ -251,68 +238,51 @@ let builtin_funs () : (pattern * bool list option * builtin_fun_info list) list | Some name -> split_on_separator name in let basename = flatten_name extract_name in - let fwd_suffix = if with_back && back_no_suffix then "_fwd" else "" in - let fwd = [ { rg = None; extract_name = basename ^ fwd_suffix } ] in - let back_suffix = if with_back && back_no_suffix then "" else "_back" in - let back = - if with_back then [ { rg = rg0; extract_name = basename ^ back_suffix } ] - else [] - in - (rust_name, filter, fwd @ back) + let f = [ { extract_name = basename } ] in + (rust_name, filter, f) in [ - mk_fun "core::mem::replace" None None true false; + mk_fun "core::mem::replace" None None; mk_fun "core::slice::{[@T]}::len" (Some (backend_choice "slice::len" "Slice::len")) - None true false; + None; mk_fun "alloc::vec::{alloc::vec::Vec<@T, alloc::alloc::Global>}::new" - (Some "alloc::vec::Vec::new") None false false; + (Some "alloc::vec::Vec::new") None; mk_fun "alloc::vec::{alloc::vec::Vec<@T, @A>}::push" None - (Some [ true; false ]) - true true; + (Some [ true; false ]); mk_fun "alloc::vec::{alloc::vec::Vec<@T, @A>}::insert" None - (Some [ true; false ]) - true true; + (Some [ true; false ]); mk_fun "alloc::vec::{alloc::vec::Vec<@T, @A>}::len" None - (Some [ true; false ]) - true false; + (Some [ true; false ]); mk_fun "alloc::vec::{alloc::vec::Vec<@T, @A>}::index" None - (Some [ true; true; false ]) - true false; + (Some [ true; true; false ]); mk_fun "alloc::vec::{alloc::vec::Vec<@T, @A>}::index_mut" None - (Some [ true; true; false ]) - true false; - mk_fun "alloc::boxed::{Box<@T>}::deref" None - (Some [ true; false ]) - true false; - mk_fun "alloc::boxed::{Box<@T>}::deref_mut" None - (Some [ true; false ]) - true false; - mk_fun "core::slice::index::{[@T]}::index" None None true false; - mk_fun "core::slice::index::{[@T]}::index_mut" None None true false; - mk_fun "core::array::{[@T; @C]}::index" None None true false; - mk_fun "core::array::{[@T; @C]}::index_mut" None None true false; + (Some [ true; true; false ]); + mk_fun "alloc::boxed::{Box<@T>}::deref" None (Some [ true; false ]); + mk_fun "alloc::boxed::{Box<@T>}::deref_mut" None (Some [ true; false ]); + mk_fun "core::slice::index::{[@T]}::index" None None; + mk_fun "core::slice::index::{[@T]}::index_mut" None None; + mk_fun "core::array::{[@T; @C]}::index" None None; + mk_fun "core::array::{[@T; @C]}::index_mut" None None; mk_fun "core::slice::index::{core::ops::range::Range}::get" - (Some "core::slice::index::RangeUsize::get") None true false; + (Some "core::slice::index::RangeUsize::get") None; mk_fun "core::slice::index::{core::ops::range::Range}::get_mut" - (Some "core::slice::index::RangeUsize::get_mut") None true false; + (Some "core::slice::index::RangeUsize::get_mut") None; mk_fun "core::slice::index::{core::ops::range::Range}::index" - (Some "core::slice::index::RangeUsize::index") None true false; + (Some "core::slice::index::RangeUsize::index") None; mk_fun "core::slice::index::{core::ops::range::Range}::index_mut" - (Some "core::slice::index::RangeUsize::index_mut") None true false; + (Some "core::slice::index::RangeUsize::index_mut") None; mk_fun "core::slice::index::{core::ops::range::Range}::get_unchecked" - (Some "core::slice::index::RangeUsize::get_unchecked") None false false; + (Some "core::slice::index::RangeUsize::get_unchecked") None; mk_fun "core::slice::index::{core::ops::range::Range}::get_unchecked_mut" - (Some "core::slice::index::RangeUsize::get_unchecked_mut") None false - false; - mk_fun "core::slice::index::{usize}::get" None None true false; - mk_fun "core::slice::index::{usize}::get_mut" None None true false; - mk_fun "core::slice::index::{usize}::get_unchecked" None None false false; - mk_fun "core::slice::index::{usize}::get_unchecked_mut" None None false - false; - mk_fun "core::slice::index::{usize}::index" None None true false; - mk_fun "core::slice::index::{usize}::index_mut" None None true false; + (Some "core::slice::index::RangeUsize::get_unchecked_mut") None; + mk_fun "core::slice::index::{usize}::get" None None; + mk_fun "core::slice::index::{usize}::get_mut" None None; + mk_fun "core::slice::index::{usize}::get_unchecked" None None; + mk_fun "core::slice::index::{usize}::get_unchecked_mut" None None; + mk_fun "core::slice::index::{usize}::index" None None; + mk_fun "core::slice::index::{usize}::index_mut" None None; ] let mk_builtin_funs_map () = @@ -412,10 +382,9 @@ type builtin_trait_decl_info = { [@@deriving show] let builtin_trait_decls_info () = - let rg0 = Some Types.RegionGroupId.zero in let mk_trait (rust_name : string) ?(extract_name : string option = None) ?(parent_clauses : string list = []) ?(types : string list = []) - ?(methods : (string * bool) list = []) () : builtin_trait_decl_info = + ?(methods : string list = []) () : builtin_trait_decl_info = let rust_name = parse_pattern rust_name in let extract_name = match extract_name with @@ -443,22 +412,14 @@ let builtin_trait_decls_info () = List.map mk_type types in let methods = - let mk_method (item_name, with_back) = + let mk_method item_name = (* TODO: factor out with builtin_funs_info *) let basename = if !record_fields_short_names then item_name else extract_name ^ "_" ^ item_name in - let back_no_suffix = false in - let fwd_suffix = if with_back && back_no_suffix then "_fwd" else "" in - let fwd = [ { rg = None; extract_name = basename ^ fwd_suffix } ] in - let back_suffix = if with_back && back_no_suffix then "" else "_back" in - let back = - if with_back then - [ { rg = rg0; extract_name = basename ^ back_suffix } ] - else [] - in - (item_name, fwd @ back) + let fwd = [ { extract_name = basename } ] in + (item_name, fwd) in List.map mk_method methods in @@ -474,21 +435,17 @@ let builtin_trait_decls_info () = in [ (* Deref *) - mk_trait "core::ops::deref::Deref" ~types:[ "Target" ] - ~methods:[ ("deref", true) ] + mk_trait "core::ops::deref::Deref" ~types:[ "Target" ] ~methods:[ "deref" ] (); (* DerefMut *) mk_trait "core::ops::deref::DerefMut" ~parent_clauses:[ "derefInst" ] - ~methods:[ ("deref_mut", true) ] - (); + ~methods:[ "deref_mut" ] (); (* Index *) - mk_trait "core::ops::index::Index" ~types:[ "Output" ] - ~methods:[ ("index", true) ] + mk_trait "core::ops::index::Index" ~types:[ "Output" ] ~methods:[ "index" ] (); (* IndexMut *) mk_trait "core::ops::index::IndexMut" ~parent_clauses:[ "indexInst" ] - ~methods:[ ("index_mut", true) ] - (); + ~methods:[ "index_mut" ] (); (* Sealed *) mk_trait "core::slice::index::private_slice_index::Sealed" (); (* SliceIndex *) @@ -496,12 +453,12 @@ let builtin_trait_decls_info () = ~types:[ "Output" ] ~methods: [ - ("get", true); - ("get_mut", true); - ("get_unchecked", false); - ("get_unchecked_mut", false); - ("index", true); - ("index_mut", true); + "get"; + "get_mut"; + "get_unchecked"; + "get_unchecked_mut"; + "index"; + "index_mut"; ] (); ] diff --git a/compiler/Main.ml b/compiler/Main.ml index 4a2d01dc..664ec067 100644 --- a/compiler/Main.ml +++ b/compiler/Main.ml @@ -120,9 +120,6 @@ let () = " Generate a default lakefile.lean (Lean only)" ); ("-print-llbc", Arg.Set print_llbc, " Print the imported LLBC"); ("-k", Arg.Clear fail_hard, " Do not fail hard in case of error"); - ( "-split-fwd-back", - Arg.Clear return_back_funs, - " Split the forward and backward functions." ); ( "-tuple-nested-proj", Arg.Set use_nested_tuple_projectors, " Use nested projectors for tuples (e.g., (0, 1).snd.fst instead of \ diff --git a/compiler/SymbolicToPure.ml b/compiler/SymbolicToPure.ml index 3a50e495..859d6f17 100644 --- a/compiler/SymbolicToPure.ml +++ b/compiler/SymbolicToPure.ml @@ -805,11 +805,9 @@ let bs_ctx_register_forward_call (call_id : V.FunCallId.id) (forward : S.call) that we need to call. This function may be [None] if it has to be ignored (because it does nothing). *) -let bs_ctx_register_backward_call (abs : V.abs) (effect_info : fun_effect_info) - (call_id : V.FunCallId.id) (back_id : T.RegionGroupId.id) - (inherited_args : texpression list) (back_args : texpression list) - (generics : generic_args) (output_ty : ty) (ctx : bs_ctx) : - bs_ctx * texpression option = +let bs_ctx_register_backward_call (abs : V.abs) (call_id : V.FunCallId.id) + (back_id : T.RegionGroupId.id) (back_args : texpression list) (ctx : bs_ctx) + : bs_ctx * texpression option = (* Insert the abstraction in the call informations *) let info = V.FunCallId.Map.find call_id ctx.calls in let calls = V.FunCallId.Map.add call_id info ctx.calls in @@ -819,29 +817,9 @@ let bs_ctx_register_backward_call (abs : V.abs) (effect_info : fun_effect_info) let abstractions = V.AbstractionId.Map.add abs.abs_id (abs, back_args) abstractions in - (* Compute the expression corresponding to the function *) - let func = - if !Config.return_back_funs then - (* Lookup the variable introduced for the backward function *) - RegionGroupId.Map.find back_id (Option.get info.back_funs) - else - (* Retrieve the fun_id *) - let fun_id = - match info.forward.call_id with - | S.Fun (fid, _) -> - let fid = translate_fun_id_or_trait_method_ref ctx fid in - Fun (FromLlbc (fid, None, Some back_id)) - | S.Unop _ | S.Binop _ -> raise (Failure "Unreachable") - in - let args = List.append inherited_args back_args in - let input_tys = (List.map (fun (x : texpression) -> x.ty)) args in - let ret_ty = - if effect_info.can_fail then mk_result_ty output_ty else output_ty - in - let func_ty = mk_arrows input_tys ret_ty in - let func = { id = FunOrOp fun_id; generics } in - Some { e = Qualif func; ty = func_ty } - in + (* Compute the expression corresponding to the function. + We simply lookup the variable introduced for the backward function. *) + let func = RegionGroupId.Map.find back_id (Option.get info.back_funs) in (* Update the context and return *) ({ ctx with calls; abstractions }, func) @@ -1124,20 +1102,34 @@ let translate_fun_sig_with_regions_hierarchy_to_decomposed let inputs_no_state = List.map (fun ty -> (Some "ret", ty)) inputs_no_state in - (* In case we merge the forward/backward functions: - we consider the backward function as stateful and potentially failing + (* We consider a backward function as stateful and potentially failing **only if it has inputs** (for the "potentially failing": if it has not inputs, we directly evaluate it in the body of the forward function). + + For instance, we do the following: + {[ + // Rust + fn push(v : &mut Vec, x : T) { ... } + + (* Generated code: before doing unit elimination. + We return (), as well as the backward function; as the backward + function doesn't consume any inputs, it is a value that we compute + directly in the body of [push]. + *) + let push T (v : Vec T) (x : T) : Result (() * Vec T) = ... + + (* Generated code: after doing unit elimination, if we simplify the merged + fwd/back functions (see below). *) + let push T (v : Vec T) (x : T) : Result (Vec T) = ... + ]} *) let back_effect_info = - if !Config.return_back_funs then - let b = inputs_no_state <> [] in - { - back_effect_info with - stateful = back_effect_info.stateful && b; - can_fail = back_effect_info.can_fail && b; - } - else back_effect_info + let b = inputs_no_state <> [] in + { + back_effect_info with + stateful = back_effect_info.stateful && b; + can_fail = back_effect_info.can_fail && b; + } in let state = if back_effect_info.stateful then [ (None, mk_state_ty) ] else [] @@ -1145,8 +1137,7 @@ let translate_fun_sig_with_regions_hierarchy_to_decomposed let inputs = inputs_no_state @ state in let output_names, outputs = compute_back_outputs_for_gid gid in let filter = - !Config.simplify_merged_fwd_backs - && !Config.return_back_funs && inputs = [] && outputs = [] + !Config.simplify_merged_fwd_backs && inputs = [] && outputs = [] in let info = { @@ -1186,7 +1177,7 @@ let translate_fun_sig_with_regions_hierarchy_to_decomposed } in let ignore_output = - if !Config.return_back_funs && !Config.simplify_merged_fwd_backs then + if !Config.simplify_merged_fwd_backs then ty_is_unit fwd_output && List.exists (fun (info : back_sg_info) -> not info.filter) @@ -1296,10 +1287,10 @@ let compute_back_tys (dsg : Pure.decomposed_fun_sig) (subst : (generic_args * trait_instance_id) option) : ty option list = List.map (Option.map snd) (compute_back_tys_with_info dsg subst) -(** In case we merge the fwd/back functions: compute the output type of - a function, from a decomposed signature. *) +(** Compute the output type of a function, from a decomposed signature + (the output type contains the type of the value returned by the forward + function as well as the types of the returned backward functions). *) let compute_output_ty_from_decomposed (dsg : Pure.decomposed_fun_sig) : ty = - assert !Config.return_back_funs; (* Compute the arrow types for all the backward functions *) let back_tys = List.filter_map (fun x -> x) (compute_back_tys dsg None) in (* Group the forward output and the types of the backward functions *) @@ -1315,8 +1306,8 @@ let compute_output_ty_from_decomposed (dsg : Pure.decomposed_fun_sig) : ty = in mk_output_ty_from_effect_info effect_info output -let translate_fun_sig_from_decomposed (dsg : Pure.decomposed_fun_sig) - (gid : RegionGroupId.id option) : fun_sig = +let translate_fun_sig_from_decomposed (dsg : Pure.decomposed_fun_sig) : fun_sig + = let generics = dsg.generics in let llbc_generics = dsg.llbc_generics in let preds = dsg.preds in @@ -1329,27 +1320,10 @@ let translate_fun_sig_from_decomposed (dsg : Pure.decomposed_fun_sig) (gid, info.effect_info)) (RegionGroupId.Map.bindings dsg.back_sg)) in - let mk_output_ty = mk_output_ty_from_effect_info in let inputs, output = - (* Two cases depending on whether we split the forward/backward functions or not *) - if !Config.return_back_funs then ( - assert (gid = None); - let output = compute_output_ty_from_decomposed dsg in - let inputs = dsg.fwd_inputs in - (inputs, output)) - else - match gid with - | None -> - let effect_info = dsg.fwd_info.effect_info in - let output = mk_output_ty effect_info dsg.fwd_output in - (dsg.fwd_inputs, output) - | Some gid -> - let back_sg = RegionGroupId.Map.find gid dsg.back_sg in - let effect_info = back_sg.effect_info in - let inputs = dsg.fwd_inputs @ List.map snd back_sg.inputs in - let output = mk_simpl_tuple_ty back_sg.outputs in - let output = mk_output_ty effect_info output in - (inputs, output) + let output = compute_output_ty_from_decomposed dsg in + let inputs = dsg.fwd_inputs in + (inputs, output) in { generics; llbc_generics; preds; inputs; output; fwd_info; back_effect_info } @@ -1933,16 +1907,14 @@ and translate_panic (ctx : bs_ctx) : texpression = *) match ctx.bid with | None -> - if !Config.return_back_funs then - let back_tys = compute_back_tys ctx.sg None in - let back_tys = List.filter_map (fun x -> x) back_tys in - let tys = - if ctx.sg.fwd_info.ignore_output then back_tys - else ctx.sg.fwd_output :: back_tys - in - let output = mk_simpl_tuple_ty tys in - mk_output output - else mk_output ctx.sg.fwd_output + let back_tys = compute_back_tys ctx.sg None in + let back_tys = List.filter_map (fun x -> x) back_tys in + let tys = + if ctx.sg.fwd_info.ignore_output then back_tys + else ctx.sg.fwd_output :: back_tys + in + let output = mk_simpl_tuple_ty tys in + mk_output output | Some bid -> let output = mk_simpl_tuple_ty (RegionGroupId.Map.find bid ctx.sg.back_sg).outputs @@ -2080,107 +2052,103 @@ and translate_function_call (call : S.call) (e : S.expression) (ctx : bs_ctx) : (List.concat [ fuel; args; [ state_var ] ], ctx, Some nstate_var) else (List.concat [ fuel; args ], ctx, None) in - (* If we do not split the forward/backward functions: generate the - variables for the backward functions returned by the forward + (* Generate the variables for the backward functions returned by the forward function. *) let ctx, ignore_fwd_output, back_funs_map, back_funs = - if !Config.return_back_funs then ( - (* We need to compute the signatures of the backward functions. *) - let sg = Option.get call.sg in - let decls_ctx = ctx.decls_ctx in - let dsg = - translate_fun_sig_with_regions_hierarchy_to_decomposed decls_ctx - fid call.regions_hierarchy sg - (List.map (fun _ -> None) sg.inputs) - in - log#ldebug - (lazy ("dsg.generics:\n" ^ show_generic_params dsg.generics)); - let tr_self, all_generics = - match call.trait_method_generics with - | None -> (UnknownTrait __FUNCTION__, generics) - | Some (all_generics, tr_self) -> - let all_generics = - ctx_translate_fwd_generic_args ctx all_generics - in - let tr_self = - translate_fwd_trait_instance_id ctx.type_ctx.type_infos - tr_self + (* We need to compute the signatures of the backward functions. *) + let sg = Option.get call.sg in + let decls_ctx = ctx.decls_ctx in + let dsg = + translate_fun_sig_with_regions_hierarchy_to_decomposed decls_ctx fid + call.regions_hierarchy sg + (List.map (fun _ -> None) sg.inputs) + in + log#ldebug + (lazy ("dsg.generics:\n" ^ show_generic_params dsg.generics)); + let tr_self, all_generics = + match call.trait_method_generics with + | None -> (UnknownTrait __FUNCTION__, generics) + | Some (all_generics, tr_self) -> + let all_generics = + ctx_translate_fwd_generic_args ctx all_generics + in + let tr_self = + translate_fwd_trait_instance_id ctx.type_ctx.type_infos + tr_self + in + (tr_self, all_generics) + in + let back_tys = + compute_back_tys_with_info dsg (Some (all_generics, tr_self)) + in + (* Introduce variables for the backward functions *) + (* Compute a proper basename for the variables *) + let back_fun_name = + let name = + match fid with + | FunId (FAssumed fid) -> ( + match fid with + | BoxNew -> "box_new" + | BoxFree -> "box_free" + | ArrayRepeat -> "array_repeat" + | ArrayIndexShared -> "index_shared" + | ArrayIndexMut -> "index_mut" + | ArrayToSliceShared -> "to_slice_shared" + | ArrayToSliceMut -> "to_slice_mut" + | SliceIndexShared -> "index_shared" + | SliceIndexMut -> "index_mut") + | FunId (FRegular fid) | TraitMethod (_, _, fid) -> ( + let decl = + FunDeclId.Map.find fid ctx.fun_ctx.llbc_fun_decls in - (tr_self, all_generics) + match Collections.List.last decl.name with + | PeIdent (s, _) -> s + | PeImpl _ -> + (* We shouldn't get there *) + raise (Failure "Unexpected")) in - let back_tys = - compute_back_tys_with_info dsg (Some (all_generics, tr_self)) - in - (* Introduce variables for the backward functions *) - (* Compute a proper basename for the variables *) - let back_fun_name = - let name = - match fid with - | FunId (FAssumed fid) -> ( - match fid with - | BoxNew -> "box_new" - | BoxFree -> "box_free" - | ArrayRepeat -> "array_repeat" - | ArrayIndexShared -> "index_shared" - | ArrayIndexMut -> "index_mut" - | ArrayToSliceShared -> "to_slice_shared" - | ArrayToSliceMut -> "to_slice_mut" - | SliceIndexShared -> "index_shared" - | SliceIndexMut -> "index_mut") - | FunId (FRegular fid) | TraitMethod (_, _, fid) -> ( - let decl = - FunDeclId.Map.find fid ctx.fun_ctx.llbc_fun_decls - in - match Collections.List.last decl.name with - | PeIdent (s, _) -> s - | PeImpl _ -> - (* We shouldn't get there *) - raise (Failure "Unexpected")) - in - name ^ "_back" - in - let ctx, back_vars = - fresh_opt_vars - (List.map - (fun ty -> - match ty with - | None -> None - | Some (back_sg, ty) -> - (* We insert a name for the variable only if the function - can fail: if it can fail, it means the call returns a backward - function. Otherwise, we it directly returns the value given - back by the backward function, which means we shouldn't - give it a name like "back..." (it doesn't make sense) *) - let name = - if back_sg.effect_info.can_fail then - Some back_fun_name - else None - in - Some (name, ty)) - back_tys) - ctx - in - let back_funs = - List.filter_map - (fun v -> - match v with - | None -> None - | Some v -> Some (mk_typed_pattern_from_var v None)) - back_vars - in - let gids = - List.map - (fun (g : T.region_var_group) -> g.id) - call.regions_hierarchy - in - let back_vars = - List.map (Option.map mk_texpression_from_var) back_vars - in - let back_funs_map = - RegionGroupId.Map.of_list (List.combine gids back_vars) - in - (ctx, dsg.fwd_info.ignore_output, Some back_funs_map, back_funs)) - else (ctx, false, None, []) + name ^ "_back" + in + let ctx, back_vars = + fresh_opt_vars + (List.map + (fun ty -> + match ty with + | None -> None + | Some (back_sg, ty) -> + (* We insert a name for the variable only if the function + can fail: if it can fail, it means the call returns a backward + function. Otherwise, we it directly returns the value given + back by the backward function, which means we shouldn't + give it a name like "back..." (it doesn't make sense) *) + let name = + if back_sg.effect_info.can_fail then Some back_fun_name + else None + in + Some (name, ty)) + back_tys) + ctx + in + let back_funs = + List.filter_map + (fun v -> + match v with + | None -> None + | Some v -> Some (mk_typed_pattern_from_var v None)) + back_vars + in + let gids = + List.map + (fun (g : T.region_var_group) -> g.id) + call.regions_hierarchy + in + let back_vars = + List.map (Option.map mk_texpression_from_var) back_vars + in + let back_funs_map = + RegionGroupId.Map.of_list (List.combine gids back_vars) + in + (ctx, dsg.fwd_info.ignore_output, Some back_funs_map, back_funs) in (* Compute the pattern for the destination *) let ctx, dest = fresh_var_for_symbolic_value call.dest ctx in @@ -2407,19 +2375,6 @@ and translate_end_abstraction_fun_call (ectx : C.eval_ctx) (abs : V.abs) raise (Failure "Unreachable") in let effect_info = get_fun_effect_info ctx fun_id None (Some rg_id) in - let generics = ctx_translate_fwd_generic_args ctx call.generics in - (* Retrieve the original call and the parent abstractions *) - let _forward, backwards = get_abs_ancestors ctx abs call_id in - (* Retrieve the values consumed when we called the forward function and - * ended the parent backward functions: those give us part of the input - * values (rem: for now, as we disallow nested lifetimes, there can't be - * parent backward functions). - * Note that the forward inputs **include the fuel and the input state** - * (if we use those). *) - let fwd_inputs = call_info.forward_inputs in - let back_ancestors_inputs = - List.concat (List.map (fun (_abs, args) -> args) backwards) - in (* Retrieve the values consumed upon ending the loans inside this * abstraction: those give us the remaining input values *) let back_inputs = abs_to_consumed ctx ectx abs in @@ -2434,11 +2389,6 @@ and translate_end_abstraction_fun_call (ectx : C.eval_ctx) (abs : V.abs) ([ back_state ], ctx, Some nstate) else ([], ctx, None) in - (* Concatenate all the inpus *) - let inherited_inputs = - if !Config.return_back_funs then [] - else List.concat [ fwd_inputs; back_ancestors_inputs ] - in let back_inputs = List.append back_inputs back_state in (* Retrieve the values given back by this function: those are the output * values. We rely on the fact that there are no nested borrows to use the @@ -2459,58 +2409,33 @@ and translate_end_abstraction_fun_call (ectx : C.eval_ctx) (abs : V.abs) (* Retrieve the function id, and register the function call in the context if necessary.Arith_status *) let ctx, func = - bs_ctx_register_backward_call abs effect_info call_id rg_id inherited_inputs - back_inputs generics output.ty ctx + bs_ctx_register_backward_call abs call_id rg_id back_inputs ctx in (* Translate the next expression *) let next_e = translate_expression e ctx in (* Put everything together *) - let inputs = List.append inherited_inputs back_inputs in + let inputs = back_inputs in let args_mplaces = List.map (fun _ -> None) inputs in let args = List.map (fun (arg, mp) -> mk_opt_mplace_texpression mp arg) (List.combine inputs args_mplaces) in - (* **Optimization**: - ================= - We do a small optimization here if we split the forward/backward functions. - If the backward function doesn't have any output, we don't introduce any function - call. - See the comment in {!Config.filter_useless_monadic_calls}. - - TODO: use an option to disallow backward functions from updating the state. - TODO: a backward function which only gives back shared borrows shouldn't - update the state (state updates should only be used for mutable borrows, - with objects like Rc for instance). - *) - if - (not !Config.return_back_funs) - && !Config.filter_useless_monadic_calls - && outputs = [] && nstate = None - then ( - (* No outputs - we do a small sanity check: the backward function - should have exactly the same number of inputs as the forward: - this number can be different only if the forward function returned - a value containing mutable borrows, which can't be the case... *) - assert (List.length inputs = List.length fwd_inputs); - next_e) - else - (* The backward function might also have been filtered if we do not - split the forward/backward functions *) - match func with - | None -> next_e - | Some func -> - log#ldebug - (lazy - (let args = List.map (texpression_to_string ctx) args in - "func: " - ^ texpression_to_string ctx func - ^ "\nfunc type: " - ^ pure_ty_to_string ctx func.ty - ^ "\n\nargs:\n" ^ String.concat "\n" args)); - let call = mk_apps func args in - mk_let effect_info.can_fail output call next_e + (* The backward function might have been filtered it does nothing + (consumes unit and returns unit). *) + match func with + | None -> next_e + | Some func -> + log#ldebug + (lazy + (let args = List.map (texpression_to_string ctx) args in + "func: " + ^ texpression_to_string ctx func + ^ "\nfunc type: " + ^ pure_ty_to_string ctx func.ty + ^ "\n\nargs:\n" ^ String.concat "\n" args)); + let call = mk_apps func args in + mk_let effect_info.can_fail output call next_e and translate_end_abstraction_identity (ectx : C.eval_ctx) (abs : V.abs) (e : S.expression) (ctx : bs_ctx) : texpression = @@ -2637,10 +2562,7 @@ and translate_end_abstraction_loop (ectx : C.eval_ctx) (abs : V.abs) else ([], ctx, None) in (* Concatenate all the inputs *) - let inputs = - if !Config.return_back_funs then List.concat [ back_inputs; back_state ] - else List.concat [ fwd_inputs; back_inputs; back_state ] - in + let inputs = List.concat [ back_inputs; back_state ] in (* Retrieve the values given back by this function *) let ctx, outputs = abs_to_given_back None abs ctx in (* Group the output values together: first the updated inputs *) @@ -2670,77 +2592,46 @@ and translate_end_abstraction_loop (ectx : C.eval_ctx) (abs : V.abs) - or a call to the variable we introduced for the backward function, if we merge the forward/backward functions *) let func = - if !Config.return_back_funs then - RegionGroupId.Map.find rg_id (Option.get loop_info.back_funs) - else - let func_ty = mk_arrows input_tys ret_ty in - let func = Fun (FromLlbc (FunId fun_id, Some loop_id, Some rg_id)) in - let func = { id = FunOrOp func; generics } in - Some { e = Qualif func; ty = func_ty } + RegionGroupId.Map.find rg_id (Option.get loop_info.back_funs) in - (* **Optimization**: - ================= - We do a small optimization here in case we split the forward/backward - functions. - If the backward function doesn't have any output, we don't introduce - any function call. - See the comment in {!Config.filter_useless_monadic_calls}. - - TODO: use an option to disallow backward functions from updating the state. - TODO: a backward function which only gives back shared borrows shouldn't - update the state (state updates should only be used for mutable borrows, - with objects like Rc for instance). - *) - if - (not !Config.return_back_funs) - && !Config.filter_useless_monadic_calls - && outputs = [] && nstate = None - then ( - (* No outputs - we do a small sanity check: the backward function - should have exactly the same number of inputs as the forward: - this number can be different only if the forward function returned - a value containing mutable borrows, which can't be the case... *) - assert (List.length inputs = List.length fwd_inputs); - next_e) - else - (* In case we merge the fwd/back functions we filter the backward - functions elsewhere *) - match func with - | None -> next_e - | Some func -> - let call = mk_apps func args in - (* Add meta-information - this is slightly hacky: we look at the - values consumed by the abstraction (note that those come from - *before* we applied the fixed-point context) and use them to - guide the naming of the output vars. - - Also, we need to convert the backward outputs from patterns to - variables. - - Finally, in practice, this works well only for loop bodies: - we do this only in this case. - TODO: improve the heuristics, to give weight to the hints for - instance. - *) - let next_e = - if ctx.inside_loop then - let consumed_values = abs_to_consumed ctx ectx abs in - let var_values = List.combine outputs consumed_values in - let var_values = - List.filter_map - (fun (var, v) -> - match var.Pure.value with - | PatVar (var, _) -> Some (var, v) - | _ -> None) - var_values - in - let vars, values = List.split var_values in - mk_emeta_symbolic_assignments vars values next_e - else next_e - in + (* We may have filtered the backward function elsewhere if it doesn't + do anything (doesn't consume anything and doesn't return anything) *) + match func with + | None -> next_e + | Some func -> + let call = mk_apps func args in + (* Add meta-information - this is slightly hacky: we look at the + values consumed by the abstraction (note that those come from + *before* we applied the fixed-point context) and use them to + guide the naming of the output vars. + + Also, we need to convert the backward outputs from patterns to + variables. + + Finally, in practice, this works well only for loop bodies: + we do this only in this case. + TODO: improve the heuristics, to give weight to the hints for + instance. + *) + let next_e = + if ctx.inside_loop then + let consumed_values = abs_to_consumed ctx ectx abs in + let var_values = List.combine outputs consumed_values in + let var_values = + List.filter_map + (fun (var, v) -> + match var.Pure.value with + | PatVar (var, _) -> Some (var, v) + | _ -> None) + var_values + in + let vars, values = List.split var_values in + mk_emeta_symbolic_assignments vars values next_e + else next_e + in - (* Create the let-binding *) - mk_let effect_info.can_fail output call next_e) + (* Create the let-binding *) + mk_let effect_info.can_fail output call next_e) and translate_global_eval (gid : A.GlobalDeclId.id) (sval : V.symbolic_value) (e : S.expression) (ctx : bs_ctx) : texpression = @@ -3068,48 +2959,40 @@ and translate_forward_end (ectx : C.eval_ctx) *) let ctx = (* Introduce variables for the inputs and the state variable - and update the context. *) - if !Config.return_back_funs then - (* If the forward/backward functions are not split, we need - to introduce fresh variables for the additional inputs, - because they are locally introduced in a lambda *) - let back_sg = RegionGroupId.Map.find bid ctx.sg.back_sg in - let ctx, backward_inputs_no_state = - fresh_vars back_sg.inputs_no_state ctx - in - let ctx, backward_inputs_with_state = - if back_sg.effect_info.stateful then - let ctx, var, _ = bs_ctx_fresh_state_var ctx in - (ctx, backward_inputs_no_state @ [ var ]) - else (ctx, backward_inputs_no_state) - in - { - ctx with - backward_inputs_no_state = - RegionGroupId.Map.add bid backward_inputs_no_state - ctx.backward_inputs_no_state; - backward_inputs_with_state = - RegionGroupId.Map.add bid backward_inputs_with_state - ctx.backward_inputs_with_state; - } - else - (* Update the state variable *) - let back_state_var = - RegionGroupId.Map.find bid ctx.back_state_vars - in - { ctx with state_var = back_state_var } + and update the context. + + We need to introduce fresh variables for the additional inputs, + because they are locally introduced in a lambda. + *) + let back_sg = RegionGroupId.Map.find bid ctx.sg.back_sg in + let ctx, backward_inputs_no_state = + fresh_vars back_sg.inputs_no_state ctx + in + let ctx, backward_inputs_with_state = + if back_sg.effect_info.stateful then + let ctx, var, _ = bs_ctx_fresh_state_var ctx in + (ctx, backward_inputs_no_state @ [ var ]) + else (ctx, backward_inputs_no_state) + in + { + ctx with + backward_inputs_no_state = + RegionGroupId.Map.add bid backward_inputs_no_state + ctx.backward_inputs_no_state; + backward_inputs_with_state = + RegionGroupId.Map.add bid backward_inputs_with_state + ctx.backward_inputs_with_state; + } in let e = T.RegionGroupId.Map.find bid back_e in let finish e = (* Wrap in lambdas if necessary *) - if !Config.return_back_funs then - let inputs = - RegionGroupId.Map.find bid ctx.backward_inputs_with_state - in - let places = List.map (fun _ -> None) inputs in - mk_lambdas_from_vars inputs places e - else e + let inputs = + RegionGroupId.Map.find bid ctx.backward_inputs_with_state + in + let places = List.map (fun _ -> None) inputs in + mk_lambdas_from_vars inputs places e in (ctx, e, finish) in @@ -3131,85 +3014,83 @@ and translate_forward_end (ectx : C.eval_ctx) function, if needs be, and lookup the proper expression. *) let translate_end ctx = - if !Config.return_back_funs then - (* Compute the output of the forward function *) - let fwd_effect_info = ctx.sg.fwd_info.effect_info in - let ctx, pure_fwd_var = fresh_var None ctx.sg.fwd_output ctx in - let fwd_e = translate_one_end ctx None in - - (* Introduce the backward functions. *) - let back_el = - List.map - (fun ((gid, _) : RegionGroupId.id * back_sg_info) -> - translate_one_end ctx (Some gid)) - (RegionGroupId.Map.bindings ctx.sg.back_sg) - in + (* Compute the output of the forward function *) + let fwd_effect_info = ctx.sg.fwd_info.effect_info in + let ctx, pure_fwd_var = fresh_var None ctx.sg.fwd_output ctx in + let fwd_e = translate_one_end ctx None in - (* Compute whether the backward expressions should be evaluated straight - away or not (i.e., if we should bind them with monadic let-bindings - or not). We evaluate them straight away if they can fail and have no - inputs. *) - let evaluate_backs = - List.map - (fun (sg : back_sg_info) -> - if !Config.simplify_merged_fwd_backs then - sg.inputs = [] && sg.effect_info.can_fail - else false) - (RegionGroupId.Map.values ctx.sg.back_sg) - in + (* Introduce the backward functions. *) + let back_el = + List.map + (fun ((gid, _) : RegionGroupId.id * back_sg_info) -> + translate_one_end ctx (Some gid)) + (RegionGroupId.Map.bindings ctx.sg.back_sg) + in - (* Introduce variables for the backward functions. - We lookup the LLBC definition in an attempt to derive pretty names - for those functions. *) - let _, back_vars = fresh_back_vars_for_current_fun ctx in + (* Compute whether the backward expressions should be evaluated straight + away or not (i.e., if we should bind them with monadic let-bindings + or not). We evaluate them straight away if they can fail and have no + inputs. *) + let evaluate_backs = + List.map + (fun (sg : back_sg_info) -> + if !Config.simplify_merged_fwd_backs then + sg.inputs = [] && sg.effect_info.can_fail + else false) + (RegionGroupId.Map.values ctx.sg.back_sg) + in - (* Create the return expressions *) - let vars = - let back_vars = List.filter_map (fun x -> x) back_vars in - if ctx.sg.fwd_info.ignore_output then back_vars - else pure_fwd_var :: back_vars - in - let vars = List.map mk_texpression_from_var vars in - let ret = mk_simpl_tuple_texpression vars in - - (* Introduce a fresh input state variable for the forward expression *) - let _ctx, state_var, state_pat = - if fwd_effect_info.stateful then - let ctx, var, pat = bs_ctx_fresh_state_var ctx in - (ctx, [ var ], [ pat ]) - else (ctx, [], []) - in + (* Introduce variables for the backward functions. + We lookup the LLBC definition in an attempt to derive pretty names + for those functions. *) + let _, back_vars = fresh_back_vars_for_current_fun ctx in + + (* Create the return expressions *) + let vars = + let back_vars = List.filter_map (fun x -> x) back_vars in + if ctx.sg.fwd_info.ignore_output then back_vars + else pure_fwd_var :: back_vars + in + let vars = List.map mk_texpression_from_var vars in + let ret = mk_simpl_tuple_texpression vars in + + (* Introduce a fresh input state variable for the forward expression *) + let _ctx, state_var, state_pat = + if fwd_effect_info.stateful then + let ctx, var, pat = bs_ctx_fresh_state_var ctx in + (ctx, [ var ], [ pat ]) + else (ctx, [], []) + in - let state_var = List.map mk_texpression_from_var state_var in - let ret = mk_simpl_tuple_texpression (state_var @ [ ret ]) in - let ret = mk_result_return_texpression ret in + let state_var = List.map mk_texpression_from_var state_var in + let ret = mk_simpl_tuple_texpression (state_var @ [ ret ]) in + let ret = mk_result_return_texpression ret in - (* Introduce all the let-bindings *) + (* Introduce all the let-bindings *) - (* Combine: - - the backward variables - - whether we should evaluate the expression for the backward function - (i.e., should we use a monadic let-binding or not - we do if the - backward functions don't have inputs and can fail) - - the expressions for the backward functions - *) - let back_vars_els = - List.filter_map - (fun (v, (eval, el)) -> - match v with None -> None | Some v -> Some (v, eval, el)) - (List.combine back_vars (List.combine evaluate_backs back_el)) - in - let e = - List.fold_right - (fun (var, evaluate, back_e) e -> - mk_let evaluate (mk_typed_pattern_from_var var None) back_e e) - back_vars_els ret - in - (* Bind the expression for the forward output *) - let fwd_var = mk_typed_pattern_from_var pure_fwd_var None in - let pat = mk_simpl_tuple_pattern (state_pat @ [ fwd_var ]) in - mk_let fwd_effect_info.can_fail pat fwd_e e - else translate_one_end ctx ctx.bid + (* Combine: + - the backward variables + - whether we should evaluate the expression for the backward function + (i.e., should we use a monadic let-binding or not - we do if the + backward functions don't have inputs and can fail) + - the expressions for the backward functions + *) + let back_vars_els = + List.filter_map + (fun (v, (eval, el)) -> + match v with None -> None | Some v -> Some (v, eval, el)) + (List.combine back_vars (List.combine evaluate_backs back_el)) + in + let e = + List.fold_right + (fun (var, evaluate, back_e) e -> + mk_let evaluate (mk_typed_pattern_from_var var None) back_e e) + back_vars_els ret + in + (* Bind the expression for the forward output *) + let fwd_var = mk_typed_pattern_from_var pure_fwd_var None in + let pat = mk_simpl_tuple_pattern (state_pat @ [ fwd_var ]) in + mk_let fwd_effect_info.can_fail pat fwd_e e in (* If we are (re-)entering a loop, we need to introduce a call to the @@ -3279,24 +3160,22 @@ and translate_forward_end (ectx : C.eval_ctx) backward functions of the outer function. *) let ctx, back_funs_map, back_funs = - if !Config.return_back_funs then - let ctx, back_vars = fresh_back_vars_for_current_fun ctx in - let back_funs = - List.filter_map - (fun v -> - match v with - | None -> None - | Some v -> Some (mk_typed_pattern_from_var v None)) - back_vars - in - let gids = RegionGroupId.Map.keys ctx.sg.back_sg in - let back_funs_map = - RegionGroupId.Map.of_list - (List.combine gids - (List.map (Option.map mk_texpression_from_var) back_vars)) - in - (ctx, Some back_funs_map, back_funs) - else (ctx, None, []) + let ctx, back_vars = fresh_back_vars_for_current_fun ctx in + let back_funs = + List.filter_map + (fun v -> + match v with + | None -> None + | Some v -> Some (mk_typed_pattern_from_var v None)) + back_vars + in + let gids = RegionGroupId.Map.keys ctx.sg.back_sg in + let back_funs_map = + RegionGroupId.Map.of_list + (List.combine gids + (List.map (Option.map mk_texpression_from_var) back_vars)) + in + (ctx, Some back_funs_map, back_funs) in (* Introduce patterns *) @@ -3438,91 +3317,58 @@ and translate_loop (loop : S.loop) (ctx : bs_ctx) : texpression = (* The output type of the loop function *) let fwd_effect_info = { ctx.sg.fwd_info.effect_info with is_rec = true } in let back_effect_infos, output_ty = - if !Config.return_back_funs then - (* The loop backward functions consume the same additional inputs as the parent - function, but have custom outputs *) - let back_sgs = RegionGroupId.Map.bindings ctx.sg.back_sg in - let given_back_tys = RegionGroupId.Map.values rg_to_given_back_tys in - let back_info_tys = - List.map - (fun (((id, back_sg), given_back) : (_ * back_sg_info) * ty list) -> - (* Remark: the effect info of the backward function for the loop - is almost the same as for the backward function of the parent function. - Quite importantly, the fact that the function is stateful and/or can fail - mostly depends on whether it has inputs or not, and the backward functions - for the loops have the same inputs as the backward functions for the parent - function. - *) - let effect_info = back_sg.effect_info in - let effect_info = { effect_info with is_rec = true } in - (* Compute the input/output types *) - let inputs = List.map snd back_sg.inputs in - let outputs = given_back in - (* Filter if necessary *) - let ty = - if - !Config.simplify_merged_fwd_backs && inputs = [] && outputs = [] - then None - else - let output = mk_simpl_tuple_ty outputs in - let output = - mk_back_output_ty_from_effect_info effect_info inputs output - in - let ty = mk_arrows inputs output in - Some ty - in - ((id, effect_info), ty)) - (List.combine back_sgs given_back_tys) - in - let back_info = List.map fst back_info_tys in - let back_info = RegionGroupId.Map.of_list back_info in - let back_tys = List.filter_map snd back_info_tys in - let output = - if ctx.sg.fwd_info.ignore_output then back_tys - else ctx.sg.fwd_output :: back_tys - in - let output = mk_simpl_tuple_ty output in - let effect_info = ctx.sg.fwd_info.effect_info in - let output = - if effect_info.stateful then mk_simpl_tuple_ty [ mk_state_ty; output ] - else output - in - let output = - if effect_info.can_fail && inputs <> [] then mk_result_ty output - else output - in - (back_info, output) - else - let back_info = - RegionGroupId.Map.of_list - (List.map - (fun ((id, back_sg) : _ * back_sg_info) -> - (id, { back_sg.effect_info with is_rec = true })) - (RegionGroupId.Map.bindings ctx.sg.back_sg)) - in - let output = - match ctx.bid with - | None -> - (* Forward function: same type as the parent function *) - (translate_fun_sig_from_decomposed ctx.sg None).output - | Some rg_id -> - (* Backward function: custom return type *) - let doutputs = - T.RegionGroupId.Map.find rg_id rg_to_given_back_tys - in - let output = mk_simpl_tuple_ty doutputs in - let fwd_effect_info = ctx.sg.fwd_info.effect_info in - let output = - if fwd_effect_info.stateful then - mk_simpl_tuple_ty [ mk_state_ty; output ] - else output - in - let output = - if fwd_effect_info.can_fail then mk_result_ty output else output - in - output - in - (back_info, output) + (* The loop backward functions consume the same additional inputs as the parent + function, but have custom outputs *) + let back_sgs = RegionGroupId.Map.bindings ctx.sg.back_sg in + let given_back_tys = RegionGroupId.Map.values rg_to_given_back_tys in + let back_info_tys = + List.map + (fun (((id, back_sg), given_back) : (_ * back_sg_info) * ty list) -> + (* Remark: the effect info of the backward function for the loop + is almost the same as for the backward function of the parent function. + Quite importantly, the fact that the function is stateful and/or can fail + mostly depends on whether it has inputs or not, and the backward functions + for the loops have the same inputs as the backward functions for the parent + function. + *) + let effect_info = back_sg.effect_info in + let effect_info = { effect_info with is_rec = true } in + (* Compute the input/output types *) + let inputs = List.map snd back_sg.inputs in + let outputs = given_back in + (* Filter if necessary *) + let ty = + if !Config.simplify_merged_fwd_backs && inputs = [] && outputs = [] + then None + else + let output = mk_simpl_tuple_ty outputs in + let output = + mk_back_output_ty_from_effect_info effect_info inputs output + in + let ty = mk_arrows inputs output in + Some ty + in + ((id, effect_info), ty)) + (List.combine back_sgs given_back_tys) + in + let back_info = List.map fst back_info_tys in + let back_info = RegionGroupId.Map.of_list back_info in + let back_tys = List.filter_map snd back_info_tys in + let output = + if ctx.sg.fwd_info.ignore_output then back_tys + else ctx.sg.fwd_output :: back_tys + in + let output = mk_simpl_tuple_ty output in + let effect_info = ctx.sg.fwd_info.effect_info in + let output = + if effect_info.stateful then mk_simpl_tuple_ty [ mk_state_ty; output ] + else output + in + let output = + if effect_info.can_fail && inputs <> [] then mk_result_ty output + else output + in + (back_info, output) in (* Add the loop information in the context *) @@ -3708,21 +3554,19 @@ let wrap_in_match_fuel (fuel0 : VarId.id) (fuel : VarId.id) (body : texpression) let translate_fun_decl (ctx : bs_ctx) (body : S.expression option) : fun_decl = (* Translate *) let def = ctx.fun_decl in - let bid = ctx.bid in + assert (ctx.bid = None); log#ldebug (lazy ("SymbolicToPure.translate_fun_decl: " ^ name_to_string ctx def.name - ^ " (" - ^ Print.option_to_string T.RegionGroupId.to_string bid - ^ ")\n")); + ^ "\n")); (* Translate the declaration *) let def_id = def.def_id in let llbc_name = def.name in let name = name_to_string ctx llbc_name in (* Translate the signature *) - let signature = translate_fun_sig_from_decomposed ctx.sg ctx.bid in + let signature = translate_fun_sig_from_decomposed ctx.sg in let regions_hierarchy = FunIdMap.find (FRegular def_id) ctx.fun_ctx.regions_hierarchies in @@ -3732,7 +3576,7 @@ let translate_fun_decl (ctx : bs_ctx) (body : S.expression option) : fun_decl = | None -> None | Some body -> let effect_info = - get_fun_effect_info ctx (FunId (FRegular def_id)) None bid + get_fun_effect_info ctx (FunId (FRegular def_id)) None None in let body = translate_expression body ctx in (* Add a match over the fuel, if necessary *) @@ -3760,37 +3604,8 @@ let translate_fun_decl (ctx : bs_ctx) (body : S.expression option) : fun_decl = if effect_info.stateful_group then [ mk_state_var ctx.state_var ] else [] in - (* Compute the list of (properly ordered) backward input variables *) - let backward_inputs : var list = - match bid with - | None -> [] - | Some back_id -> - assert (not !Config.return_back_funs); - let parents_ids = - list_ordered_ancestor_region_groups regions_hierarchy back_id - in - let backward_ids = List.append parents_ids [ back_id ] in - List.concat - (List.map - (fun id -> - T.RegionGroupId.Map.find id ctx.backward_inputs_no_state) - backward_ids) - in - (* Introduce the backward input state (the state at call site of the - * *backward* function), if necessary *) - let back_state = - if effect_info.stateful && Option.is_some bid then - let state_var = - RegionGroupId.Map.find (Option.get bid) ctx.back_state_vars - in - [ mk_state_var state_var ] - else [] - in (* Group the inputs together *) - let inputs = - List.concat - [ fuel; ctx.forward_inputs; fwd_state; backward_inputs; back_state ] - in + let inputs = List.concat [ fuel; ctx.forward_inputs; fwd_state ] in let inputs_lvs = List.map (fun v -> mk_typed_pattern_from_var v None) inputs in @@ -3799,16 +3614,10 @@ let translate_fun_decl (ctx : bs_ctx) (body : S.expression option) : fun_decl = (lazy ("SymbolicToPure.translate_fun_decl: " ^ name_to_string ctx def.name - ^ " (" - ^ Print.option_to_string T.RegionGroupId.to_string bid - ^ ")" ^ "\n- forward_inputs: " + ^ "\n- inputs: " ^ String.concat ", " (List.map show_var ctx.forward_inputs) - ^ "\n- fwd_state: " + ^ "\n- state: " ^ String.concat ", " (List.map show_var fwd_state) - ^ "\n- backward_inputs: " - ^ String.concat ", " (List.map show_var backward_inputs) - ^ "\n- back_state: " - ^ String.concat ", " (List.map show_var back_state) ^ "\n- signature.inputs: " ^ String.concat ", " (List.map (pure_ty_to_string ctx) signature.inputs))); @@ -3837,7 +3646,6 @@ let translate_fun_decl (ctx : bs_ctx) (body : S.expression option) : fun_decl = kind = def.kind; num_loops; loop_id; - back_id = bid; llbc_name; name; signature; -- cgit v1.2.3 From fe2a2cb34148e46e32cdcfbf100e38d9986082cd Mon Sep 17 00:00:00 2001 From: Son Ho Date: Fri, 8 Mar 2024 16:06:35 +0100 Subject: Make progress on propagating the changes --- compiler/Config.ml | 44 ----- compiler/Contexts.ml | 2 + compiler/Extract.ml | 444 ++++++++++++++++---------------------------- compiler/ExtractBase.ml | 161 +++------------- compiler/ExtractBuiltin.ml | 11 +- compiler/ExtractTypes.ml | 2 +- compiler/Main.ml | 6 - compiler/PrintPure.ml | 18 +- compiler/Pure.ml | 4 +- compiler/PureMicroPasses.ml | 331 ++++----------------------------- compiler/ReorderDecls.ml | 12 +- compiler/SymbolicToPure.ml | 13 +- compiler/Translate.ml | 145 +++------------ compiler/TranslateCore.ml | 15 +- 14 files changed, 259 insertions(+), 949 deletions(-) diff --git a/compiler/Config.ml b/compiler/Config.ml index 6fd866e8..af0e62d1 100644 --- a/compiler/Config.ml +++ b/compiler/Config.ml @@ -263,50 +263,6 @@ let decompose_nested_let_patterns = ref false *) let unfold_monadic_let_bindings = ref false -(** Controls whether we try to filter the calls to monadic functions - (which can fail) when their outputs are not used. - - The useless calls are calls to backward functions which have no outputs. - This case happens if the original Rust function only takes *shared* borrows - as inputs, and is thus pretty common. - - We are allowed to do this only because in this specific case, - the backward function fails *exactly* when the forward function fails - (they actually do exactly the same thing, the only difference being - that the forward function can potentially return a value), and upon - reaching the place where we should introduce a call to the backward - function, we know we have introduced a call to the forward function. - - Also note that in general, backward functions "do more things" than - forward functions, and have more opportunities to fail (even though - in the generated code, calls to the backward functions should fail - exactly when the corresponding, previous call to the forward functions - failed). - - This optimization is done in {!SymbolicToPure}. We might want to move it to - the micro-passes subsequent to the translation from symbolic to pure, but it - is really super easy to do it when going from symbolic to pure. Note that - we later filter the useless *forward* calls in the micro-passes, where it is - more natural to do. - - See the comments for {!PureMicroPasses.expression_contains_child_call_in_all_paths} - for additional explanations. - *) -let filter_useless_monadic_calls = ref true - -(** If {!filter_useless_monadic_calls} is activated, some functions - become useless: if this option is true, we don't extract them. - - The calls to functions which always get filtered are: - - the forward functions with unit return value - - the backward functions which don't output anything (backward - functions coming from rust functions with no mutable borrows - as input values - note that if a function doesn't take mutable - borrows as inputs, it can't return mutable borrows; we actually - dynamically check for that). - *) -let filter_useless_functions = ref true - (** Simplify the forward/backward functions, in case we merge them (i.e., the forward functions return the backward functions). diff --git a/compiler/Contexts.ml b/compiler/Contexts.ml index b1dd9553..54411fd5 100644 --- a/compiler/Contexts.ml +++ b/compiler/Contexts.ml @@ -109,6 +109,8 @@ let reset_global_counters () = region_id_counter := RegionId.generator_zero; abstraction_id_counter := AbstractionId.generator_zero; loop_id_counter := LoopId.generator_zero; + (* We want the loop id to start at 1 *) + let _ = fresh_loop_id () in fun_call_id_counter := FunCallId.generator_zero; dummy_var_id_counter := DummyVarId.generator_zero diff --git a/compiler/Extract.ml b/compiler/Extract.ml index dbca4f8f..794a1bfa 100644 --- a/compiler/Extract.ml +++ b/compiler/Extract.ml @@ -9,8 +9,7 @@ open TranslateCore open Config include ExtractTypes -(** Compute the names for all the pure functions generated from a rust function - (forward function and backward functions). +(** Compute the names for all the pure functions generated from a rust function. *) let extract_fun_decl_register_names (ctx : extraction_ctx) (has_decreases_clause : fun_decl -> bool) (def : pure_fun_translation) : @@ -19,63 +18,36 @@ let extract_fun_decl_register_names (ctx : extraction_ctx) method implementations): we do not need to refer to them directly. We will only use their type for the fields of the records we generate for the trait declarations *) - match def.fwd.f.kind with + match def.f.kind with | TraitMethodDecl _ -> ctx | _ -> ( (* Check if the function is builtin *) let builtin = let open ExtractBuiltin in let funs_map = builtin_funs_map () in - match_name_find_opt ctx.trans_ctx def.fwd.f.llbc_name funs_map + match_name_find_opt ctx.trans_ctx def.f.llbc_name funs_map in (* Use the builtin names if necessary *) match builtin with - | Some (filter_info, info) -> - (* Register the filtering information, if there is *) + | Some (filter_info, fun_info) -> + (* Builtin function: register the filtering information, if there is *) let ctx = match filter_info with | Some keep -> { ctx with funs_filter_type_args_map = - FunDeclId.Map.add def.fwd.f.def_id keep + FunDeclId.Map.add def.f.def_id keep ctx.funs_filter_type_args_map; } | _ -> ctx in - let funs = - if !Config.return_back_funs then [ def.fwd.f ] - else - let backs = List.map (fun f -> f.f) def.backs in - if def.keep_fwd then def.fwd.f :: backs else backs - in - List.fold_left - (fun ctx (f : fun_decl) -> - let open ExtractBuiltin in - let fun_id = - (Pure.FunId (FRegular f.def_id), f.loop_id, f.back_id) - in - let fun_info = - List.find_opt - (fun (x : builtin_fun_info) -> x.rg = f.back_id) - info - in - match fun_info with - | Some fun_info -> - ctx_add (FunId (FromLlbc fun_id)) fun_info.extract_name ctx - | None -> - raise - (Failure - ("Not found: " - ^ name_to_string ctx f.llbc_name - ^ ", " - ^ Print.option_to_string Pure.show_loop_id f.loop_id - ^ Print.option_to_string Pure.show_region_group_id - f.back_id))) - ctx funs + let f = def.f in + let open ExtractBuiltin in + let fun_id = (Pure.FunId (FRegular f.def_id), f.loop_id) in + ctx_add (FunId (FromLlbc fun_id)) fun_info.extract_name ctx | None -> - let fwd = def.fwd in - let backs = def.backs in + (* Not builtin *) (* Register the decrease clauses, if necessary *) let register_decreases ctx def = if has_decreases_clause def then @@ -88,21 +60,15 @@ let extract_fun_decl_register_names (ctx : extraction_ctx) | Lean -> ctx_add_decreases_proof def ctx else ctx in - let ctx = - List.fold_left register_decreases ctx (fwd.f :: fwd.loops) - in - let register_fun ctx f = ctx_add_fun_decl def f ctx in + (* We have to register the function itself, and the loops it + may contain (which are extracted as functions) *) + let funs = def.f :: def.loops in + (* Register the decrease clauses *) + let ctx = List.fold_left register_decreases ctx funs in + (* Register the name of the function and the loops *) + let register_fun ctx f = ctx_add_fun_decl f ctx in let register_funs ctx fl = List.fold_left register_fun ctx fl in - (* Register the names of the forward functions *) - let ctx = - if def.keep_fwd then register_funs ctx (fwd.f :: fwd.loops) else ctx - in - (* Register the names of the backward functions *) - List.fold_left - (fun ctx { f = back; loops = loop_backs } -> - let ctx = register_fun ctx back in - register_funs ctx loop_backs) - ctx backs) + register_funs ctx funs) (** Simply add the global name to the context. *) let extract_global_decl_register_names (ctx : extraction_ctx) @@ -230,7 +196,7 @@ let fun_builtin_filter_types (id : FunDeclId.id) (types : 'a list) let decl = FunDeclId.Map.find id ctx.trans_funs in let err = "Ill-formed builtin information for function " - ^ name_to_string ctx decl.fwd.f.llbc_name + ^ name_to_string ctx decl.f.llbc_name ^ ": " ^ string_of_int (List.length filter) ^ " filtering arguments provided for " @@ -460,8 +426,7 @@ and extract_function_call (ctx : extraction_ctx) (fmt : F.formatter) ]} *) (match fun_id with - | FromLlbc - (TraitMethod (trait_ref, method_name, _fun_decl_id), lp_id, rg_id) -> + | FromLlbc (TraitMethod (trait_ref, method_name, _fun_decl_id), lp_id) -> (* We have to check whether the trait method is required or provided *) let trait_decl_id = trait_ref.trait_decl_ref.trait_decl_id in let trait_decl = @@ -477,7 +442,7 @@ and extract_function_call (ctx : extraction_ctx) (fmt : F.formatter) extract_trait_ref ctx fmt TypeDeclId.Set.empty true trait_ref; let fun_name = ctx_get_trait_method trait_ref.trait_decl_ref.trait_decl_id - method_name rg_id ctx + method_name ctx in let add_brackets (s : string) = if !backend = Coq then "(" ^ s ^ ")" else s @@ -486,9 +451,7 @@ and extract_function_call (ctx : extraction_ctx) (fmt : F.formatter) else (* Provided method: we see it as a regular function call, and use the function name *) - let fun_id = - FromLlbc (FunId (FRegular method_id.id), lp_id, rg_id) - in + let fun_id = FromLlbc (FunId (FRegular method_id.id), lp_id) in let fun_name = ctx_get_function fun_id ctx in F.pp_print_string fmt fun_name; @@ -513,7 +476,7 @@ and extract_function_call (ctx : extraction_ctx) (fmt : F.formatter) *) let types = match fun_id with - | FromLlbc (FunId (FRegular id), _, _) -> + | FromLlbc (FunId (FRegular id), _) -> fun_builtin_filter_types id generics.types ctx | _ -> Result.Ok generics.types in @@ -1392,11 +1355,6 @@ let extract_template_lean_termination_and_decreasing (ctx : extraction_ctx) let extract_fun_comment (ctx : extraction_ctx) (fmt : F.formatter) (def : fun_decl) : unit = - let { keep_fwd; num_backs } = - PureUtils.RegularFunIdMap.find - (Pure.FunId (FRegular def.def_id), def.loop_id, def.back_id) - ctx.fun_name_info - in let comment_pre = "[" ^ name_to_string ctx def.llbc_name ^ "]:" in let comment = let loop_comment = @@ -1404,23 +1362,7 @@ let extract_fun_comment (ctx : extraction_ctx) (fmt : F.formatter) | None -> "" | Some id -> " loop " ^ LoopId.to_string id ^ ":" in - let fwd_back_comment = - match def.back_id with - | None -> if !Config.return_back_funs then [] else [ "forward function" ] - | Some id -> - (* Check if there is only one backward function, and no forward function *) - if (not keep_fwd) && num_backs = 1 then - [ - "merged forward/backward function"; - "(there is a single backward function, and the forward function \ - returns ())"; - ] - else [ "backward function " ^ T.RegionGroupId.to_string id ] - in - match fwd_back_comment with - | [] -> [ comment_pre ^ loop_comment ] - | [ s ] -> [ comment_pre ^ loop_comment ^ " " ^ s ] - | s :: sl -> (comment_pre ^ loop_comment ^ " " ^ s) :: sl + [ comment_pre ^ loop_comment ] in extract_comment_with_span fmt comment def.meta.span @@ -1435,9 +1377,7 @@ let extract_fun_decl_gen (ctx : extraction_ctx) (fmt : F.formatter) (kind : decl_kind) (has_decreases_clause : bool) (def : fun_decl) : unit = assert (not def.is_global_decl_body); (* Retrieve the function name *) - let def_name = - ctx_get_local_function def.def_id def.loop_id def.back_id ctx - in + let def_name = ctx_get_local_function def.def_id def.loop_id ctx in (* Add a break before *) if !backend <> HOL4 || not (decl_is_first_from_group kind) then F.pp_print_break fmt 0 0; @@ -1681,9 +1621,7 @@ let extract_fun_decl_gen (ctx : extraction_ctx) (fmt : F.formatter) let extract_fun_decl_hol4_opaque (ctx : extraction_ctx) (fmt : F.formatter) (def : fun_decl) : unit = (* Retrieve the definition name *) - let def_name = - ctx_get_local_function def.def_id def.loop_id def.back_id ctx - in + let def_name = ctx_get_local_function def.def_id def.loop_id ctx in assert (def.signature.generics.const_generics = []); (* Add the type/const gen parameters - note that we need those bindings only for the generation of the type (they are not top-level) *) @@ -1870,7 +1808,6 @@ let extract_global_decl_hol4_opaque (ctx : extraction_ctx) (fmt : F.formatter) let extract_global_decl (ctx : extraction_ctx) (fmt : F.formatter) (global : A.global_decl) (body : fun_decl) (interface : bool) : unit = assert body.is_global_decl_body; - assert (Option.is_none body.back_id); assert (body.signature.inputs = []); assert (body.signature.generics = empty_generic_params); @@ -1883,9 +1820,7 @@ let extract_global_decl (ctx : extraction_ctx) (fmt : F.formatter) let decl_name = ctx_get_global global.def_id ctx in let body_name = - ctx_get_function - (FromLlbc (Pure.FunId (FRegular global.body), None, None)) - ctx + ctx_get_function (FromLlbc (Pure.FunId (FRegular global.body), None)) ctx in let decl_ty, body_ty = @@ -2058,80 +1993,45 @@ let extract_trait_decl_method_names (ctx : extraction_ctx) let required_methods = trait_decl.required_methods in (* Compute the names *) let method_names = - (* We add one field per required forward/backward function *) - let get_funs_for_id (id : fun_decl_id) : fun_decl list = - let trans : pure_fun_translation = FunDeclId.Map.find id ctx.trans_funs in - if !Config.return_back_funs then [ trans.fwd.f ] - else List.map (fun f -> f.f) (trans.fwd :: trans.backs) - in match builtin_info with | None -> - (* We add one field per required forward/backward function *) - let compute_item_names (item_name : string) (id : fun_decl_id) : - string * (RegionGroupId.id option * string) list = - let compute_fun_name (f : fun_decl) : RegionGroupId.id option * string - = - (* We do something special to reuse the [ctx_compute_fun_decl] - function. TODO: make it cleaner. *) - let llbc_name : Types.name = - [ Types.PeIdent (item_name, Disambiguator.zero) ] - in - let f = { f with llbc_name } in - let trans = A.FunDeclId.Map.find f.def_id ctx.trans_funs in - let name = ctx_compute_fun_name trans f ctx in - (* Add a prefix if necessary *) - let name = - if !Config.record_fields_short_names then name - else ctx_compute_trait_decl_name ctx trait_decl ^ "_" ^ name - in - (f.back_id, name) + (* Not a builtin function *) + let compute_item_name (item_name : string) (id : fun_decl_id) : + string * string = + let trans : pure_fun_translation = + FunDeclId.Map.find id ctx.trans_funs + in + let f = trans.f in + (* We do something special to reuse the [ctx_compute_fun_decl] + function. TODO: make it cleaner. *) + let llbc_name : Types.name = + [ Types.PeIdent (item_name, Disambiguator.zero) ] + in + let f = { f with llbc_name } in + let name = ctx_compute_fun_name f ctx in + (* Add a prefix if necessary *) + let name = + if !Config.record_fields_short_names then name + else ctx_compute_trait_decl_name ctx trait_decl ^ "_" ^ name in - let funs = get_funs_for_id id in - (item_name, List.map compute_fun_name funs) + (item_name, name) in - List.map (fun (name, id) -> compute_item_names name id) required_methods + List.map (fun (name, id) -> compute_item_name name id) required_methods | Some info -> + (* This is a builtin *) let funs_map = StringMap.of_list info.methods in List.map - (fun (item_name, fun_id) -> + (fun (item_name, _) -> let open ExtractBuiltin in let info = StringMap.find item_name funs_map in - let trans_funs = get_funs_for_id fun_id in - let find (trans_fun : fun_decl) = - let info = - List.find_opt - (fun (info : builtin_fun_info) -> info.rg = trans_fun.back_id) - info - in - match info with - | Some info -> (info.rg, info.extract_name) - | None -> - let err = - "Ill-formed builtin information for trait decl \"" - ^ name_to_string ctx trait_decl.llbc_name - ^ "\", method \"" ^ item_name - ^ "\": could not find name for region " - ^ Print.option_to_string Pure.show_region_group_id - trans_fun.back_id - in - log#serror err; - if !Config.fail_hard then raise (Failure err) - else (trans_fun.back_id, "%ERROR_BUILTIN_NAME_NOT_FOUND%") - in - let rg_with_name_list = List.map find trans_funs in - (item_name, rg_with_name_list)) + let fun_name = info.extract_name in + (item_name, fun_name)) required_methods in (* Register the names *) List.fold_left - (fun ctx (item_name, funs) -> - (* We add one field per required forward/backward function *) - List.fold_left - (fun ctx (rg, fun_name) -> - ctx_add - (TraitMethodId (trait_decl.def_id, item_name, rg)) - fun_name ctx) - ctx funs) + (fun ctx (item_name, fun_name) -> + ctx_add (TraitMethodId (trait_decl.def_id, item_name)) fun_name ctx) ctx method_names (** Similar to {!extract_type_decl_register_names} *) @@ -2263,46 +2163,41 @@ let extract_trait_decl_method_items (ctx : extraction_ctx) (fmt : F.formatter) (* Lookup the definition *) let trans = A.FunDeclId.Map.find id ctx.trans_funs in (* Extract the items *) - let funs = if trans.keep_fwd then trans.fwd :: trans.backs else trans.backs in - let extract_method (f : fun_and_loops) = - let f = f.f in - let fun_name = ctx_get_trait_method decl.def_id item_name f.back_id ctx in - let ty () = - (* Extract the generics *) - (* We need to add the generics specific to the method, by removing those - which actually apply to the trait decl *) - let generics = - let drop_trait_clauses = false in - generic_params_drop_prefix ~drop_trait_clauses decl.generics - f.signature.generics - in - (* Note that we do not filter the LLBC generic parameters. - This is ok because: - - we only use them to find meaningful names for the trait clauses - - we only generate trait clauses for the clauses we find in the - pure generics *) - let ctx, type_params, cg_params, trait_clauses = - ctx_add_generic_params f.llbc_name f.signature.llbc_generics generics - ctx - in - let backend_uses_forall = - match !backend with Coq | Lean -> true | FStar | HOL4 -> false - in - let generics_not_empty = generics <> empty_generic_params in - let use_forall = generics_not_empty && backend_uses_forall in - let use_arrows = generics_not_empty && not backend_uses_forall in - let use_forall_use_sep = false in - extract_generic_params ctx fmt TypeDeclId.Set.empty ~use_forall - ~use_forall_use_sep ~use_arrows generics type_params cg_params - trait_clauses; - if use_forall then F.pp_print_string fmt ","; - (* Extract the inputs and output *) - F.pp_print_space fmt (); - extract_fun_inputs_output_parameters_types ctx fmt f + let f = trans.f in + let fun_name = ctx_get_trait_method decl.def_id item_name ctx in + let ty () = + (* Extract the generics *) + (* We need to add the generics specific to the method, by removing those + which actually apply to the trait decl *) + let generics = + let drop_trait_clauses = false in + generic_params_drop_prefix ~drop_trait_clauses decl.generics + f.signature.generics + in + (* Note that we do not filter the LLBC generic parameters. + This is ok because: + - we only use them to find meaningful names for the trait clauses + - we only generate trait clauses for the clauses we find in the + pure generics *) + let ctx, type_params, cg_params, trait_clauses = + ctx_add_generic_params f.llbc_name f.signature.llbc_generics generics ctx in - extract_trait_decl_item ctx fmt fun_name ty + let backend_uses_forall = + match !backend with Coq | Lean -> true | FStar | HOL4 -> false + in + let generics_not_empty = generics <> empty_generic_params in + let use_forall = generics_not_empty && backend_uses_forall in + let use_arrows = generics_not_empty && not backend_uses_forall in + let use_forall_use_sep = false in + extract_generic_params ctx fmt TypeDeclId.Set.empty ~use_forall + ~use_forall_use_sep ~use_arrows generics type_params cg_params + trait_clauses; + if use_forall then F.pp_print_string fmt ","; + (* Extract the inputs and output *) + F.pp_print_space fmt (); + extract_fun_inputs_output_parameters_types ctx fmt f in - List.iter extract_method funs + extract_trait_decl_item ctx fmt fun_name ty (** Extract a trait declaration *) let extract_trait_decl (ctx : extraction_ctx) (fmt : F.formatter) @@ -2494,21 +2389,10 @@ let extract_trait_decl_coq_arguments (ctx : extraction_ctx) (fmt : F.formatter) decl.parent_clauses; (* The required methods *) List.iter - (fun (item_name, id) -> - (* Lookup the definition *) - let trans = A.FunDeclId.Map.find id ctx.trans_funs in + (fun (item_name, _) -> (* Extract the items *) - let funs = - if trans.keep_fwd then trans.fwd :: trans.backs else trans.backs - in - let extract_for_method (f : fun_and_loops) = - let f = f.f in - let item_name = - ctx_get_trait_method decl.def_id item_name f.back_id ctx - in - extract_coq_arguments_instruction ctx fmt item_name num_params - in - List.iter extract_for_method funs) + let item_name = ctx_get_trait_method decl.def_id item_name ctx in + extract_coq_arguments_instruction ctx fmt item_name num_params) decl.required_methods; (* Add a space *) F.pp_print_space fmt ()) @@ -2531,75 +2415,71 @@ let extract_trait_impl_method_items (ctx : extraction_ctx) (fmt : F.formatter) (* Lookup the definition *) let trans = A.FunDeclId.Map.find id ctx.trans_funs in (* Extract the items *) - let funs = if trans.keep_fwd then trans.fwd :: trans.backs else trans.backs in - let extract_method (f : fun_and_loops) = - let f = f.f in - let fun_name = ctx_get_trait_method trait_decl_id item_name f.back_id ctx in - let ty () = - (* Filter the generics if the method is a builtin *) - let i_tys, _, _ = impl_generics in - let impl_types, i_tys, f_tys = - match FunDeclId.Map.find_opt f.def_id ctx.funs_filter_type_args_map with - | None -> (impl.generics.types, i_tys, f.signature.generics.types) - | Some filter -> - let filter_list filter ls = - let ls = List.combine filter ls in - List.filter_map (fun (b, ty) -> if b then Some ty else None) ls - in - let impl_types = impl.generics.types in - let impl_filter = - Collections.List.prefix (List.length impl_types) filter - in - let i_tys = i_tys in - let i_filter = Collections.List.prefix (List.length i_tys) filter in - ( filter_list impl_filter impl_types, - filter_list i_filter i_tys, - filter_list filter f.signature.generics.types ) - in - let f_generics = { f.signature.generics with types = f_tys } in - (* Extract the generics - we need to quantify over the generics which - are specific to the method, and call it will all the generics - (trait impl + method generics) *) - let f_generics = - let drop_trait_clauses = true in - generic_params_drop_prefix ~drop_trait_clauses - { impl.generics with types = impl_types } - f_generics - in - (* Register and print the quantified generics. - - Note that we do not filter the LLBC generic parameters. - This is ok because: - - we only use them to find meaningful names for the trait clauses - - we only generate trait clauses for the clauses we find in the - pure generics *) - let ctx, f_tys, f_cgs, f_tcs = - ctx_add_generic_params f.llbc_name f.signature.llbc_generics f_generics - ctx - in - let use_forall = f_generics <> empty_generic_params in - extract_generic_params ctx fmt TypeDeclId.Set.empty ~use_forall f_generics - f_tys f_cgs f_tcs; - if use_forall then F.pp_print_string fmt ","; - (* Extract the function call *) - F.pp_print_space fmt (); - let fun_name = ctx_get_local_function f.def_id None f.back_id ctx in - F.pp_print_string fmt fun_name; - let all_generics = - let _, i_cgs, i_tcs = impl_generics in - List.concat [ i_tys; f_tys; i_cgs; f_cgs; i_tcs; f_tcs ] - in - - (* Filter the generics if the function is builtin *) - List.iter - (fun p -> - F.pp_print_space fmt (); - F.pp_print_string fmt p) - all_generics + let f = trans.f in + let fun_name = ctx_get_trait_method trait_decl_id item_name ctx in + let ty () = + (* Filter the generics if the method is a builtin *) + let i_tys, _, _ = impl_generics in + let impl_types, i_tys, f_tys = + match FunDeclId.Map.find_opt f.def_id ctx.funs_filter_type_args_map with + | None -> (impl.generics.types, i_tys, f.signature.generics.types) + | Some filter -> + let filter_list filter ls = + let ls = List.combine filter ls in + List.filter_map (fun (b, ty) -> if b then Some ty else None) ls + in + let impl_types = impl.generics.types in + let impl_filter = + Collections.List.prefix (List.length impl_types) filter + in + let i_tys = i_tys in + let i_filter = Collections.List.prefix (List.length i_tys) filter in + ( filter_list impl_filter impl_types, + filter_list i_filter i_tys, + filter_list filter f.signature.generics.types ) + in + let f_generics = { f.signature.generics with types = f_tys } in + (* Extract the generics - we need to quantify over the generics which + are specific to the method, and call it will all the generics + (trait impl + method generics) *) + let f_generics = + let drop_trait_clauses = true in + generic_params_drop_prefix ~drop_trait_clauses + { impl.generics with types = impl_types } + f_generics + in + (* Register and print the quantified generics. + + Note that we do not filter the LLBC generic parameters. + This is ok because: + - we only use them to find meaningful names for the trait clauses + - we only generate trait clauses for the clauses we find in the + pure generics *) + let ctx, f_tys, f_cgs, f_tcs = + ctx_add_generic_params f.llbc_name f.signature.llbc_generics f_generics + ctx + in + let use_forall = f_generics <> empty_generic_params in + extract_generic_params ctx fmt TypeDeclId.Set.empty ~use_forall f_generics + f_tys f_cgs f_tcs; + if use_forall then F.pp_print_string fmt ","; + (* Extract the function call *) + F.pp_print_space fmt (); + let fun_name = ctx_get_local_function f.def_id None ctx in + F.pp_print_string fmt fun_name; + let all_generics = + let _, i_cgs, i_tcs = impl_generics in + List.concat [ i_tys; f_tys; i_cgs; f_cgs; i_tcs; f_tcs ] in - extract_trait_impl_item ctx fmt fun_name ty + + (* Filter the generics if the function is builtin *) + List.iter + (fun p -> + F.pp_print_space fmt (); + F.pp_print_string fmt p) + all_generics in - List.iter extract_method funs + extract_trait_impl_item ctx fmt fun_name ty (** Extract a trait implementation *) let extract_trait_impl (ctx : extraction_ctx) (fmt : F.formatter) @@ -2766,8 +2646,6 @@ let extract_trait_impl (ctx : extraction_ctx) (fmt : F.formatter) *) let extract_unit_test_if_unit_fun (ctx : extraction_ctx) (fmt : F.formatter) (def : fun_decl) : unit = - (* We only insert unit tests for forward functions *) - assert (def.back_id = None); (* Check if this is a unit function *) let sg = def.signature in if @@ -2791,9 +2669,7 @@ let extract_unit_test_if_unit_fun (ctx : extraction_ctx) (fmt : F.formatter) F.pp_print_string fmt "assert_norm"; F.pp_print_space fmt (); F.pp_print_string fmt "("; - let fun_name = - ctx_get_local_function def.def_id def.loop_id def.back_id ctx - in + let fun_name = ctx_get_local_function def.def_id def.loop_id ctx in F.pp_print_string fmt fun_name; if sg.inputs <> [] then ( F.pp_print_space fmt (); @@ -2807,9 +2683,7 @@ let extract_unit_test_if_unit_fun (ctx : extraction_ctx) (fmt : F.formatter) F.pp_print_string fmt "Check"; F.pp_print_space fmt (); F.pp_print_string fmt "("; - let fun_name = - ctx_get_local_function def.def_id def.loop_id def.back_id ctx - in + let fun_name = ctx_get_local_function def.def_id def.loop_id ctx in F.pp_print_string fmt fun_name; if sg.inputs <> [] then ( F.pp_print_space fmt (); @@ -2820,9 +2694,7 @@ let extract_unit_test_if_unit_fun (ctx : extraction_ctx) (fmt : F.formatter) F.pp_print_string fmt "#assert"; F.pp_print_space fmt (); F.pp_print_string fmt "("; - let fun_name = - ctx_get_local_function def.def_id def.loop_id def.back_id ctx - in + let fun_name = ctx_get_local_function def.def_id def.loop_id ctx in F.pp_print_string fmt fun_name; if sg.inputs <> [] then ( F.pp_print_space fmt (); @@ -2835,9 +2707,7 @@ let extract_unit_test_if_unit_fun (ctx : extraction_ctx) (fmt : F.formatter) | HOL4 -> F.pp_print_string fmt "val _ = assert_return ("; F.pp_print_string fmt "“"; - let fun_name = - ctx_get_local_function def.def_id def.loop_id def.back_id ctx - in + let fun_name = ctx_get_local_function def.def_id def.loop_id ctx in F.pp_print_string fmt fun_name; if sg.inputs <> [] then ( F.pp_print_space fmt (); diff --git a/compiler/ExtractBase.ml b/compiler/ExtractBase.ml index 04686705..591e8aab 100644 --- a/compiler/ExtractBase.ml +++ b/compiler/ExtractBase.ml @@ -167,11 +167,7 @@ type id = | TraitImplId of TraitImplId.id | LocalTraitClauseId of TraitClauseId.id | TraitDeclConstructorId of TraitDeclId.id - | TraitMethodId of TraitDeclId.id * string * T.RegionGroupId.id option - (** Something peculiar with trait methods: because we have to take into - account forward/backward functions, we may need to generate fields - items per method. - *) + | TraitMethodId of TraitDeclId.id * string | TraitItemId of TraitDeclId.id * string (** A trait associated item which is not a method *) | TraitParentClauseId of TraitDeclId.id * TraitClauseId.id @@ -353,8 +349,6 @@ let basename_to_unique (names_set : StringSet.t) in if StringSet.mem basename names_set then gen 1 else basename -type fun_name_info = { keep_fwd : bool; num_backs : int } - type names_maps = { names_map : names_map; (** The map for id to names, where we forbid name collisions @@ -384,7 +378,7 @@ let allow_collisions (id : id) : bool = | FieldId _ | TraitItemClauseId _ | TraitParentClauseId _ | TraitItemId _ | TraitMethodId _ -> !Config.record_fields_short_names - | FunId (Pure _ | FromLlbc (FunId (FAssumed _), _, _)) -> + | FunId (Pure _ | FromLlbc (FunId (FAssumed _), _)) -> (* We map several assumed functions to the same id *) true | _ -> false @@ -549,15 +543,6 @@ type extraction_ctx = { -- makes the if then else dependent ]} *) - fun_name_info : fun_name_info PureUtils.RegularFunIdMap.t; - (** Information used to filter and name functions - we use it - to print comments in the generated code, to help link - the generated code to the original code (information such - as: "this function is the backward function of ...", or - "this function is the merged forward/backward function of ..." - in case a Rust function only has one backward translation - and we filter the forward function because it returns unit. - *) trait_decl_id : trait_decl_id option; (** If we are extracting a trait declaration, identifies it *) is_provided_method : bool; @@ -668,14 +653,8 @@ let id_to_string (id : id) (ctx : extraction_ctx) : string = ^ TraitClauseId.to_string clause_id | TraitItemId (id, name) -> "trait_item_id: " ^ trait_decl_id_to_string id ^ ", type name: " ^ name - | TraitMethodId (trait_decl_id, fun_name, rg_id) -> - let fwd_back_kind = - match rg_id with - | None -> "forward" - | Some rg_id -> "backward " ^ RegionGroupId.to_string rg_id - in - trait_decl_id_to_string trait_decl_id - ^ ", method name (" ^ fwd_back_kind ^ "): " ^ fun_name + | TraitMethodId (trait_decl_id, fun_name) -> + trait_decl_id_to_string trait_decl_id ^ ", method name: " ^ fun_name | TraitSelfClauseId -> "trait_self_clause" let ctx_add (id : id) (name : string) (ctx : extraction_ctx) : extraction_ctx = @@ -694,8 +673,8 @@ let ctx_get_function (id : fun_id) (ctx : extraction_ctx) : string = ctx_get (FunId id) ctx let ctx_get_local_function (id : A.FunDeclId.id) (lp : LoopId.id option) - (rg : RegionGroupId.id option) (ctx : extraction_ctx) : string = - ctx_get_function (FromLlbc (FunId (FRegular id), lp, rg)) ctx + (ctx : extraction_ctx) : string = + ctx_get_function (FromLlbc (FunId (FRegular id), lp)) ctx let ctx_get_type (id : type_id) (ctx : extraction_ctx) : string = assert (id <> TTuple); @@ -733,8 +712,8 @@ let ctx_get_trait_type (id : trait_decl_id) (item_name : string) ctx_get_trait_item id item_name ctx let ctx_get_trait_method (id : trait_decl_id) (item_name : string) - (rg_id : T.RegionGroupId.id option) (ctx : extraction_ctx) : string = - ctx_get (TraitMethodId (id, item_name, rg_id)) ctx + (ctx : extraction_ctx) : string = + ctx_get (TraitMethodId (id, item_name)) ctx let ctx_get_trait_parent_clause (id : trait_decl_id) (clause : trait_clause_id) (ctx : extraction_ctx) : string = @@ -1164,8 +1143,7 @@ let initialize_names_maps () : names_maps = in let assumed_functions = List.map - (fun (fid, rg, name) -> - (FromLlbc (Pure.FunId (FAssumed fid), None, rg), name)) + (fun (fid, name) -> (FromLlbc (Pure.FunId (FAssumed fid), None), name)) init.assumed_llbc_functions @ List.map (fun (fid, name) -> (Pure fid, name)) init.assumed_pure_functions in @@ -1408,61 +1386,12 @@ let default_fun_loop_suffix (num_loops : int) (loop_id : LoopId.id option) : If this function admits only one loop, we omit it. *) if num_loops = 1 then "_loop" else "_loop" ^ LoopId.to_string loop_id -(** A helper function: generates a function suffix from a region group - information. +(** A helper function: generates a function suffix. TODO: move all those helpers. *) -let default_fun_suffix (num_loops : int) (loop_id : LoopId.id option) - (num_region_groups : int) (rg : region_group_info option) - ((keep_fwd, num_backs) : bool * int) : string = - let lp_suff = default_fun_loop_suffix num_loops loop_id in - - (* There are several cases: - - [rg] is [Some]: this is a forward function: - - we add "_fwd" - - [rg] is [None]: this is a backward function: - - this function has one extracted backward function: - - if the forward function has been filtered, we add nothing: - the forward function is useless, so the unique backward function - takes its place, in a way (in effect, we "merge" the forward - and the backward functions). - - otherwise we add "_back" - - this function has several backward functions: we add "_back" and an - additional suffix to identify the precise backward function - Note that we always add a suffix (in case there are no region groups, - we could not add the "_fwd" suffix) to prevent name clashes between - definitions (in particular between type and function definitions). - *) - let rg_suff = - (* TODO: make all the backends match what is done for Lean *) - match rg with - | None -> - if - (* In order to avoid name conflicts: - * - if the forward is eliminated, we add the suffix "_fwd" (it won't be used) - * - otherwise, no suffix (because the backward functions will have a suffix) - *) - num_backs = 1 && not keep_fwd - then "_fwd" - else "" - | Some rg -> - assert (num_region_groups > 0 && num_backs > 0); - if num_backs = 1 then - (* Exactly one backward function *) - if not keep_fwd then "" else "_back" - else if - (* Several region groups/backward functions: - - if all the regions in the group have names, we use those names - - otherwise we use an index - *) - List.for_all Option.is_some rg.region_names - then - (* Concatenate the region names *) - "_back" ^ String.concat "" (List.map Option.get rg.region_names) - else (* Use the region index *) - "_back" ^ RegionGroupId.to_string rg.id - in - lp_suff ^ rg_suff +let default_fun_suffix (num_loops : int) (loop_id : LoopId.id option) : string = + (* We only generate a suffix for the functions we generate from the loops *) + default_fun_loop_suffix num_loops loop_id (** Compute the name of a regular (non-assumed) function. @@ -1472,24 +1401,13 @@ let default_fun_suffix (num_loops : int) (loop_id : LoopId.id option) indices to derive unique names for the loops for instance - if there is exactly one loop, we don't need to use indices) - loop id (if pertinent) - - number of region groups - - region group information in case of a backward function - ([None] if forward function) - - pair: - - do we generate the forward function (it may have been filtered)? - - the number of *extracted backward functions* (same comment as for - the number of loops) - The number of extracted backward functions if not necessarily - equal to the number of region groups, because we may have - filtered some of them. TODO: use the fun id for the assumed functions. *) let ctx_compute_fun_name (ctx : extraction_ctx) (fname : llbc_name) - (num_loops : int) (loop_id : LoopId.id option) (num_rgs : int) - (rg : region_group_info option) (filter_info : bool * int) : string = + (num_loops : int) (loop_id : LoopId.id option) : string = let fname = ctx_compute_fun_name_no_suffix ctx fname in (* Compute the suffix *) - let suffix = default_fun_suffix num_loops loop_id num_rgs rg filter_info in + let suffix = default_fun_suffix num_loops loop_id in (* Concatenate *) fname ^ suffix @@ -1963,61 +1881,26 @@ let ctx_add_global_decl_and_body (def : A.global_decl) (ctx : extraction_ctx) : | None -> (* Not the case: "standard" registration *) let name = ctx_compute_global_name ctx def.name in - let body = FunId (FromLlbc (FunId (FRegular def.body), None, None)) in + let body = FunId (FromLlbc (FunId (FRegular def.body), None)) in let ctx = ctx_add decl (name ^ "_c") ctx in let ctx = ctx_add body (name ^ "_body") ctx in ctx -let ctx_compute_fun_name (trans_group : pure_fun_translation) (def : fun_decl) - (ctx : extraction_ctx) : string = - (* Lookup the LLBC def to compute the region group information *) - let def_id = def.def_id in - let llbc_def = A.FunDeclId.Map.find def_id ctx.trans_ctx.fun_ctx.fun_decls in - let sg = llbc_def.signature in - let regions_hierarchy = - LlbcAstUtils.FunIdMap.find (FRegular def_id) - ctx.trans_ctx.fun_ctx.regions_hierarchies - in - let num_rgs = List.length regions_hierarchy in - let { keep_fwd; fwd = _; backs } = trans_group in - let num_backs = List.length backs in - let rg_info = - match def.back_id with - | None -> None - | Some rg_id -> - let rg = T.RegionGroupId.nth regions_hierarchy rg_id in - let region_names = - List.map - (fun rid -> (T.RegionVarId.nth sg.generics.regions rid).name) - rg.regions - in - Some { id = rg_id; region_names } - in +let ctx_compute_fun_name (def : fun_decl) (ctx : extraction_ctx) : string = (* Add the function name *) - ctx_compute_fun_name ctx def.llbc_name def.num_loops def.loop_id num_rgs - rg_info (keep_fwd, num_backs) + ctx_compute_fun_name ctx def.llbc_name def.num_loops def.loop_id (* TODO: move to Extract *) -let ctx_add_fun_decl (trans_group : pure_fun_translation) (def : fun_decl) - (ctx : extraction_ctx) : extraction_ctx = +let ctx_add_fun_decl (def : fun_decl) (ctx : extraction_ctx) : extraction_ctx = (* Sanity check: the function should not be a global body - those are handled * separately *) assert (not def.is_global_decl_body); (* Lookup the LLBC def to compute the region group information *) let def_id = def.def_id in - let { keep_fwd; fwd = _; backs } = trans_group in - let num_backs = List.length backs in (* Add the function name *) - let def_name = ctx_compute_fun_name trans_group def ctx in - let fun_id = (Pure.FunId (FRegular def_id), def.loop_id, def.back_id) in - let ctx = ctx_add (FunId (FromLlbc fun_id)) def_name ctx in - (* Add the name info *) - { - ctx with - fun_name_info = - PureUtils.RegularFunIdMap.add fun_id { keep_fwd; num_backs } - ctx.fun_name_info; - } + let def_name = ctx_compute_fun_name def ctx in + let fun_id = (Pure.FunId (FRegular def_id), def.loop_id) in + ctx_add (FunId (FromLlbc fun_id)) def_name ctx let ctx_compute_type_decl_name (ctx : extraction_ctx) (def : type_decl) : string = diff --git a/compiler/ExtractBuiltin.ml b/compiler/ExtractBuiltin.ml index 3ea5655a..88de31fe 100644 --- a/compiler/ExtractBuiltin.ml +++ b/compiler/ExtractBuiltin.ml @@ -221,12 +221,11 @@ type builtin_fun_info = { extract_name : string } [@@deriving show] parameters. For instance, in the case of the `Vec` functions, there is a type parameter for the allocator to use, which we want to filter. *) -let builtin_funs () : (pattern * bool list option * builtin_fun_info list) list - = +let builtin_funs () : (pattern * bool list option * builtin_fun_info) list = (* Small utility *) let mk_fun (rust_name : string) (extract_name : string option) (filter : bool list option) : - pattern * bool list option * builtin_fun_info list = + pattern * bool list option * builtin_fun_info = let rust_name = try parse_pattern rust_name with Failure _ -> @@ -238,7 +237,7 @@ let builtin_funs () : (pattern * bool list option * builtin_fun_info list) list | Some name -> split_on_separator name in let basename = flatten_name extract_name in - let f = [ { extract_name = basename } ] in + let f = { extract_name = basename } in (rust_name, filter, f) in [ @@ -377,7 +376,7 @@ type builtin_trait_decl_info = { - a Rust name - an extraction name - a list of clauses *) - methods : (string * builtin_fun_info list) list; + methods : (string * builtin_fun_info) list; } [@@deriving show] @@ -418,7 +417,7 @@ let builtin_trait_decls_info () = if !record_fields_short_names then item_name else extract_name ^ "_" ^ item_name in - let fwd = [ { extract_name = basename } ] in + let fwd = { extract_name = basename } in (item_name, fwd) in List.map mk_method methods diff --git a/compiler/ExtractTypes.ml b/compiler/ExtractTypes.ml index a3dbf3cc..05b71b9f 100644 --- a/compiler/ExtractTypes.ml +++ b/compiler/ExtractTypes.ml @@ -272,7 +272,7 @@ let start_fun_decl_group (ctx : extraction_ctx) (fmt : F.formatter) if is_single_opaque_fun_decl_group dg then () else let compute_fun_def_name (def : Pure.fun_decl) : string = - ctx_get_local_function def.def_id def.loop_id def.back_id ctx ^ "_def" + ctx_get_local_function def.def_id def.loop_id ctx ^ "_def" in let names = List.map compute_fun_def_name dg in (* Add a break before *) diff --git a/compiler/Main.ml b/compiler/Main.ml index 664ec067..3f5e62ad 100644 --- a/compiler/Main.ml +++ b/compiler/Main.ml @@ -72,12 +72,6 @@ let () = Arg.Symbol (backend_names, set_backend), " Specify the target backend" ); ("-dest", Arg.Set_string dest_dir, " Specify the output directory"); - ( "-no-filter-useless-calls", - Arg.Clear filter_useless_monadic_calls, - " Do not filter the useless function calls" ); - ( "-no-filter-useless-funs", - Arg.Clear filter_useless_functions, - " Do not filter the useless forward/backward functions" ); ( "-test-units", Arg.Set test_unit_functions, " Test the unit functions with the concrete (i.e., not symbolic) \ diff --git a/compiler/PrintPure.ml b/compiler/PrintPure.ml index 66475d02..21ca7f08 100644 --- a/compiler/PrintPure.ml +++ b/compiler/PrintPure.ml @@ -462,21 +462,13 @@ let inst_fun_sig_to_string (env : fmt_env) (sg : inst_fun_sig) : string = let all_types = List.append inputs [ output ] in String.concat " -> " all_types -let fun_suffix (lp_id : LoopId.id option) (rg_id : T.RegionGroupId.id option) : - string = +let fun_suffix (lp_id : LoopId.id option) : string = let lp_suff = match lp_id with | None -> "" | Some lp_id -> "^loop" ^ LoopId.to_string lp_id in - - let rg_suff = - match rg_id with - | None -> "" - | Some rg_id -> "@" ^ T.RegionGroupId.to_string rg_id - in - - lp_suff ^ rg_suff + lp_suff let llbc_assumed_fun_id_to_string (fid : A.assumed_fun_id) : string = match fid with @@ -505,7 +497,7 @@ let pure_assumed_fun_id_to_string (fid : pure_assumed_fun_id) : string = let regular_fun_id_to_string (env : fmt_env) (fun_id : fun_id) : string = match fun_id with - | FromLlbc (fid, lp_id, rg_id) -> + | FromLlbc (fid, lp_id) -> let f = match fid with | FunId (FRegular fid) -> fun_decl_id_to_string env fid @@ -513,7 +505,7 @@ let regular_fun_id_to_string (env : fmt_env) (fun_id : fun_id) : string = | TraitMethod (trait_ref, method_name, _) -> trait_ref_to_string env true trait_ref ^ "." ^ method_name in - f ^ fun_suffix lp_id rg_id + f ^ fun_suffix lp_id | Pure fid -> pure_assumed_fun_id_to_string fid let unop_to_string (unop : unop) : string = @@ -746,7 +738,7 @@ and emeta_to_string (env : fmt_env) (meta : emeta) : string = let fun_decl_to_string (env : fmt_env) (def : fun_decl) : string = let env = { env with generics = def.signature.generics } in - let name = def.name ^ fun_suffix def.loop_id def.back_id in + let name = def.name ^ fun_suffix def.loop_id in let signature = fun_sig_to_string env def.signature in match def.body with | None -> "val " ^ name ^ " :\n " ^ signature diff --git a/compiler/Pure.ml b/compiler/Pure.ml index a879ba37..dd7a4acf 100644 --- a/compiler/Pure.ml +++ b/compiler/Pure.ml @@ -560,8 +560,7 @@ type fun_id_or_trait_method_ref = [@@deriving show, ord] (** A function id for a non-assumed function *) -type regular_fun_id = - fun_id_or_trait_method_ref * LoopId.id option * RegionGroupId.id option +type regular_fun_id = fun_id_or_trait_method_ref * LoopId.id option [@@deriving show, ord] (** A function identifier *) @@ -1078,7 +1077,6 @@ type fun_decl = { *) loop_id : LoopId.id option; (** [Some] if this definition was generated for a loop *) - back_id : RegionGroupId.id option; llbc_name : llbc_name; (** The original LLBC name. *) name : string; (** We use the name only for printing purposes (for debugging): diff --git a/compiler/PureMicroPasses.ml b/compiler/PureMicroPasses.ml index ec64df21..04bc90d7 100644 --- a/compiler/PureMicroPasses.ml +++ b/compiler/PureMicroPasses.ml @@ -925,156 +925,9 @@ let inline_useless_var_reassignments (ctx : trans_ctx) ~(inline_named : bool) in { def with body = Some body } -(** For the cases where we split the forward/backward functions. - - Given a forward or backward function call, is there, for every execution - path, a child backward function called later with exactly the same input - list prefix. We use this to filter useless function calls: if there are - such child calls, we can remove this one (in case its outputs are not - used). - We do this check because we can't simply remove function calls whose - outputs are not used, as they might fail. However, if a function fails, - its children backward functions then fail on the same inputs (ignoring - the additional inputs those receive). - - For instance, if we have: - {[ - fn f<'a>(x : &'a mut T); - ]} - - We often have things like this in the synthesized code: - {[ - _ <-- f@fwd x; - ... - nx <-- f@back'a x y; - ... - ]} - - If [f@back'a x y] fails, then necessarily [f@fwd x] also fails. - In this situation, we can remove the call [f@fwd x]. - *) -let expression_contains_child_call_in_all_paths (ctx : trans_ctx) - (id0 : fun_id_or_trait_method_ref) (lp_id0 : LoopId.id option) - (rg_id0 : T.RegionGroupId.id option) (generics0 : generic_args) - (args0 : texpression list) (e : texpression) : bool = - let check_call (fun_id1 : fun_or_op_id) (generics1 : generic_args) - (args1 : texpression list) : bool = - (* Check the fun_ids, to see if call1's function is a child of call0's function *) - match fun_id1 with - | Fun (FromLlbc (id1, lp_id1, rg_id1)) -> - (* Both are "regular" calls: check if they come from the same rust function *) - if id0 = id1 && lp_id0 = lp_id1 then - (* Same rust functions: check the regions hierarchy *) - let call1_is_child = - match (rg_id0, rg_id1) with - | None, _ -> - (* The function used in call0 is the forward function: the one - * used in call1 is necessarily a child *) - true - | Some _, None -> - (* Opposite of previous case *) - false - | Some rg_id0, Some rg_id1 -> - if rg_id0 = rg_id1 then true - else - (* We need to use the regions hierarchy *) - let regions_hierarchy = - let id0 = - match id0 with - | FunId fun_id -> fun_id - | TraitMethod (_, _, fun_decl_id) -> FRegular fun_decl_id - in - LlbcAstUtils.FunIdMap.find id0 - ctx.fun_ctx.regions_hierarchies - in - (* Compute the set of ancestors of the function in call1 *) - let call1_ancestors = - LlbcAstUtils.list_ancestor_region_groups regions_hierarchy - rg_id1 - in - (* Check if the function used in call0 is inside *) - T.RegionGroupId.Set.mem rg_id0 call1_ancestors - in - (* If call1 is a child, then we need to check if the input arguments - * used in call0 are a prefix of the input arguments used in call1 - * (note call1 being a child, it will likely consume strictly more - * given back values). - * *) - if call1_is_child then - let call1_args = - Collections.List.prefix (List.length args0) args1 - in - let args = List.combine args0 call1_args in - (* Note that the input values are expressions, *which may contain - * meta-values* (which we need to ignore). *) - let input_eq (v0, v1) = - PureUtils.remove_meta v0 = PureUtils.remove_meta v1 - in - (* Compare the generics and the prefix of the input arguments *) - generics0 = generics1 && List.for_all input_eq args - else (* Not a child *) - false - else (* Not the same function *) - false - | _ -> false - in - - let visitor = - object (self) - inherit [_] reduce_expression - method zero _ = false - method plus b0 b1 _ = b0 () && b1 () - - method! visit_texpression env e = - match e.e with - | Var _ | CVar _ | Const _ -> fun _ -> false - | StructUpdate _ -> - (* There shouldn't be monadic calls in structure updates - also - note that by returning [false] we are conservative: we might - *prevent* possible optimisations (i.e., filtering some function - calls), which is sound. *) - fun _ -> false - | Let (_, _, re, e) -> ( - match opt_destruct_function_call re with - | None -> fun () -> self#visit_texpression env e () - | Some (func1, generics1, args1) -> - let call_is_child = check_call func1 generics1 args1 in - if call_is_child then fun () -> true - else fun () -> self#visit_texpression env e ()) - | Lambda (_, e) -> self#visit_texpression env e - | App _ -> ( - fun () -> - match opt_destruct_function_call e with - | Some (func1, tys1, args1) -> check_call func1 tys1 args1 - | None -> false) - | Qualif _ -> - (* Note that this case includes functions without arguments *) - fun () -> false - | Meta (_, e) -> self#visit_texpression env e - | Loop loop -> - (* We only visit the *function end* *) - self#visit_texpression env loop.fun_end - | Switch (_, body) -> self#visit_switch_body env body - - method! visit_switch_body env body = - match body with - | If (e1, e2) -> - fun () -> - self#visit_texpression env e1 () - && self#visit_texpression env e2 () - | Match branches -> - fun () -> - List.for_all - (fun br -> self#visit_texpression env br.branch ()) - branches - end - in - visitor#visit_texpression () e () - (** Filter the useless assignments (removes the useless variables, filters the function calls) *) -let filter_useless (filter_monadic_calls : bool) (ctx : trans_ctx) - (def : fun_decl) : fun_decl = +let filter_useless (_ctx : trans_ctx) (def : fun_decl) : fun_decl = (* We first need a transformation on *left-values*, which filters the useless * variables and tells us whether the value contains any variable which has * not been replaced by [_] (in which case we need to keep the assignment, @@ -1166,30 +1019,8 @@ let filter_useless (filter_monadic_calls : bool) (ctx : trans_ctx) if not monadic then (* Not a monadic let-binding: simple case *) (e.e, fun _ -> used) - else - (* Monadic let-binding: trickier. - * We can filter if the right-expression is a function call, - * under some conditions. *) - match (filter_monadic_calls, opt_destruct_function_call re) with - | true, Some (Fun (FromLlbc (fid, lp_id, rg_id)), tys, args) -> - (* If we split the forward/backward functions. - - We need to check if there is a child call - see - the comments for: - [expression_contains_child_call_in_all_paths] *) - if not !Config.return_back_funs then - let has_child_call = - expression_contains_child_call_in_all_paths ctx fid - lp_id rg_id tys args e - in - if has_child_call then (* Filter *) - (e.e, fun _ -> used) - else (* No child call: don't filter *) - dont_filter () - else dont_filter () - | _ -> - (* Not an LLBC function call or not allowed to filter: we can't filter *) - dont_filter () + else (* Monadic let-binding: can't filter *) + dont_filter () else (* There are used variables: don't filter *) dont_filter () | Loop loop -> @@ -1442,22 +1273,6 @@ let simplify_aggregates (ctx : trans_ctx) (def : fun_decl) : fun_decl = let body = { body with body = body_exp } in { def with body = Some body } -(** Return [None] if the function is a backward function with no outputs (so - that we eliminate the definition which is useless). - - Note that the calls to such functions are filtered when translating from - symbolic to pure. Here, we remove the definitions altogether, because they - are now useless - *) -let filter_if_backward_with_no_outputs (def : fun_decl) : fun_decl option = - if - !Config.filter_useless_functions - && Option.is_some def.back_id - && def.signature.output = mk_result_ty mk_unit_ty - || def.signature.output = mk_unit_ty - then None - else Some def - (** Retrieve the loop definitions from the function definition. {!SymbolicToPure} generates an AST in which the loop bodies are part of @@ -1530,14 +1345,7 @@ let decompose_loops (_ctx : trans_ctx) (def : fun_decl) : info.num_inputs_with_fuel_no_state info.num_inputs_with_fuel_with_state in - let back_inputs = - if !Config.return_back_funs then [] - else - snd - (Collections.List.split_at fun_sig.inputs - info.num_inputs_with_fuel_with_state) - in - List.concat [ fuel; fwd_inputs; fwd_state; back_inputs ] + List.concat [ fuel; fwd_inputs; fwd_state ] in let output = loop.output_ty in @@ -1618,7 +1426,6 @@ let decompose_loops (_ctx : trans_ctx) (def : fun_decl) : kind = def.kind; num_loops; loop_id = Some loop.loop_id; - back_id = def.back_id; llbc_name = def.llbc_name; name = def.name; signature = loop_sig; @@ -1640,35 +1447,6 @@ let decompose_loops (_ctx : trans_ctx) (def : fun_decl) : let loops = List.map snd (LoopId.Map.bindings !loops) in (def, loops) -(** Return [false] if the forward function is useless and should be filtered. - - - a forward function with no output (comes from a Rust function with - unit return type) - - the function has mutable borrows as inputs (which is materialized - by the fact we generated backward functions which were not filtered). - - In such situation, every call to the Rust function will be translated to: - - a call to the forward function which returns nothing - - calls to the backward functions - As a failing backward function implies the forward function also fails, - we can filter the calls to the forward function, which thus becomes - useless. - In such situation, we can remove the forward function definition - altogether. - *) -let keep_forward (fwd : fun_and_loops) (backs : fun_and_loops list) : bool = - (* The question of filtering the forward functions arises only if we split - the forward/backward functions *) - if !Config.return_back_funs then true - else if - (* Note that at this point, the output types are no longer seen as tuples: - * they should be lists of length 1. *) - !Config.filter_useless_functions - && fwd.f.signature.output = mk_result_ty mk_unit_ty - && backs <> [] - then false - else true - (** Convert the unit variables to [()] if they are used as right-values or [_] if they are used as left values in patterns. *) let unit_vars_to_unit (def : fun_decl) : fun_decl = @@ -1724,19 +1502,17 @@ let eliminate_box_functions (_ctx : trans_ctx) (def : fun_decl) : fun_decl = * could have: [box_new f x]) * *) match fun_id with - | Fun (FromLlbc (FunId (FAssumed aid), _lp_id, rg_id)) -> ( - match (aid, rg_id) with - | BoxNew, _ -> - assert (rg_id = None); + | Fun (FromLlbc (FunId (FAssumed aid), _lp_id)) -> ( + match aid with + | BoxNew -> let arg, args = Collections.List.pop args in mk_apps arg args - | BoxFree, _ -> + | BoxFree -> assert (args = []); mk_unit_rvalue - | ( ( SliceIndexShared | SliceIndexMut | ArrayIndexShared - | ArrayIndexMut | ArrayToSliceShared | ArrayToSliceMut - | ArrayRepeat ), - _ ) -> + | SliceIndexShared | SliceIndexMut | ArrayIndexShared + | ArrayIndexMut | ArrayToSliceShared | ArrayToSliceMut + | ArrayRepeat -> super#visit_texpression env e) | _ -> super#visit_texpression env e) | _ -> super#visit_texpression env e @@ -1989,7 +1765,7 @@ let apply_end_passes_to_def (ctx : trans_ctx) (def : fun_decl) : fun_decl = (lazy ("eliminate_box_functions:\n\n" ^ fun_decl_to_string ctx def ^ "\n")); (* Filter the useless variables, assignments, function calls, etc. *) - let def = filter_useless !Config.filter_useless_monadic_calls ctx def in + let def = filter_useless ctx def in log#ldebug (lazy ("filter_useless:\n\n" ^ fun_decl_to_string ctx def ^ "\n")); (* Simplify the lets immediately followed by a return. @@ -2130,16 +1906,7 @@ let filter_loop_inputs (transl : pure_fun_translation list) : *) let all_decls = List.concat - (List.concat - (List.concat - (List.map - (fun { fwd; backs; _ } -> - [ fwd.f :: fwd.loops ] - :: List.map - (fun { f = back; loops = loops_back } -> - [ back :: loops_back ]) - backs) - transl))) + (List.concat (List.map (fun { f; loops } -> [ f :: loops ]) transl)) in let subgroups = ReorderDecls.group_reorder_fun_decls all_decls in @@ -2207,7 +1974,7 @@ let filter_loop_inputs (transl : pure_fun_translation list) : match e_app.e with | Qualif qualif -> ( match qualif.id with - | FunOrOp (Fun (FromLlbc (FunId fun_id', loop_id', _))) -> + | FunOrOp (Fun (FromLlbc (FunId fun_id', loop_id'))) -> if (fun_id', loop_id') = fun_id then ( (* For each argument, check if it is exactly the original input parameter. Note that there shouldn't be partial @@ -2357,8 +2124,7 @@ let filter_loop_inputs (transl : pure_fun_translation list) : match e_app.e with | Qualif qualif -> ( match qualif.id with - | FunOrOp (Fun (FromLlbc (FunId fun_id, loop_id, _))) - -> ( + | FunOrOp (Fun (FromLlbc (FunId fun_id, loop_id))) -> ( match FunLoopIdMap.find_opt (fun_id, loop_id) !used_map with @@ -2400,13 +2166,8 @@ let filter_loop_inputs (transl : pure_fun_translation list) : in let transl = List.map - (fun trans -> - let filter_fun_and_loops f = - { f = filter_in_one f.f; loops = List.map filter_in_one f.loops } - in - let fwd = filter_fun_and_loops trans.fwd in - let backs = List.map filter_fun_and_loops trans.backs in - { trans with fwd; backs }) + (fun f -> + { f = filter_in_one f.f; loops = List.map filter_in_one f.loops }) transl in @@ -2420,18 +2181,11 @@ let filter_loop_inputs (transl : pure_fun_translation list) : it thus returns the pair: (function def, loop defs). See {!decompose_loops} for more information. - Will return [None] if the function is a backward function with no outputs. - [ctx]: used only for printing. *) -let apply_passes_to_def (ctx : trans_ctx) (def : fun_decl) : - fun_and_loops option = +let apply_passes_to_def (ctx : trans_ctx) (def : fun_decl) : fun_and_loops = (* Debug *) - log#ldebug - (lazy - ("PureMicroPasses.apply_passes_to_def: " ^ def.name ^ " (" - ^ Print.option_to_string T.RegionGroupId.to_string def.back_id - ^ ")")); + log#ldebug (lazy ("PureMicroPasses.apply_passes_to_def: " ^ def.name)); log#ldebug (lazy ("original decl:\n\n" ^ fun_decl_to_string ctx def ^ "\n")); @@ -2451,29 +2205,13 @@ let apply_passes_to_def (ctx : trans_ctx) (def : fun_decl) : let def = remove_meta def in log#ldebug (lazy ("remove_meta:\n\n" ^ fun_decl_to_string ctx def ^ "\n")); - (* Remove the backward functions with no outputs. + (* Extract the loop definitions by removing the {!Loop} node *) + let def, loops = decompose_loops ctx def in - Note that the *calls* to those functions should already have been removed, - when translating from symbolic to pure. Here, we remove the definitions - altogether, because they are now useless *) - let name = def.name ^ PrintPure.fun_suffix def.loop_id def.back_id in - let opt_def = filter_if_backward_with_no_outputs def in - - match opt_def with - | None -> - log#ldebug (lazy ("filtered (backward with no outputs): " ^ name ^ "\n")); - None - | Some def -> - log#ldebug - (lazy ("not filtered (not backward with no outputs): " ^ name ^ "\n")); - - (* Extract the loop definitions by removing the {!Loop} node *) - let def, loops = decompose_loops ctx def in - - (* Apply the remaining passes *) - let f = apply_end_passes_to_def ctx def in - let loops = List.map (apply_end_passes_to_def ctx) loops in - Some { f; loops } + (* Apply the remaining passes *) + let f = apply_end_passes_to_def ctx def in + let loops = List.map (apply_end_passes_to_def ctx) loops in + { f; loops } (** Apply the micro-passes to a list of forward/backward translations. @@ -2489,18 +2227,11 @@ let apply_passes_to_def (ctx : trans_ctx) (def : fun_decl) : but convenient. *) let apply_passes_to_pure_fun_translations (ctx : trans_ctx) - (transl : (fun_decl * fun_decl list) list) : pure_fun_translation list = - let apply_to_one (trans : fun_decl * fun_decl list) : pure_fun_translation = - (* Apply the passes to the individual functions *) - let fwd, backs = trans in - let fwd = Option.get (apply_passes_to_def ctx fwd) in - let backs = List.filter_map (apply_passes_to_def ctx) backs in - (* Compute whether we need to filter the forward function or not *) - let keep_fwd = keep_forward fwd backs in - { keep_fwd; fwd; backs } - in - - let transl = List.map apply_to_one transl in + (transl : fun_decl list) : pure_fun_translation list = + (* Apply the micro-passes *) + let transl = List.map (apply_passes_to_def ctx) transl in - (* Filter the useless inputs in the loop functions *) + (* Filter the useless inputs in the loop functions (loops are initially + parameterized by *all* the symbolic values in the context, because + they may access any of them). *) filter_loop_inputs transl diff --git a/compiler/ReorderDecls.ml b/compiler/ReorderDecls.ml index 53c94ff4..f5443e03 100644 --- a/compiler/ReorderDecls.ml +++ b/compiler/ReorderDecls.ml @@ -5,11 +5,7 @@ open Pure (** The local logger *) let log = Logging.reorder_decls_log -type fun_id = { - def_id : FunDeclId.id; - lp_id : LoopId.id option; - rg_id : T.RegionGroupId.id option; -} +type fun_id = { def_id : FunDeclId.id; lp_id : LoopId.id option } [@@deriving show, ord] module FunIdOrderedType : OrderedType with type t = fun_id = struct @@ -43,11 +39,11 @@ let compute_body_fun_deps (e : texpression) : FunIdSet.t = | FunOrOp (Fun fid) -> ( match fid with | Pure _ -> () - | FromLlbc (fid, lp_id, rg_id) -> ( + | FromLlbc (fid, lp_id) -> ( match fid with | FunId (FAssumed _) -> () | TraitMethod (_, _, fid) | FunId (FRegular fid) -> - let id = { def_id = fid; lp_id; rg_id } in + let id = { def_id = fid; lp_id } in ids := FunIdSet.add id !ids)) end in @@ -71,7 +67,7 @@ let group_reorder_fun_decls (decls : fun_decl list) : (bool * fun_decl list) list = let module IntMap = MakeMap (OrderedInt) in let get_fun_id (decl : fun_decl) : fun_id = - { def_id = decl.def_id; lp_id = decl.loop_id; rg_id = decl.back_id } + { def_id = decl.def_id; lp_id = decl.loop_id } in (* Compute the list/set of identifiers *) let idl = List.map get_fun_id decls in diff --git a/compiler/SymbolicToPure.ml b/compiler/SymbolicToPure.ml index 859d6f17..2db5f66c 100644 --- a/compiler/SymbolicToPure.ml +++ b/compiler/SymbolicToPure.ml @@ -2035,7 +2035,7 @@ and translate_function_call (call : S.call) (e : S.expression) (ctx : bs_ctx) : | S.Fun (fid, call_id) -> (* Regular function call *) let fid_t = translate_fun_id_or_trait_method_ref ctx fid in - let func = Fun (FromLlbc (fid_t, None, None)) in + let func = Fun (FromLlbc (fid_t, None)) in (* Retrieve the effect information about this function (can fail, * takes a state as input, etc.) *) let effect_info = get_fun_effect_info ctx fid None None in @@ -2539,8 +2539,6 @@ and translate_end_abstraction_loop (ectx : C.eval_ctx) (abs : V.abs) get_fun_effect_info ctx (FunId fun_id) (Some vloop_id) (Some rg_id) in let loop_info = LoopId.Map.find loop_id ctx.loops in - let generics = loop_info.generics in - let fwd_inputs = Option.get loop_info.forward_inputs in (* Retrieve the additional backward inputs. Note that those are actually the backward inputs of the function we are synthesizing (and that we need to *transmit* to the loop backward function): they are not the @@ -2582,10 +2580,6 @@ and translate_end_abstraction_loop (ectx : C.eval_ctx) (abs : V.abs) (fun (arg, mp) -> mk_opt_mplace_texpression mp arg) (List.combine inputs args_mplaces) in - let input_tys = (List.map (fun (x : texpression) -> x.ty)) args in - let ret_ty = - if effect_info.can_fail then mk_result_ty output.ty else output.ty - in (* Create the expression for the function: - it is either a call to a top-level function, if we split the forward/backward functions @@ -3218,7 +3212,7 @@ and translate_forward_end (ectx : C.eval_ctx) let out_pat = mk_simpl_tuple_pattern out_pats in let loop_call = - let fun_id = Fun (FromLlbc (FunId fid, Some loop_id, None)) in + let fun_id = Fun (FromLlbc (FunId fid, Some loop_id)) in let func = { id = FunOrOp fun_id; generics = loop_info.generics } in let input_tys = (List.map (fun (x : texpression) -> x.ty)) args in let ret_ty = @@ -3567,9 +3561,6 @@ let translate_fun_decl (ctx : bs_ctx) (body : S.expression option) : fun_decl = let name = name_to_string ctx llbc_name in (* Translate the signature *) let signature = translate_fun_sig_from_decomposed ctx.sg in - let regions_hierarchy = - FunIdMap.find (FRegular def_id) ctx.fun_ctx.regions_hierarchies - in (* Translate the body, if there is *) let body = match body with diff --git a/compiler/Translate.ml b/compiler/Translate.ml index 55a94302..c12de045 100644 --- a/compiler/Translate.ml +++ b/compiler/Translate.ml @@ -1,5 +1,4 @@ open Interpreter -open Expressions open Types open Values open LlbcAst @@ -49,8 +48,6 @@ let translate_function_to_pure (trans_ctx : trans_ctx) log#ldebug (lazy ("translate_function_to_pure: " ^ name_to_string trans_ctx fdef.name)); - let def_id = fdef.def_id in - (* Compute the symbolic ASTs, if the function is transparent *) let symbolic_trans = translate_function_to_symbolics trans_ctx fdef in @@ -124,20 +121,7 @@ let translate_function_to_pure (trans_ctx : trans_ctx) SymbolicToPure.translate_fun_sig_from_decl_to_decomposed trans_ctx fdef in - let regions_hierarchy = - LlbcAstUtils.FunIdMap.find (FRegular def_id) fun_ctx.regions_hierarchies - in - - let var_counter, back_state_vars = - if !Config.return_back_funs then (var_counter, []) - else - List.fold_left_map - (fun var_counter (region_vars : region_var_group) -> - let gid = region_vars.id in - let var, var_counter = Pure.VarId.fresh var_counter in - (var_counter, (gid, var))) - var_counter regions_hierarchy - in + let var_counter, back_state_vars = (var_counter, []) in let back_state_vars = RegionGroupId.Map.of_list back_state_vars in let ctx = @@ -195,28 +179,7 @@ let translate_function_to_pure (trans_ctx : trans_ctx) in (* Add the backward inputs *) - let ctx, backward_inputs_no_state, backward_inputs_with_state = - if !Config.return_back_funs then (ctx, [], []) - else - let ctx, inputs_no_with_state = - List.fold_left_map - (fun ctx (region_vars : region_var_group) -> - let gid = region_vars.id in - let back_sg = RegionGroupId.Map.find gid sg.back_sg in - let ctx, no_state = - SymbolicToPure.fresh_vars back_sg.inputs_no_state ctx - in - let ctx, with_state = - SymbolicToPure.fresh_vars back_sg.inputs ctx - in - (ctx, ((gid, no_state), (gid, with_state)))) - ctx regions_hierarchy - in - let inputs_no_state, inputs_with_state = - List.split inputs_no_with_state - in - (ctx, inputs_no_state, inputs_with_state) - in + let backward_inputs_no_state, backward_inputs_with_state = ([], []) in let backward_inputs_no_state = RegionGroupId.Map.of_list backward_inputs_no_state in @@ -225,40 +188,10 @@ let translate_function_to_pure (trans_ctx : trans_ctx) in let ctx = { ctx with backward_inputs_no_state; backward_inputs_with_state } in - (* Translate the forward function *) - let pure_forward = - match symbolic_trans with - | None -> SymbolicToPure.translate_fun_decl ctx None - | Some (_, ast) -> SymbolicToPure.translate_fun_decl ctx (Some ast) - in - - (* Translate the backward functions, if we split the forward and backward functions *) - let translate_backward (rg : region_var_group) : Pure.fun_decl = - (* For the backward inputs/outputs initialization: we use the fact that - * there are no nested borrows for now, and so that the region groups - * can't have parents *) - assert (rg.parents = []); - let back_id = rg.id in - - match symbolic_trans with - | None -> - (* Initialize the context *) - let ctx = { ctx with bid = Some back_id } in - (* Translate *) - SymbolicToPure.translate_fun_decl ctx None - | Some (_, symbolic) -> - (* Initialize the context *) - let ctx = { ctx with bid = Some back_id } in - (* Translate *) - SymbolicToPure.translate_fun_decl ctx (Some symbolic) - in - let pure_backwards = - if !Config.return_back_funs then [] - else List.map translate_backward regions_hierarchy - in - - (* Return *) - (pure_forward, pure_backwards) + (* Translate the function *) + match symbolic_trans with + | None -> SymbolicToPure.translate_fun_decl ctx None + | Some (_, ast) -> SymbolicToPure.translate_fun_decl ctx (Some ast) (* TODO: factor out the return type *) let translate_crate_to_pure (crate : crate) : @@ -513,9 +446,8 @@ let export_global (fmt : Format.formatter) (config : gen_config) (ctx : gen_ctx) let global_decls = ctx.trans_ctx.global_ctx.global_decls in let global = GlobalDeclId.Map.find id global_decls in let trans = FunDeclId.Map.find global.body ctx.trans_funs in - assert (trans.fwd.loops = []); - assert (trans.backs = []); - let body = trans.fwd.f in + assert (trans.loops = []); + let body = trans.f in let is_opaque = Option.is_none body.Pure.body in (* Check if we extract the global *) @@ -643,7 +575,7 @@ let export_functions_group (fmt : Format.formatter) (config : gen_config) let funs_map = builtin_funs_map () in List.map (fun (trans : pure_fun_translation) -> - match_name_find_opt ctx.trans_ctx trans.fwd.f.llbc_name funs_map <> None) + match_name_find_opt ctx.trans_ctx trans.f.llbc_name funs_map <> None) pure_ls in @@ -660,7 +592,7 @@ let export_functions_group (fmt : Format.formatter) (config : gen_config) (* Extract the decrease clauses template bodies *) if config.extract_template_decreases_clauses then List.iter - (fun { fwd; _ } -> + (fun f -> (* We only generate decreases clauses for the forward functions, because the termination argument should only depend on the forward inputs. The backward functions thus use the same decreases clauses as the @@ -687,27 +619,14 @@ let export_functions_group (fmt : Format.formatter) (config : gen_config) raise (Failure "HOL4 doesn't have decreases/termination clauses") in - extract_decrease fwd.f; - List.iter extract_decrease fwd.loops) + extract_decrease f.f; + List.iter extract_decrease f.loops) pure_ls; - (* Concatenate the function definitions, filtering the useless forward - * functions. *) + (* Flatten the translated functions (concatenate the functions with + the declarations introduced for the loops) *) let decls = - List.concat - (List.map - (fun { keep_fwd; fwd; backs } -> - let fwd = - if keep_fwd then List.append fwd.loops [ fwd.f ] else [] - in - let backs : Pure.fun_decl list = - List.concat - (List.map - (fun back -> List.append back.loops [ back.f ]) - backs) - in - List.append fwd backs) - pure_ls) + List.concat (List.map (fun f -> List.append f.loops [ f.f ]) pure_ls) in (* Extract the function definitions *) @@ -724,9 +643,7 @@ let export_functions_group (fmt : Format.formatter) (config : gen_config) (* Insert unit tests if necessary *) if config.test_trans_unit_functions then List.iter - (fun trans -> - if trans.keep_fwd then - Extract.extract_unit_test_if_unit_fun ctx fmt trans.fwd.f) + (fun trans -> Extract.extract_unit_test_if_unit_fun ctx fmt trans.f) pure_ls (** Export a trait declaration. *) @@ -812,7 +729,7 @@ let extract_definitions (fmt : Format.formatter) (config : gen_config) extract their type directly in the records we generate for the trait declarations themselves, there is no point in having separate type definitions) *) - match pure_fun.fwd.f.Pure.kind with + match pure_fun.f.Pure.kind with | TraitMethodDecl _ -> () | _ -> (* Translate *) @@ -1001,18 +918,18 @@ let translate_crate (filename : string) (dest_dir : string) (crate : crate) : * whether we should generate a decrease clause or not. *) let rec_functions = List.map - (fun { fwd; _ } -> - let fwd_f = - if fwd.f.Pure.signature.fwd_info.effect_info.is_rec then - [ (fwd.f.def_id, None) ] + (fun trans -> + let f = + if trans.f.Pure.signature.fwd_info.effect_info.is_rec then + [ (trans.f.def_id, None) ] else [] in - let loop_fwds = + let loops = List.map (fun (def : Pure.fun_decl) -> [ (def.def_id, def.loop_id) ]) - fwd.loops + trans.loops in - fwd_f :: loop_fwds) + f :: loops) trans_funs in let rec_functions : PureUtils.fun_loop_id list = @@ -1028,7 +945,7 @@ let translate_crate (filename : string) (dest_dir : string) (crate : crate) : let trans_funs : pure_fun_translation FunDeclId.Map.t = FunDeclId.Map.of_list (List.map - (fun (trans : pure_fun_translation) -> (trans.fwd.f.def_id, trans)) + (fun (trans : pure_fun_translation) -> (trans.f.def_id, trans)) trans_funs) in @@ -1052,7 +969,6 @@ let translate_crate (filename : string) (dest_dir : string) (crate : crate) : names_maps; indent_incr = 2; use_dep_ite = !Config.backend = Lean && !Config.extract_decreases_clauses; - fun_name_info = PureUtils.RegularFunIdMap.empty; trait_decl_id = None (* None by default *); is_provided_method = false (* false by default *); trans_trait_decls; @@ -1082,7 +998,6 @@ let translate_crate (filename : string) (dest_dir : string) (crate : crate) : (fun ctx (trans : pure_fun_translation) -> (* If requested by the user, register termination measures and decreases proofs for all the recursive functions *) - let fwd_def = trans.fwd.f in let gen_decr_clause (def : Pure.fun_decl) = !Config.extract_decreases_clauses && PureUtils.FunLoopIdSet.mem @@ -1091,7 +1006,7 @@ let translate_crate (filename : string) (dest_dir : string) (crate : crate) : in (* Register the names, only if the function is not a global body - * those are handled later *) - let is_global = fwd_def.Pure.is_global_decl_body in + let is_global = trans.f.Pure.is_global_decl_body in if is_global then ctx else Extract.extract_fun_decl_register_names ctx gen_decr_clause trans) ctx @@ -1171,13 +1086,7 @@ let translate_crate (filename : string) (dest_dir : string) (crate : crate) : let exe_dir = Filename.dirname Sys.argv.(0) in let primitives_src_dest = match !Config.backend with - | FStar -> - let src = - if !Config.return_back_funs then - "/backends/fstar/merge/Primitives.fst" - else "/backends/fstar/split/Primitives.fst" - in - Some (src, "Primitives.fst") + | FStar -> Some ("/backends/fstar/merge/Primitives.fst", "Primitives.fst") | Coq -> Some ("/backends/coq/Primitives.v", "Primitives.v") | Lean -> None | HOL4 -> None diff --git a/compiler/TranslateCore.ml b/compiler/TranslateCore.ml index 88438872..05877b5a 100644 --- a/compiler/TranslateCore.ml +++ b/compiler/TranslateCore.ml @@ -8,19 +8,8 @@ let log = Logging.translate_log type trans_ctx = decls_ctx [@@deriving show] type fun_and_loops = { f : Pure.fun_decl; loops : Pure.fun_decl list } -type pure_fun_translation_no_loops = Pure.fun_decl * Pure.fun_decl list - -type pure_fun_translation = { - keep_fwd : bool; - (** Should we extract the forward function? - - If the forward function returns `()` and there is exactly one - backward function, we may merge the forward into the backward - function and thus don't extract the forward function)? - *) - fwd : fun_and_loops; - backs : fun_and_loops list; -} +type pure_fun_translation_no_loops = Pure.fun_decl +type pure_fun_translation = fun_and_loops let trans_ctx_to_fmt_env (ctx : trans_ctx) : Print.fmt_env = Print.Contexts.decls_ctx_to_fmt_env ctx -- cgit v1.2.3 From 78734dc530ee209b5a0946e82bf98b97e374bed0 Mon Sep 17 00:00:00 2001 From: Son Ho Date: Fri, 8 Mar 2024 16:08:39 +0100 Subject: Update the Makefile and remove the split files for F* --- Makefile | 25 +- backends/fstar/Makefile | 47 ++ backends/fstar/Primitives.fst | 848 ++++++++++++++++++++++++++++++++++ backends/fstar/merge/Makefile | 47 -- backends/fstar/merge/Primitives.fst | 848 ---------------------------------- backends/fstar/split/Makefile | 47 -- backends/fstar/split/Primitives.fst | 884 ------------------------------------ 7 files changed, 899 insertions(+), 1847 deletions(-) create mode 100644 backends/fstar/Makefile create mode 100644 backends/fstar/Primitives.fst delete mode 100644 backends/fstar/merge/Makefile delete mode 100644 backends/fstar/merge/Primitives.fst delete mode 100644 backends/fstar/split/Makefile delete mode 100644 backends/fstar/split/Primitives.fst diff --git a/Makefile b/Makefile index 26392c11..8b9c8392 100644 --- a/Makefile +++ b/Makefile @@ -70,11 +70,9 @@ build-bin-dir: build-bin build-lib mkdir -p bin cp -f compiler/_build/default/main.exe bin/aeneas cp -f compiler/_build/default/main.exe bin/aeneas.cmxs - mkdir -p bin/backends/fstar/split - mkdir -p bin/backends/fstar/merge + mkdir -p bin/backends/fstar mkdir -p bin/backends/coq - cp -rf backends/fstar/split/*.fst* bin/backends/fstar/split/ - cp -rf backends/fstar/merge/*.fst* bin/backends/fstar/merge/ + cp -rf backends/fstar/*.fst* bin/backends/fstar/ cp -rf backends/coq/*.v bin/backends/coq/ .PHONY: doc @@ -263,29 +261,14 @@ testp-%: gen-llbcp-% tfstarp-% tcoqp-% tleanp-% thol4p-% .PHONY: tfstar-% tfstar-%: OPTIONS += -backend fstar tfstar-%: BACKEND_SUBDIR := fstar -tfstar-%: tsplit-fstar-% +tfstar-%: $(AENEAS_CMD) # "p" stands for "Polonius" .PHONY: tfstarp-% tfstarp-%: OPTIONS += -backend fstar tfstarp-%: BACKEND_SUBDIR := fstar -tfstarp-%: tsplit-fstarp-% - $(AENEAS_CMD) - -# Test where we split the forward/backward functions -.PHONY: tsplit-fstar-% -tsplit-fstar-%: OPTIONS += -backend fstar -split-fwd-back -tsplit-fstar-%: BACKEND_SUBDIR := fstar-split -tsplit-fstar-%: - $(AENEAS_CMD) - -# Test where we split the forward/backward functions -# "p" stands for "Polonius" -.PHONY: tsplit-fstarp-% -tsplit-fstarp-%: OPTIONS += -backend fstar -split-fwd-back -tsplit-fstarp-%: BACKEND_SUBDIR := fstar-split -tsplit-fstarp-%: +tfstarp-%: $(AENEAS_CMD) .PHONY: tcoq-% diff --git a/backends/fstar/Makefile b/backends/fstar/Makefile new file mode 100644 index 00000000..a16b0edb --- /dev/null +++ b/backends/fstar/Makefile @@ -0,0 +1,47 @@ +INCLUDE_DIRS = . + +FSTAR_INCLUDES = $(addprefix --include ,$(INCLUDE_DIRS)) + +FSTAR_HINTS ?= --use_hints --use_hint_hashes --record_hints + +FSTAR_OPTIONS = $(FSTAR_HINTS) \ + --cache_checked_modules $(FSTAR_INCLUDES) --cmi \ + --warn_error '+241@247+285-274' \ + +FSTAR_NO_FLAGS = fstar.exe --already_cached 'Prims FStar LowStar Steel' --odir obj --cache_dir obj + +FSTAR = $(FSTAR_NO_FLAGS) $(FSTAR_OPTIONS) + +# The F* roots are used to compute the dependency graph, and generate the .depend file +FSTAR_ROOTS ?= $(wildcard *.fst *.fsti) + +# Build all the files +all: $(addprefix obj/,$(addsuffix .checked,$(FSTAR_ROOTS))) + +# This is the right way to ensure the .depend file always gets re-built. +ifeq (,$(filter %-in,$(MAKECMDGOALS))) +ifndef NODEPEND +ifndef MAKE_RESTARTS +.depend: .FORCE + $(FSTAR_NO_FLAGS) --dep full $(notdir $(FSTAR_ROOTS)) > $@ + +.PHONY: .FORCE +.FORCE: +endif +endif + +include .depend +endif + +# For the interactive mode +%.fst-in %.fsti-in: + @echo $(FSTAR_OPTIONS) + +# Generete the .checked files in batch mode +%.checked: + $(FSTAR) $(FSTAR_OPTIONS) $< && \ + touch -c $@ + +.PHONY: clean +clean: + rm -f obj/* diff --git a/backends/fstar/Primitives.fst b/backends/fstar/Primitives.fst new file mode 100644 index 00000000..fca80829 --- /dev/null +++ b/backends/fstar/Primitives.fst @@ -0,0 +1,848 @@ +/// This file lists primitive and assumed functions and types +module Primitives +open FStar.Mul +open FStar.List.Tot + +#set-options "--z3rlimit 15 --fuel 0 --ifuel 1" + +(*** Utilities *) +val list_update (#a : Type0) (ls : list a) (i : nat{i < length ls}) (x : a) : + ls':list a{ + length ls' = length ls /\ + index ls' i == x + } +#push-options "--fuel 1" +let rec list_update #a ls i x = + match ls with + | x' :: ls -> if i = 0 then x :: ls else x' :: list_update ls (i-1) x +#pop-options + +(*** Result *) +type error : Type0 = +| Failure +| OutOfFuel + +type result (a : Type0) : Type0 = +| Return : v:a -> result a +| Fail : e:error -> result a + +// Monadic return operator +unfold let return (#a : Type0) (x : a) : result a = Return x + +// Monadic bind operator. +// Allows to use the notation: +// ``` +// let* x = y in +// ... +// ``` +unfold let (let*) (#a #b : Type0) (m: result a) + (f: (x:a) -> Pure (result b) (requires (m == Return x)) (ensures fun _ -> True)) : + result b = + match m with + | Return x -> f x + | Fail e -> Fail e + +// Monadic assert(...) +let massert (b:bool) : result unit = if b then Return () else Fail Failure + +// Normalize and unwrap a successful result (used for globals). +let eval_global (#a : Type0) (x : result a{Return? (normalize_term x)}) : a = Return?.v x + +(*** Misc *) +type char = FStar.Char.char +type string = string + +let is_zero (n: nat) : bool = n = 0 +let decrease (n: nat{n > 0}) : nat = n - 1 + +let core_mem_replace (a : Type0) (x : a) (y : a) : a & a = (x, x) + +// We don't really use raw pointers for now +type mut_raw_ptr (t : Type0) = { v : t } +type const_raw_ptr (t : Type0) = { v : t } + +(*** Scalars *) +/// Rem.: most of the following code was partially generated + +assume val size_numbits : pos + +// TODO: we could use FStar.Int.int_t and FStar.UInt.int_t + +let isize_min : int = -9223372036854775808 // TODO: should be opaque +let isize_max : int = 9223372036854775807 // TODO: should be opaque +let i8_min : int = -128 +let i8_max : int = 127 +let i16_min : int = -32768 +let i16_max : int = 32767 +let i32_min : int = -2147483648 +let i32_max : int = 2147483647 +let i64_min : int = -9223372036854775808 +let i64_max : int = 9223372036854775807 +let i128_min : int = -170141183460469231731687303715884105728 +let i128_max : int = 170141183460469231731687303715884105727 +let usize_min : int = 0 +let usize_max : int = 4294967295 // TODO: should be opaque +let u8_min : int = 0 +let u8_max : int = 255 +let u16_min : int = 0 +let u16_max : int = 65535 +let u32_min : int = 0 +let u32_max : int = 4294967295 +let u64_min : int = 0 +let u64_max : int = 18446744073709551615 +let u128_min : int = 0 +let u128_max : int = 340282366920938463463374607431768211455 + +type scalar_ty = +| Isize +| I8 +| I16 +| I32 +| I64 +| I128 +| Usize +| U8 +| U16 +| U32 +| U64 +| U128 + +let is_unsigned = function + | Isize | I8 | I16 | I32 | I64 | I128 -> false + | Usize | U8 | U16 | U32 | U64 | U128 -> true + +let scalar_min (ty : scalar_ty) : int = + match ty with + | Isize -> isize_min + | I8 -> i8_min + | I16 -> i16_min + | I32 -> i32_min + | I64 -> i64_min + | I128 -> i128_min + | Usize -> usize_min + | U8 -> u8_min + | U16 -> u16_min + | U32 -> u32_min + | U64 -> u64_min + | U128 -> u128_min + +let scalar_max (ty : scalar_ty) : int = + match ty with + | Isize -> isize_max + | I8 -> i8_max + | I16 -> i16_max + | I32 -> i32_max + | I64 -> i64_max + | I128 -> i128_max + | Usize -> usize_max + | U8 -> u8_max + | U16 -> u16_max + | U32 -> u32_max + | U64 -> u64_max + | U128 -> u128_max + +type scalar (ty : scalar_ty) : eqtype = x:int{scalar_min ty <= x && x <= scalar_max ty} + +let mk_scalar (ty : scalar_ty) (x : int) : result (scalar ty) = + if scalar_min ty <= x && scalar_max ty >= x then Return x else Fail Failure + +let scalar_neg (#ty : scalar_ty) (x : scalar ty) : result (scalar ty) = mk_scalar ty (-x) + +let scalar_div (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = + if y <> 0 then mk_scalar ty (x / y) else Fail Failure + +/// The remainder operation +let int_rem (x : int) (y : int{y <> 0}) : int = + if x >= 0 then (x % y) else -(x % y) + +(* Checking consistency with Rust *) +let _ = assert_norm(int_rem 1 2 = 1) +let _ = assert_norm(int_rem (-1) 2 = -1) +let _ = assert_norm(int_rem 1 (-2) = 1) +let _ = assert_norm(int_rem (-1) (-2) = -1) + +let scalar_rem (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = + if y <> 0 then mk_scalar ty (int_rem x y) else Fail Failure + +let scalar_add (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = + mk_scalar ty (x + y) + +let scalar_sub (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = + mk_scalar ty (x - y) + +let scalar_mul (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = + mk_scalar ty (x * y) + +let scalar_xor (#ty : scalar_ty) + (x : scalar ty) (y : scalar ty) : scalar ty = + match ty with + | U8 -> FStar.UInt.logxor #8 x y + | U16 -> FStar.UInt.logxor #16 x y + | U32 -> FStar.UInt.logxor #32 x y + | U64 -> FStar.UInt.logxor #64 x y + | U128 -> FStar.UInt.logxor #128 x y + | Usize -> admit() // TODO + | I8 -> + // Encoding issues... + normalize_spec (FStar.Int.int_t 8); + normalize_spec (scalar I8); + FStar.Int.logxor #8 x y + | I16 -> + // Encoding issues... + normalize_spec (FStar.Int.int_t 16); + normalize_spec (scalar I16); + FStar.Int.logxor #16 x y + | I32 -> FStar.Int.logxor #32 x y + | I64 -> FStar.Int.logxor #64 x y + | I128 -> + // Encoding issues... + normalize_spec (FStar.Int.int_t 128); + normalize_spec (scalar I128); + FStar.Int.logxor #128 x y + | Isize -> admit() // TODO + +let scalar_or (#ty : scalar_ty) + (x : scalar ty) (y : scalar ty) : scalar ty = + match ty with + | U8 -> FStar.UInt.logor #8 x y + | U16 -> FStar.UInt.logor #16 x y + | U32 -> FStar.UInt.logor #32 x y + | U64 -> FStar.UInt.logor #64 x y + | U128 -> FStar.UInt.logor #128 x y + | Usize -> admit() // TODO + | I8 -> + // Encoding issues... + normalize_spec (FStar.Int.int_t 8); + normalize_spec (scalar I8); + FStar.Int.logor #8 x y + | I16 -> + // Encoding issues... + normalize_spec (FStar.Int.int_t 16); + normalize_spec (scalar I16); + FStar.Int.logor #16 x y + | I32 -> FStar.Int.logor #32 x y + | I64 -> FStar.Int.logor #64 x y + | I128 -> + // Encoding issues... + normalize_spec (FStar.Int.int_t 128); + normalize_spec (scalar I128); + FStar.Int.logor #128 x y + | Isize -> admit() // TODO + +let scalar_and (#ty : scalar_ty) + (x : scalar ty) (y : scalar ty) : scalar ty = + match ty with + | U8 -> FStar.UInt.logand #8 x y + | U16 -> FStar.UInt.logand #16 x y + | U32 -> FStar.UInt.logand #32 x y + | U64 -> FStar.UInt.logand #64 x y + | U128 -> FStar.UInt.logand #128 x y + | Usize -> admit() // TODO + | I8 -> + // Encoding issues... + normalize_spec (FStar.Int.int_t 8); + normalize_spec (scalar I8); + FStar.Int.logand #8 x y + | I16 -> + // Encoding issues... + normalize_spec (FStar.Int.int_t 16); + normalize_spec (scalar I16); + FStar.Int.logand #16 x y + | I32 -> FStar.Int.logand #32 x y + | I64 -> FStar.Int.logand #64 x y + | I128 -> + // Encoding issues... + normalize_spec (FStar.Int.int_t 128); + normalize_spec (scalar I128); + FStar.Int.logand #128 x y + | Isize -> admit() // TODO + +// Shift left +let scalar_shl (#ty0 #ty1 : scalar_ty) + (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) = + admit() + +// Shift right +let scalar_shr (#ty0 #ty1 : scalar_ty) + (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) = + admit() + +(** Cast an integer from a [src_ty] to a [tgt_ty] *) +// TODO: check the semantics of casts in Rust +let scalar_cast (src_ty : scalar_ty) (tgt_ty : scalar_ty) (x : scalar src_ty) : result (scalar tgt_ty) = + mk_scalar tgt_ty x + +// This can't fail, but for now we make all casts faillible (easier for the translation) +let scalar_cast_bool (tgt_ty : scalar_ty) (x : bool) : result (scalar tgt_ty) = + mk_scalar tgt_ty (if x then 1 else 0) + +/// The scalar types +type isize : eqtype = scalar Isize +type i8 : eqtype = scalar I8 +type i16 : eqtype = scalar I16 +type i32 : eqtype = scalar I32 +type i64 : eqtype = scalar I64 +type i128 : eqtype = scalar I128 +type usize : eqtype = scalar Usize +type u8 : eqtype = scalar U8 +type u16 : eqtype = scalar U16 +type u32 : eqtype = scalar U32 +type u64 : eqtype = scalar U64 +type u128 : eqtype = scalar U128 + + +let core_isize_min : isize = isize_min +let core_isize_max : isize = isize_max +let core_i8_min : i8 = i8_min +let core_i8_max : i8 = i8_max +let core_i16_min : i16 = i16_min +let core_i16_max : i16 = i16_max +let core_i32_min : i32 = i32_min +let core_i32_max : i32 = i32_max +let core_i64_min : i64 = i64_min +let core_i64_max : i64 = i64_max +let core_i128_min : i128 = i128_min +let core_i128_max : i128 = i128_max + +let core_usize_min : usize = usize_min +let core_usize_max : usize = usize_max +let core_u8_min : u8 = u8_min +let core_u8_max : u8 = u8_max +let core_u16_min : u16 = u16_min +let core_u16_max : u16 = u16_max +let core_u32_min : u32 = u32_min +let core_u32_max : u32 = u32_max +let core_u64_min : u64 = u64_min +let core_u64_max : u64 = u64_max +let core_u128_min : u128 = u128_min +let core_u128_max : u128 = u128_max + +/// Negation +let isize_neg = scalar_neg #Isize +let i8_neg = scalar_neg #I8 +let i16_neg = scalar_neg #I16 +let i32_neg = scalar_neg #I32 +let i64_neg = scalar_neg #I64 +let i128_neg = scalar_neg #I128 + +/// Division +let isize_div = scalar_div #Isize +let i8_div = scalar_div #I8 +let i16_div = scalar_div #I16 +let i32_div = scalar_div #I32 +let i64_div = scalar_div #I64 +let i128_div = scalar_div #I128 +let usize_div = scalar_div #Usize +let u8_div = scalar_div #U8 +let u16_div = scalar_div #U16 +let u32_div = scalar_div #U32 +let u64_div = scalar_div #U64 +let u128_div = scalar_div #U128 + +/// Remainder +let isize_rem = scalar_rem #Isize +let i8_rem = scalar_rem #I8 +let i16_rem = scalar_rem #I16 +let i32_rem = scalar_rem #I32 +let i64_rem = scalar_rem #I64 +let i128_rem = scalar_rem #I128 +let usize_rem = scalar_rem #Usize +let u8_rem = scalar_rem #U8 +let u16_rem = scalar_rem #U16 +let u32_rem = scalar_rem #U32 +let u64_rem = scalar_rem #U64 +let u128_rem = scalar_rem #U128 + +/// Addition +let isize_add = scalar_add #Isize +let i8_add = scalar_add #I8 +let i16_add = scalar_add #I16 +let i32_add = scalar_add #I32 +let i64_add = scalar_add #I64 +let i128_add = scalar_add #I128 +let usize_add = scalar_add #Usize +let u8_add = scalar_add #U8 +let u16_add = scalar_add #U16 +let u32_add = scalar_add #U32 +let u64_add = scalar_add #U64 +let u128_add = scalar_add #U128 + +/// Subtraction +let isize_sub = scalar_sub #Isize +let i8_sub = scalar_sub #I8 +let i16_sub = scalar_sub #I16 +let i32_sub = scalar_sub #I32 +let i64_sub = scalar_sub #I64 +let i128_sub = scalar_sub #I128 +let usize_sub = scalar_sub #Usize +let u8_sub = scalar_sub #U8 +let u16_sub = scalar_sub #U16 +let u32_sub = scalar_sub #U32 +let u64_sub = scalar_sub #U64 +let u128_sub = scalar_sub #U128 + +/// Multiplication +let isize_mul = scalar_mul #Isize +let i8_mul = scalar_mul #I8 +let i16_mul = scalar_mul #I16 +let i32_mul = scalar_mul #I32 +let i64_mul = scalar_mul #I64 +let i128_mul = scalar_mul #I128 +let usize_mul = scalar_mul #Usize +let u8_mul = scalar_mul #U8 +let u16_mul = scalar_mul #U16 +let u32_mul = scalar_mul #U32 +let u64_mul = scalar_mul #U64 +let u128_mul = scalar_mul #U128 + +/// Xor +let u8_xor = scalar_xor #U8 +let u16_xor = scalar_xor #U16 +let u32_xor = scalar_xor #U32 +let u64_xor = scalar_xor #U64 +let u128_xor = scalar_xor #U128 +let usize_xor = scalar_xor #Usize +let i8_xor = scalar_xor #I8 +let i16_xor = scalar_xor #I16 +let i32_xor = scalar_xor #I32 +let i64_xor = scalar_xor #I64 +let i128_xor = scalar_xor #I128 +let isize_xor = scalar_xor #Isize + +/// Or +let u8_or = scalar_or #U8 +let u16_or = scalar_or #U16 +let u32_or = scalar_or #U32 +let u64_or = scalar_or #U64 +let u128_or = scalar_or #U128 +let usize_or = scalar_or #Usize +let i8_or = scalar_or #I8 +let i16_or = scalar_or #I16 +let i32_or = scalar_or #I32 +let i64_or = scalar_or #I64 +let i128_or = scalar_or #I128 +let isize_or = scalar_or #Isize + +/// And +let u8_and = scalar_and #U8 +let u16_and = scalar_and #U16 +let u32_and = scalar_and #U32 +let u64_and = scalar_and #U64 +let u128_and = scalar_and #U128 +let usize_and = scalar_and #Usize +let i8_and = scalar_and #I8 +let i16_and = scalar_and #I16 +let i32_and = scalar_and #I32 +let i64_and = scalar_and #I64 +let i128_and = scalar_and #I128 +let isize_and = scalar_and #Isize + +/// Shift left +let u8_shl #ty = scalar_shl #U8 #ty +let u16_shl #ty = scalar_shl #U16 #ty +let u32_shl #ty = scalar_shl #U32 #ty +let u64_shl #ty = scalar_shl #U64 #ty +let u128_shl #ty = scalar_shl #U128 #ty +let usize_shl #ty = scalar_shl #Usize #ty +let i8_shl #ty = scalar_shl #I8 #ty +let i16_shl #ty = scalar_shl #I16 #ty +let i32_shl #ty = scalar_shl #I32 #ty +let i64_shl #ty = scalar_shl #I64 #ty +let i128_shl #ty = scalar_shl #I128 #ty +let isize_shl #ty = scalar_shl #Isize #ty + +/// Shift right +let u8_shr #ty = scalar_shr #U8 #ty +let u16_shr #ty = scalar_shr #U16 #ty +let u32_shr #ty = scalar_shr #U32 #ty +let u64_shr #ty = scalar_shr #U64 #ty +let u128_shr #ty = scalar_shr #U128 #ty +let usize_shr #ty = scalar_shr #Usize #ty +let i8_shr #ty = scalar_shr #I8 #ty +let i16_shr #ty = scalar_shr #I16 #ty +let i32_shr #ty = scalar_shr #I32 #ty +let i64_shr #ty = scalar_shr #I64 #ty +let i128_shr #ty = scalar_shr #I128 #ty +let isize_shr #ty = scalar_shr #Isize #ty + +(*** core::ops *) + +// Trait declaration: [core::ops::index::Index] +noeq type core_ops_index_Index (self idx : Type0) = { + output : Type0; + index : self → idx → result output +} + +// Trait declaration: [core::ops::index::IndexMut] +noeq type core_ops_index_IndexMut (self idx : Type0) = { + indexInst : core_ops_index_Index self idx; + index_mut : self → idx → result (indexInst.output & (indexInst.output → result self)); +} + +// Trait declaration [core::ops::deref::Deref] +noeq type core_ops_deref_Deref (self : Type0) = { + target : Type0; + deref : self → result target; +} + +// Trait declaration [core::ops::deref::DerefMut] +noeq type core_ops_deref_DerefMut (self : Type0) = { + derefInst : core_ops_deref_Deref self; + deref_mut : self → result (derefInst.target & (derefInst.target → result self)); +} + +type core_ops_range_Range (a : Type0) = { + start : a; + end_ : a; +} + +(*** [alloc] *) + +let alloc_boxed_Box_deref (t : Type0) (x : t) : result t = Return x +let alloc_boxed_Box_deref_mut (t : Type0) (x : t) : result (t & (t -> result t)) = + Return (x, (fun x -> Return x)) + +// Trait instance +let alloc_boxed_Box_coreopsDerefInst (self : Type0) : core_ops_deref_Deref self = { + target = self; + deref = alloc_boxed_Box_deref self; +} + +// Trait instance +let alloc_boxed_Box_coreopsDerefMutInst (self : Type0) : core_ops_deref_DerefMut self = { + derefInst = alloc_boxed_Box_coreopsDerefInst self; + deref_mut = alloc_boxed_Box_deref_mut self; +} + +(*** Array *) +type array (a : Type0) (n : usize) = s:list a{length s = n} + +// We tried putting the normalize_term condition as a refinement on the list +// but it didn't work. It works with the requires clause. +let mk_array (a : Type0) (n : usize) + (l : list a) : + Pure (array a n) + (requires (normalize_term(FStar.List.Tot.length l) = n)) + (ensures (fun _ -> True)) = + normalize_term_spec (FStar.List.Tot.length l); + l + +let array_index_usize (a : Type0) (n : usize) (x : array a n) (i : usize) : result a = + if i < length x then Return (index x i) + else Fail Failure + +let array_update_usize (a : Type0) (n : usize) (x : array a n) (i : usize) (nx : a) : + result (array a n) = + if i < length x then Return (list_update x i nx) + else Fail Failure + +let array_index_mut_usize (a : Type0) (n : usize) (x : array a n) (i : usize) : + result (a & (a -> result (array a n))) = + match array_index_usize a n x i with + | Fail e -> Fail e + | Return v -> + Return (v, array_update_usize a n x i) + +(*** Slice *) +type slice (a : Type0) = s:list a{length s <= usize_max} + +let slice_len (a : Type0) (s : slice a) : usize = length s + +let slice_index_usize (a : Type0) (x : slice a) (i : usize) : result a = + if i < length x then Return (index x i) + else Fail Failure + +let slice_update_usize (a : Type0) (x : slice a) (i : usize) (nx : a) : result (slice a) = + if i < length x then Return (list_update x i nx) + else Fail Failure + +let slice_index_mut_usize (a : Type0) (s : slice a) (i : usize) : + result (a & (a -> result (slice a))) = + match slice_index_usize a s i with + | Fail e -> Fail e + | Return x -> + Return (x, slice_update_usize a s i) + +(*** Subslices *) + +let array_to_slice (a : Type0) (n : usize) (x : array a n) : result (slice a) = Return x +let array_from_slice (a : Type0) (n : usize) (x : array a n) (s : slice a) : result (array a n) = + if length s = n then Return s + else Fail Failure + +let array_to_slice_mut (a : Type0) (n : usize) (x : array a n) : + result (slice a & (slice a -> result (array a n))) = + Return (x, array_from_slice a n x) + +// TODO: finish the definitions below (there lacks [List.drop] and [List.take] in the standard library *) +let array_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) : result (slice a) = + admit() + +let array_update_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) (ns : slice a) : result (array a n) = + admit() + +let array_repeat (a : Type0) (n : usize) (x : a) : array a n = + admit() + +let slice_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) : result (slice a) = + admit() + +let slice_update_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) (ns : slice a) : result (slice a) = + admit() + +(*** Vector *) +type alloc_vec_Vec (a : Type0) = v:list a{length v <= usize_max} + +let alloc_vec_Vec_new (a : Type0) : alloc_vec_Vec a = assert_norm(length #a [] == 0); [] +let alloc_vec_Vec_len (a : Type0) (v : alloc_vec_Vec a) : usize = length v + +// Helper +let alloc_vec_Vec_index_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : result a = + if i < length v then Return (index v i) else Fail Failure +// Helper +let alloc_vec_Vec_update_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) = + if i < length v then Return (list_update v i x) else Fail Failure + +let alloc_vec_Vec_index_mut_usize (#a : Type0) (v: alloc_vec_Vec a) (i: usize) : + result (a & (a → result (alloc_vec_Vec a))) = + match alloc_vec_Vec_index_usize v i with + | Return x -> + Return (x, alloc_vec_Vec_update_usize v i) + | Fail e -> Fail e + +let alloc_vec_Vec_push (a : Type0) (v : alloc_vec_Vec a) (x : a) : + Pure (result (alloc_vec_Vec a)) + (requires True) + (ensures (fun res -> + match res with + | Fail e -> e == Failure + | Return v' -> length v' = length v + 1)) = + if length v < usize_max then begin + (**) assert_norm(length [x] == 1); + (**) append_length v [x]; + (**) assert(length (append v [x]) = length v + 1); + Return (append v [x]) + end + else Fail Failure + +let alloc_vec_Vec_insert (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) = + if i < length v then Return (list_update v i x) else Fail Failure + +// Trait declaration: [core::slice::index::private_slice_index::Sealed] +type core_slice_index_private_slice_index_Sealed (self : Type0) = unit + +// Trait declaration: [core::slice::index::SliceIndex] +noeq type core_slice_index_SliceIndex (self t : Type0) = { + sealedInst : core_slice_index_private_slice_index_Sealed self; + output : Type0; + get : self → t → result (option output); + get_mut : self → t → result (option output & (option output -> result t)); + get_unchecked : self → const_raw_ptr t → result (const_raw_ptr output); + get_unchecked_mut : self → mut_raw_ptr t → result (mut_raw_ptr output); + index : self → t → result output; + index_mut : self → t → result (output & (output -> result t)); +} + +// [core::slice::index::[T]::index]: forward function +let core_slice_index_Slice_index + (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) + (s : slice t) (i : idx) : result inst.output = + let* x = inst.get i s in + match x with + | None -> Fail Failure + | Some x -> Return x + +// [core::slice::index::Range:::get]: forward function +let core_slice_index_RangeUsize_get (t : Type0) (i : core_ops_range_Range usize) (s : slice t) : + result (option (slice t)) = + admit () // TODO + +// [core::slice::index::Range::get_mut]: forward function +let core_slice_index_RangeUsize_get_mut (t : Type0) : + core_ops_range_Range usize → slice t → result (option (slice t) & (option (slice t) -> result (slice t))) = + admit () // TODO + +// [core::slice::index::Range::get_unchecked]: forward function +let core_slice_index_RangeUsize_get_unchecked + (t : Type0) : + core_ops_range_Range usize → const_raw_ptr (slice t) → result (const_raw_ptr (slice t)) = + // Don't know what the model should be - for now we always fail to make + // sure code which uses it fails + fun _ _ -> Fail Failure + +// [core::slice::index::Range::get_unchecked_mut]: forward function +let core_slice_index_RangeUsize_get_unchecked_mut + (t : Type0) : + core_ops_range_Range usize → mut_raw_ptr (slice t) → result (mut_raw_ptr (slice t)) = + // Don't know what the model should be - for now we always fail to make + // sure code which uses it fails + fun _ _ -> Fail Failure + +// [core::slice::index::Range::index]: forward function +let core_slice_index_RangeUsize_index + (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) = + admit () // TODO + +// [core::slice::index::Range::index_mut]: forward function +let core_slice_index_RangeUsize_index_mut (t : Type0) : + core_ops_range_Range usize → slice t → result (slice t & (slice t -> result (slice t))) = + admit () // TODO + +// [core::slice::index::[T]::index_mut]: forward function +let core_slice_index_Slice_index_mut + (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) : + slice t → idx → result (inst.output & (inst.output -> result (slice t))) = + admit () // + +// [core::array::[T; N]::index]: forward function +let core_array_Array_index + (t idx : Type0) (n : usize) (inst : core_ops_index_Index (slice t) idx) + (a : array t n) (i : idx) : result inst.output = + admit () // TODO + +// [core::array::[T; N]::index_mut]: forward function +let core_array_Array_index_mut + (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx) + (a : array t n) (i : idx) : + result (inst.indexInst.output & (inst.indexInst.output -> result (array t n))) = + admit () // TODO + +// Trait implementation: [core::slice::index::private_slice_index::Range] +let core_slice_index_private_slice_index_SealedRangeUsizeInst + : core_slice_index_private_slice_index_Sealed (core_ops_range_Range usize) = () + +// Trait implementation: [core::slice::index::Range] +let core_slice_index_SliceIndexRangeUsizeSliceTInst (t : Type0) : + core_slice_index_SliceIndex (core_ops_range_Range usize) (slice t) = { + sealedInst = core_slice_index_private_slice_index_SealedRangeUsizeInst; + output = slice t; + get = core_slice_index_RangeUsize_get t; + get_mut = core_slice_index_RangeUsize_get_mut t; + get_unchecked = core_slice_index_RangeUsize_get_unchecked t; + get_unchecked_mut = core_slice_index_RangeUsize_get_unchecked_mut t; + index = core_slice_index_RangeUsize_index t; + index_mut = core_slice_index_RangeUsize_index_mut t; +} + +// Trait implementation: [core::slice::index::[T]] +let core_ops_index_IndexSliceTIInst (t idx : Type0) + (inst : core_slice_index_SliceIndex idx (slice t)) : + core_ops_index_Index (slice t) idx = { + output = inst.output; + index = core_slice_index_Slice_index t idx inst; +} + +// Trait implementation: [core::slice::index::[T]] +let core_ops_index_IndexMutSliceTIInst (t idx : Type0) + (inst : core_slice_index_SliceIndex idx (slice t)) : + core_ops_index_IndexMut (slice t) idx = { + indexInst = core_ops_index_IndexSliceTIInst t idx inst; + index_mut = core_slice_index_Slice_index_mut t idx inst; +} + +// Trait implementation: [core::array::[T; N]] +let core_ops_index_IndexArrayInst (t idx : Type0) (n : usize) + (inst : core_ops_index_Index (slice t) idx) : + core_ops_index_Index (array t n) idx = { + output = inst.output; + index = core_array_Array_index t idx n inst; +} + +// Trait implementation: [core::array::[T; N]] +let core_ops_index_IndexMutArrayIInst (t idx : Type0) (n : usize) + (inst : core_ops_index_IndexMut (slice t) idx) : + core_ops_index_IndexMut (array t n) idx = { + indexInst = core_ops_index_IndexArrayInst t idx n inst.indexInst; + index_mut = core_array_Array_index_mut t idx n inst; +} + +// [core::slice::index::usize::get]: forward function +let core_slice_index_usize_get + (t : Type0) : usize → slice t → result (option t) = + admit () // TODO + +// [core::slice::index::usize::get_mut]: forward function +let core_slice_index_usize_get_mut (t : Type0) : + usize → slice t → result (option t & (option t -> result (slice t))) = + admit () // TODO + +// [core::slice::index::usize::get_unchecked]: forward function +let core_slice_index_usize_get_unchecked + (t : Type0) : usize → const_raw_ptr (slice t) → result (const_raw_ptr t) = + admit () // TODO + +// [core::slice::index::usize::get_unchecked_mut]: forward function +let core_slice_index_usize_get_unchecked_mut + (t : Type0) : usize → mut_raw_ptr (slice t) → result (mut_raw_ptr t) = + admit () // TODO + +// [core::slice::index::usize::index]: forward function +let core_slice_index_usize_index (t : Type0) : usize → slice t → result t = + admit () // TODO + +// [core::slice::index::usize::index_mut]: forward function +let core_slice_index_usize_index_mut (t : Type0) : + usize → slice t → result (t & (t -> result (slice t))) = + admit () // TODO + +// Trait implementation: [core::slice::index::private_slice_index::usize] +let core_slice_index_private_slice_index_SealedUsizeInst + : core_slice_index_private_slice_index_Sealed usize = () + +// Trait implementation: [core::slice::index::usize] +let core_slice_index_SliceIndexUsizeSliceTInst (t : Type0) : + core_slice_index_SliceIndex usize (slice t) = { + sealedInst = core_slice_index_private_slice_index_SealedUsizeInst; + output = t; + get = core_slice_index_usize_get t; + get_mut = core_slice_index_usize_get_mut t; + get_unchecked = core_slice_index_usize_get_unchecked t; + get_unchecked_mut = core_slice_index_usize_get_unchecked_mut t; + index = core_slice_index_usize_index t; + index_mut = core_slice_index_usize_index_mut t; +} + +// [alloc::vec::Vec::index]: forward function +let alloc_vec_Vec_index (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) + (self : alloc_vec_Vec t) (i : idx) : result inst.output = + admit () // TODO + +// [alloc::vec::Vec::index_mut]: forward function +let alloc_vec_Vec_index_mut (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) + (self : alloc_vec_Vec t) (i : idx) : + result (inst.output & (inst.output -> result (alloc_vec_Vec t))) = + admit () // TODO + +// Trait implementation: [alloc::vec::Vec] +let alloc_vec_Vec_coreopsindexIndexInst (t idx : Type0) + (inst : core_slice_index_SliceIndex idx (slice t)) : + core_ops_index_Index (alloc_vec_Vec t) idx = { + output = inst.output; + index = alloc_vec_Vec_index t idx inst; +} + +// Trait implementation: [alloc::vec::Vec] +let alloc_vec_Vec_coreopsindexIndexMutInst (t idx : Type0) + (inst : core_slice_index_SliceIndex idx (slice t)) : + core_ops_index_IndexMut (alloc_vec_Vec t) idx = { + indexInst = alloc_vec_Vec_coreopsindexIndexInst t idx inst; + index_mut = alloc_vec_Vec_index_mut t idx inst; +} + +(*** Theorems *) + +let alloc_vec_Vec_index_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : + Lemma ( + alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i == + alloc_vec_Vec_index_usize v i) + [SMTPat (alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)] + = + admit() + +let alloc_vec_Vec_index_mut_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : + Lemma ( + alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i == + alloc_vec_Vec_index_mut_usize v i) + [SMTPat (alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)] + = + admit() diff --git a/backends/fstar/merge/Makefile b/backends/fstar/merge/Makefile deleted file mode 100644 index a16b0edb..00000000 --- a/backends/fstar/merge/Makefile +++ /dev/null @@ -1,47 +0,0 @@ -INCLUDE_DIRS = . - -FSTAR_INCLUDES = $(addprefix --include ,$(INCLUDE_DIRS)) - -FSTAR_HINTS ?= --use_hints --use_hint_hashes --record_hints - -FSTAR_OPTIONS = $(FSTAR_HINTS) \ - --cache_checked_modules $(FSTAR_INCLUDES) --cmi \ - --warn_error '+241@247+285-274' \ - -FSTAR_NO_FLAGS = fstar.exe --already_cached 'Prims FStar LowStar Steel' --odir obj --cache_dir obj - -FSTAR = $(FSTAR_NO_FLAGS) $(FSTAR_OPTIONS) - -# The F* roots are used to compute the dependency graph, and generate the .depend file -FSTAR_ROOTS ?= $(wildcard *.fst *.fsti) - -# Build all the files -all: $(addprefix obj/,$(addsuffix .checked,$(FSTAR_ROOTS))) - -# This is the right way to ensure the .depend file always gets re-built. -ifeq (,$(filter %-in,$(MAKECMDGOALS))) -ifndef NODEPEND -ifndef MAKE_RESTARTS -.depend: .FORCE - $(FSTAR_NO_FLAGS) --dep full $(notdir $(FSTAR_ROOTS)) > $@ - -.PHONY: .FORCE -.FORCE: -endif -endif - -include .depend -endif - -# For the interactive mode -%.fst-in %.fsti-in: - @echo $(FSTAR_OPTIONS) - -# Generete the .checked files in batch mode -%.checked: - $(FSTAR) $(FSTAR_OPTIONS) $< && \ - touch -c $@ - -.PHONY: clean -clean: - rm -f obj/* diff --git a/backends/fstar/merge/Primitives.fst b/backends/fstar/merge/Primitives.fst deleted file mode 100644 index fca80829..00000000 --- a/backends/fstar/merge/Primitives.fst +++ /dev/null @@ -1,848 +0,0 @@ -/// This file lists primitive and assumed functions and types -module Primitives -open FStar.Mul -open FStar.List.Tot - -#set-options "--z3rlimit 15 --fuel 0 --ifuel 1" - -(*** Utilities *) -val list_update (#a : Type0) (ls : list a) (i : nat{i < length ls}) (x : a) : - ls':list a{ - length ls' = length ls /\ - index ls' i == x - } -#push-options "--fuel 1" -let rec list_update #a ls i x = - match ls with - | x' :: ls -> if i = 0 then x :: ls else x' :: list_update ls (i-1) x -#pop-options - -(*** Result *) -type error : Type0 = -| Failure -| OutOfFuel - -type result (a : Type0) : Type0 = -| Return : v:a -> result a -| Fail : e:error -> result a - -// Monadic return operator -unfold let return (#a : Type0) (x : a) : result a = Return x - -// Monadic bind operator. -// Allows to use the notation: -// ``` -// let* x = y in -// ... -// ``` -unfold let (let*) (#a #b : Type0) (m: result a) - (f: (x:a) -> Pure (result b) (requires (m == Return x)) (ensures fun _ -> True)) : - result b = - match m with - | Return x -> f x - | Fail e -> Fail e - -// Monadic assert(...) -let massert (b:bool) : result unit = if b then Return () else Fail Failure - -// Normalize and unwrap a successful result (used for globals). -let eval_global (#a : Type0) (x : result a{Return? (normalize_term x)}) : a = Return?.v x - -(*** Misc *) -type char = FStar.Char.char -type string = string - -let is_zero (n: nat) : bool = n = 0 -let decrease (n: nat{n > 0}) : nat = n - 1 - -let core_mem_replace (a : Type0) (x : a) (y : a) : a & a = (x, x) - -// We don't really use raw pointers for now -type mut_raw_ptr (t : Type0) = { v : t } -type const_raw_ptr (t : Type0) = { v : t } - -(*** Scalars *) -/// Rem.: most of the following code was partially generated - -assume val size_numbits : pos - -// TODO: we could use FStar.Int.int_t and FStar.UInt.int_t - -let isize_min : int = -9223372036854775808 // TODO: should be opaque -let isize_max : int = 9223372036854775807 // TODO: should be opaque -let i8_min : int = -128 -let i8_max : int = 127 -let i16_min : int = -32768 -let i16_max : int = 32767 -let i32_min : int = -2147483648 -let i32_max : int = 2147483647 -let i64_min : int = -9223372036854775808 -let i64_max : int = 9223372036854775807 -let i128_min : int = -170141183460469231731687303715884105728 -let i128_max : int = 170141183460469231731687303715884105727 -let usize_min : int = 0 -let usize_max : int = 4294967295 // TODO: should be opaque -let u8_min : int = 0 -let u8_max : int = 255 -let u16_min : int = 0 -let u16_max : int = 65535 -let u32_min : int = 0 -let u32_max : int = 4294967295 -let u64_min : int = 0 -let u64_max : int = 18446744073709551615 -let u128_min : int = 0 -let u128_max : int = 340282366920938463463374607431768211455 - -type scalar_ty = -| Isize -| I8 -| I16 -| I32 -| I64 -| I128 -| Usize -| U8 -| U16 -| U32 -| U64 -| U128 - -let is_unsigned = function - | Isize | I8 | I16 | I32 | I64 | I128 -> false - | Usize | U8 | U16 | U32 | U64 | U128 -> true - -let scalar_min (ty : scalar_ty) : int = - match ty with - | Isize -> isize_min - | I8 -> i8_min - | I16 -> i16_min - | I32 -> i32_min - | I64 -> i64_min - | I128 -> i128_min - | Usize -> usize_min - | U8 -> u8_min - | U16 -> u16_min - | U32 -> u32_min - | U64 -> u64_min - | U128 -> u128_min - -let scalar_max (ty : scalar_ty) : int = - match ty with - | Isize -> isize_max - | I8 -> i8_max - | I16 -> i16_max - | I32 -> i32_max - | I64 -> i64_max - | I128 -> i128_max - | Usize -> usize_max - | U8 -> u8_max - | U16 -> u16_max - | U32 -> u32_max - | U64 -> u64_max - | U128 -> u128_max - -type scalar (ty : scalar_ty) : eqtype = x:int{scalar_min ty <= x && x <= scalar_max ty} - -let mk_scalar (ty : scalar_ty) (x : int) : result (scalar ty) = - if scalar_min ty <= x && scalar_max ty >= x then Return x else Fail Failure - -let scalar_neg (#ty : scalar_ty) (x : scalar ty) : result (scalar ty) = mk_scalar ty (-x) - -let scalar_div (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - if y <> 0 then mk_scalar ty (x / y) else Fail Failure - -/// The remainder operation -let int_rem (x : int) (y : int{y <> 0}) : int = - if x >= 0 then (x % y) else -(x % y) - -(* Checking consistency with Rust *) -let _ = assert_norm(int_rem 1 2 = 1) -let _ = assert_norm(int_rem (-1) 2 = -1) -let _ = assert_norm(int_rem 1 (-2) = 1) -let _ = assert_norm(int_rem (-1) (-2) = -1) - -let scalar_rem (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - if y <> 0 then mk_scalar ty (int_rem x y) else Fail Failure - -let scalar_add (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - mk_scalar ty (x + y) - -let scalar_sub (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - mk_scalar ty (x - y) - -let scalar_mul (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - mk_scalar ty (x * y) - -let scalar_xor (#ty : scalar_ty) - (x : scalar ty) (y : scalar ty) : scalar ty = - match ty with - | U8 -> FStar.UInt.logxor #8 x y - | U16 -> FStar.UInt.logxor #16 x y - | U32 -> FStar.UInt.logxor #32 x y - | U64 -> FStar.UInt.logxor #64 x y - | U128 -> FStar.UInt.logxor #128 x y - | Usize -> admit() // TODO - | I8 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 8); - normalize_spec (scalar I8); - FStar.Int.logxor #8 x y - | I16 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 16); - normalize_spec (scalar I16); - FStar.Int.logxor #16 x y - | I32 -> FStar.Int.logxor #32 x y - | I64 -> FStar.Int.logxor #64 x y - | I128 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 128); - normalize_spec (scalar I128); - FStar.Int.logxor #128 x y - | Isize -> admit() // TODO - -let scalar_or (#ty : scalar_ty) - (x : scalar ty) (y : scalar ty) : scalar ty = - match ty with - | U8 -> FStar.UInt.logor #8 x y - | U16 -> FStar.UInt.logor #16 x y - | U32 -> FStar.UInt.logor #32 x y - | U64 -> FStar.UInt.logor #64 x y - | U128 -> FStar.UInt.logor #128 x y - | Usize -> admit() // TODO - | I8 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 8); - normalize_spec (scalar I8); - FStar.Int.logor #8 x y - | I16 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 16); - normalize_spec (scalar I16); - FStar.Int.logor #16 x y - | I32 -> FStar.Int.logor #32 x y - | I64 -> FStar.Int.logor #64 x y - | I128 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 128); - normalize_spec (scalar I128); - FStar.Int.logor #128 x y - | Isize -> admit() // TODO - -let scalar_and (#ty : scalar_ty) - (x : scalar ty) (y : scalar ty) : scalar ty = - match ty with - | U8 -> FStar.UInt.logand #8 x y - | U16 -> FStar.UInt.logand #16 x y - | U32 -> FStar.UInt.logand #32 x y - | U64 -> FStar.UInt.logand #64 x y - | U128 -> FStar.UInt.logand #128 x y - | Usize -> admit() // TODO - | I8 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 8); - normalize_spec (scalar I8); - FStar.Int.logand #8 x y - | I16 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 16); - normalize_spec (scalar I16); - FStar.Int.logand #16 x y - | I32 -> FStar.Int.logand #32 x y - | I64 -> FStar.Int.logand #64 x y - | I128 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 128); - normalize_spec (scalar I128); - FStar.Int.logand #128 x y - | Isize -> admit() // TODO - -// Shift left -let scalar_shl (#ty0 #ty1 : scalar_ty) - (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) = - admit() - -// Shift right -let scalar_shr (#ty0 #ty1 : scalar_ty) - (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) = - admit() - -(** Cast an integer from a [src_ty] to a [tgt_ty] *) -// TODO: check the semantics of casts in Rust -let scalar_cast (src_ty : scalar_ty) (tgt_ty : scalar_ty) (x : scalar src_ty) : result (scalar tgt_ty) = - mk_scalar tgt_ty x - -// This can't fail, but for now we make all casts faillible (easier for the translation) -let scalar_cast_bool (tgt_ty : scalar_ty) (x : bool) : result (scalar tgt_ty) = - mk_scalar tgt_ty (if x then 1 else 0) - -/// The scalar types -type isize : eqtype = scalar Isize -type i8 : eqtype = scalar I8 -type i16 : eqtype = scalar I16 -type i32 : eqtype = scalar I32 -type i64 : eqtype = scalar I64 -type i128 : eqtype = scalar I128 -type usize : eqtype = scalar Usize -type u8 : eqtype = scalar U8 -type u16 : eqtype = scalar U16 -type u32 : eqtype = scalar U32 -type u64 : eqtype = scalar U64 -type u128 : eqtype = scalar U128 - - -let core_isize_min : isize = isize_min -let core_isize_max : isize = isize_max -let core_i8_min : i8 = i8_min -let core_i8_max : i8 = i8_max -let core_i16_min : i16 = i16_min -let core_i16_max : i16 = i16_max -let core_i32_min : i32 = i32_min -let core_i32_max : i32 = i32_max -let core_i64_min : i64 = i64_min -let core_i64_max : i64 = i64_max -let core_i128_min : i128 = i128_min -let core_i128_max : i128 = i128_max - -let core_usize_min : usize = usize_min -let core_usize_max : usize = usize_max -let core_u8_min : u8 = u8_min -let core_u8_max : u8 = u8_max -let core_u16_min : u16 = u16_min -let core_u16_max : u16 = u16_max -let core_u32_min : u32 = u32_min -let core_u32_max : u32 = u32_max -let core_u64_min : u64 = u64_min -let core_u64_max : u64 = u64_max -let core_u128_min : u128 = u128_min -let core_u128_max : u128 = u128_max - -/// Negation -let isize_neg = scalar_neg #Isize -let i8_neg = scalar_neg #I8 -let i16_neg = scalar_neg #I16 -let i32_neg = scalar_neg #I32 -let i64_neg = scalar_neg #I64 -let i128_neg = scalar_neg #I128 - -/// Division -let isize_div = scalar_div #Isize -let i8_div = scalar_div #I8 -let i16_div = scalar_div #I16 -let i32_div = scalar_div #I32 -let i64_div = scalar_div #I64 -let i128_div = scalar_div #I128 -let usize_div = scalar_div #Usize -let u8_div = scalar_div #U8 -let u16_div = scalar_div #U16 -let u32_div = scalar_div #U32 -let u64_div = scalar_div #U64 -let u128_div = scalar_div #U128 - -/// Remainder -let isize_rem = scalar_rem #Isize -let i8_rem = scalar_rem #I8 -let i16_rem = scalar_rem #I16 -let i32_rem = scalar_rem #I32 -let i64_rem = scalar_rem #I64 -let i128_rem = scalar_rem #I128 -let usize_rem = scalar_rem #Usize -let u8_rem = scalar_rem #U8 -let u16_rem = scalar_rem #U16 -let u32_rem = scalar_rem #U32 -let u64_rem = scalar_rem #U64 -let u128_rem = scalar_rem #U128 - -/// Addition -let isize_add = scalar_add #Isize -let i8_add = scalar_add #I8 -let i16_add = scalar_add #I16 -let i32_add = scalar_add #I32 -let i64_add = scalar_add #I64 -let i128_add = scalar_add #I128 -let usize_add = scalar_add #Usize -let u8_add = scalar_add #U8 -let u16_add = scalar_add #U16 -let u32_add = scalar_add #U32 -let u64_add = scalar_add #U64 -let u128_add = scalar_add #U128 - -/// Subtraction -let isize_sub = scalar_sub #Isize -let i8_sub = scalar_sub #I8 -let i16_sub = scalar_sub #I16 -let i32_sub = scalar_sub #I32 -let i64_sub = scalar_sub #I64 -let i128_sub = scalar_sub #I128 -let usize_sub = scalar_sub #Usize -let u8_sub = scalar_sub #U8 -let u16_sub = scalar_sub #U16 -let u32_sub = scalar_sub #U32 -let u64_sub = scalar_sub #U64 -let u128_sub = scalar_sub #U128 - -/// Multiplication -let isize_mul = scalar_mul #Isize -let i8_mul = scalar_mul #I8 -let i16_mul = scalar_mul #I16 -let i32_mul = scalar_mul #I32 -let i64_mul = scalar_mul #I64 -let i128_mul = scalar_mul #I128 -let usize_mul = scalar_mul #Usize -let u8_mul = scalar_mul #U8 -let u16_mul = scalar_mul #U16 -let u32_mul = scalar_mul #U32 -let u64_mul = scalar_mul #U64 -let u128_mul = scalar_mul #U128 - -/// Xor -let u8_xor = scalar_xor #U8 -let u16_xor = scalar_xor #U16 -let u32_xor = scalar_xor #U32 -let u64_xor = scalar_xor #U64 -let u128_xor = scalar_xor #U128 -let usize_xor = scalar_xor #Usize -let i8_xor = scalar_xor #I8 -let i16_xor = scalar_xor #I16 -let i32_xor = scalar_xor #I32 -let i64_xor = scalar_xor #I64 -let i128_xor = scalar_xor #I128 -let isize_xor = scalar_xor #Isize - -/// Or -let u8_or = scalar_or #U8 -let u16_or = scalar_or #U16 -let u32_or = scalar_or #U32 -let u64_or = scalar_or #U64 -let u128_or = scalar_or #U128 -let usize_or = scalar_or #Usize -let i8_or = scalar_or #I8 -let i16_or = scalar_or #I16 -let i32_or = scalar_or #I32 -let i64_or = scalar_or #I64 -let i128_or = scalar_or #I128 -let isize_or = scalar_or #Isize - -/// And -let u8_and = scalar_and #U8 -let u16_and = scalar_and #U16 -let u32_and = scalar_and #U32 -let u64_and = scalar_and #U64 -let u128_and = scalar_and #U128 -let usize_and = scalar_and #Usize -let i8_and = scalar_and #I8 -let i16_and = scalar_and #I16 -let i32_and = scalar_and #I32 -let i64_and = scalar_and #I64 -let i128_and = scalar_and #I128 -let isize_and = scalar_and #Isize - -/// Shift left -let u8_shl #ty = scalar_shl #U8 #ty -let u16_shl #ty = scalar_shl #U16 #ty -let u32_shl #ty = scalar_shl #U32 #ty -let u64_shl #ty = scalar_shl #U64 #ty -let u128_shl #ty = scalar_shl #U128 #ty -let usize_shl #ty = scalar_shl #Usize #ty -let i8_shl #ty = scalar_shl #I8 #ty -let i16_shl #ty = scalar_shl #I16 #ty -let i32_shl #ty = scalar_shl #I32 #ty -let i64_shl #ty = scalar_shl #I64 #ty -let i128_shl #ty = scalar_shl #I128 #ty -let isize_shl #ty = scalar_shl #Isize #ty - -/// Shift right -let u8_shr #ty = scalar_shr #U8 #ty -let u16_shr #ty = scalar_shr #U16 #ty -let u32_shr #ty = scalar_shr #U32 #ty -let u64_shr #ty = scalar_shr #U64 #ty -let u128_shr #ty = scalar_shr #U128 #ty -let usize_shr #ty = scalar_shr #Usize #ty -let i8_shr #ty = scalar_shr #I8 #ty -let i16_shr #ty = scalar_shr #I16 #ty -let i32_shr #ty = scalar_shr #I32 #ty -let i64_shr #ty = scalar_shr #I64 #ty -let i128_shr #ty = scalar_shr #I128 #ty -let isize_shr #ty = scalar_shr #Isize #ty - -(*** core::ops *) - -// Trait declaration: [core::ops::index::Index] -noeq type core_ops_index_Index (self idx : Type0) = { - output : Type0; - index : self → idx → result output -} - -// Trait declaration: [core::ops::index::IndexMut] -noeq type core_ops_index_IndexMut (self idx : Type0) = { - indexInst : core_ops_index_Index self idx; - index_mut : self → idx → result (indexInst.output & (indexInst.output → result self)); -} - -// Trait declaration [core::ops::deref::Deref] -noeq type core_ops_deref_Deref (self : Type0) = { - target : Type0; - deref : self → result target; -} - -// Trait declaration [core::ops::deref::DerefMut] -noeq type core_ops_deref_DerefMut (self : Type0) = { - derefInst : core_ops_deref_Deref self; - deref_mut : self → result (derefInst.target & (derefInst.target → result self)); -} - -type core_ops_range_Range (a : Type0) = { - start : a; - end_ : a; -} - -(*** [alloc] *) - -let alloc_boxed_Box_deref (t : Type0) (x : t) : result t = Return x -let alloc_boxed_Box_deref_mut (t : Type0) (x : t) : result (t & (t -> result t)) = - Return (x, (fun x -> Return x)) - -// Trait instance -let alloc_boxed_Box_coreopsDerefInst (self : Type0) : core_ops_deref_Deref self = { - target = self; - deref = alloc_boxed_Box_deref self; -} - -// Trait instance -let alloc_boxed_Box_coreopsDerefMutInst (self : Type0) : core_ops_deref_DerefMut self = { - derefInst = alloc_boxed_Box_coreopsDerefInst self; - deref_mut = alloc_boxed_Box_deref_mut self; -} - -(*** Array *) -type array (a : Type0) (n : usize) = s:list a{length s = n} - -// We tried putting the normalize_term condition as a refinement on the list -// but it didn't work. It works with the requires clause. -let mk_array (a : Type0) (n : usize) - (l : list a) : - Pure (array a n) - (requires (normalize_term(FStar.List.Tot.length l) = n)) - (ensures (fun _ -> True)) = - normalize_term_spec (FStar.List.Tot.length l); - l - -let array_index_usize (a : Type0) (n : usize) (x : array a n) (i : usize) : result a = - if i < length x then Return (index x i) - else Fail Failure - -let array_update_usize (a : Type0) (n : usize) (x : array a n) (i : usize) (nx : a) : - result (array a n) = - if i < length x then Return (list_update x i nx) - else Fail Failure - -let array_index_mut_usize (a : Type0) (n : usize) (x : array a n) (i : usize) : - result (a & (a -> result (array a n))) = - match array_index_usize a n x i with - | Fail e -> Fail e - | Return v -> - Return (v, array_update_usize a n x i) - -(*** Slice *) -type slice (a : Type0) = s:list a{length s <= usize_max} - -let slice_len (a : Type0) (s : slice a) : usize = length s - -let slice_index_usize (a : Type0) (x : slice a) (i : usize) : result a = - if i < length x then Return (index x i) - else Fail Failure - -let slice_update_usize (a : Type0) (x : slice a) (i : usize) (nx : a) : result (slice a) = - if i < length x then Return (list_update x i nx) - else Fail Failure - -let slice_index_mut_usize (a : Type0) (s : slice a) (i : usize) : - result (a & (a -> result (slice a))) = - match slice_index_usize a s i with - | Fail e -> Fail e - | Return x -> - Return (x, slice_update_usize a s i) - -(*** Subslices *) - -let array_to_slice (a : Type0) (n : usize) (x : array a n) : result (slice a) = Return x -let array_from_slice (a : Type0) (n : usize) (x : array a n) (s : slice a) : result (array a n) = - if length s = n then Return s - else Fail Failure - -let array_to_slice_mut (a : Type0) (n : usize) (x : array a n) : - result (slice a & (slice a -> result (array a n))) = - Return (x, array_from_slice a n x) - -// TODO: finish the definitions below (there lacks [List.drop] and [List.take] in the standard library *) -let array_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) : result (slice a) = - admit() - -let array_update_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) (ns : slice a) : result (array a n) = - admit() - -let array_repeat (a : Type0) (n : usize) (x : a) : array a n = - admit() - -let slice_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) : result (slice a) = - admit() - -let slice_update_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) (ns : slice a) : result (slice a) = - admit() - -(*** Vector *) -type alloc_vec_Vec (a : Type0) = v:list a{length v <= usize_max} - -let alloc_vec_Vec_new (a : Type0) : alloc_vec_Vec a = assert_norm(length #a [] == 0); [] -let alloc_vec_Vec_len (a : Type0) (v : alloc_vec_Vec a) : usize = length v - -// Helper -let alloc_vec_Vec_index_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : result a = - if i < length v then Return (index v i) else Fail Failure -// Helper -let alloc_vec_Vec_update_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) = - if i < length v then Return (list_update v i x) else Fail Failure - -let alloc_vec_Vec_index_mut_usize (#a : Type0) (v: alloc_vec_Vec a) (i: usize) : - result (a & (a → result (alloc_vec_Vec a))) = - match alloc_vec_Vec_index_usize v i with - | Return x -> - Return (x, alloc_vec_Vec_update_usize v i) - | Fail e -> Fail e - -let alloc_vec_Vec_push (a : Type0) (v : alloc_vec_Vec a) (x : a) : - Pure (result (alloc_vec_Vec a)) - (requires True) - (ensures (fun res -> - match res with - | Fail e -> e == Failure - | Return v' -> length v' = length v + 1)) = - if length v < usize_max then begin - (**) assert_norm(length [x] == 1); - (**) append_length v [x]; - (**) assert(length (append v [x]) = length v + 1); - Return (append v [x]) - end - else Fail Failure - -let alloc_vec_Vec_insert (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) = - if i < length v then Return (list_update v i x) else Fail Failure - -// Trait declaration: [core::slice::index::private_slice_index::Sealed] -type core_slice_index_private_slice_index_Sealed (self : Type0) = unit - -// Trait declaration: [core::slice::index::SliceIndex] -noeq type core_slice_index_SliceIndex (self t : Type0) = { - sealedInst : core_slice_index_private_slice_index_Sealed self; - output : Type0; - get : self → t → result (option output); - get_mut : self → t → result (option output & (option output -> result t)); - get_unchecked : self → const_raw_ptr t → result (const_raw_ptr output); - get_unchecked_mut : self → mut_raw_ptr t → result (mut_raw_ptr output); - index : self → t → result output; - index_mut : self → t → result (output & (output -> result t)); -} - -// [core::slice::index::[T]::index]: forward function -let core_slice_index_Slice_index - (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (s : slice t) (i : idx) : result inst.output = - let* x = inst.get i s in - match x with - | None -> Fail Failure - | Some x -> Return x - -// [core::slice::index::Range:::get]: forward function -let core_slice_index_RangeUsize_get (t : Type0) (i : core_ops_range_Range usize) (s : slice t) : - result (option (slice t)) = - admit () // TODO - -// [core::slice::index::Range::get_mut]: forward function -let core_slice_index_RangeUsize_get_mut (t : Type0) : - core_ops_range_Range usize → slice t → result (option (slice t) & (option (slice t) -> result (slice t))) = - admit () // TODO - -// [core::slice::index::Range::get_unchecked]: forward function -let core_slice_index_RangeUsize_get_unchecked - (t : Type0) : - core_ops_range_Range usize → const_raw_ptr (slice t) → result (const_raw_ptr (slice t)) = - // Don't know what the model should be - for now we always fail to make - // sure code which uses it fails - fun _ _ -> Fail Failure - -// [core::slice::index::Range::get_unchecked_mut]: forward function -let core_slice_index_RangeUsize_get_unchecked_mut - (t : Type0) : - core_ops_range_Range usize → mut_raw_ptr (slice t) → result (mut_raw_ptr (slice t)) = - // Don't know what the model should be - for now we always fail to make - // sure code which uses it fails - fun _ _ -> Fail Failure - -// [core::slice::index::Range::index]: forward function -let core_slice_index_RangeUsize_index - (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) = - admit () // TODO - -// [core::slice::index::Range::index_mut]: forward function -let core_slice_index_RangeUsize_index_mut (t : Type0) : - core_ops_range_Range usize → slice t → result (slice t & (slice t -> result (slice t))) = - admit () // TODO - -// [core::slice::index::[T]::index_mut]: forward function -let core_slice_index_Slice_index_mut - (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) : - slice t → idx → result (inst.output & (inst.output -> result (slice t))) = - admit () // - -// [core::array::[T; N]::index]: forward function -let core_array_Array_index - (t idx : Type0) (n : usize) (inst : core_ops_index_Index (slice t) idx) - (a : array t n) (i : idx) : result inst.output = - admit () // TODO - -// [core::array::[T; N]::index_mut]: forward function -let core_array_Array_index_mut - (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx) - (a : array t n) (i : idx) : - result (inst.indexInst.output & (inst.indexInst.output -> result (array t n))) = - admit () // TODO - -// Trait implementation: [core::slice::index::private_slice_index::Range] -let core_slice_index_private_slice_index_SealedRangeUsizeInst - : core_slice_index_private_slice_index_Sealed (core_ops_range_Range usize) = () - -// Trait implementation: [core::slice::index::Range] -let core_slice_index_SliceIndexRangeUsizeSliceTInst (t : Type0) : - core_slice_index_SliceIndex (core_ops_range_Range usize) (slice t) = { - sealedInst = core_slice_index_private_slice_index_SealedRangeUsizeInst; - output = slice t; - get = core_slice_index_RangeUsize_get t; - get_mut = core_slice_index_RangeUsize_get_mut t; - get_unchecked = core_slice_index_RangeUsize_get_unchecked t; - get_unchecked_mut = core_slice_index_RangeUsize_get_unchecked_mut t; - index = core_slice_index_RangeUsize_index t; - index_mut = core_slice_index_RangeUsize_index_mut t; -} - -// Trait implementation: [core::slice::index::[T]] -let core_ops_index_IndexSliceTIInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_Index (slice t) idx = { - output = inst.output; - index = core_slice_index_Slice_index t idx inst; -} - -// Trait implementation: [core::slice::index::[T]] -let core_ops_index_IndexMutSliceTIInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_IndexMut (slice t) idx = { - indexInst = core_ops_index_IndexSliceTIInst t idx inst; - index_mut = core_slice_index_Slice_index_mut t idx inst; -} - -// Trait implementation: [core::array::[T; N]] -let core_ops_index_IndexArrayInst (t idx : Type0) (n : usize) - (inst : core_ops_index_Index (slice t) idx) : - core_ops_index_Index (array t n) idx = { - output = inst.output; - index = core_array_Array_index t idx n inst; -} - -// Trait implementation: [core::array::[T; N]] -let core_ops_index_IndexMutArrayIInst (t idx : Type0) (n : usize) - (inst : core_ops_index_IndexMut (slice t) idx) : - core_ops_index_IndexMut (array t n) idx = { - indexInst = core_ops_index_IndexArrayInst t idx n inst.indexInst; - index_mut = core_array_Array_index_mut t idx n inst; -} - -// [core::slice::index::usize::get]: forward function -let core_slice_index_usize_get - (t : Type0) : usize → slice t → result (option t) = - admit () // TODO - -// [core::slice::index::usize::get_mut]: forward function -let core_slice_index_usize_get_mut (t : Type0) : - usize → slice t → result (option t & (option t -> result (slice t))) = - admit () // TODO - -// [core::slice::index::usize::get_unchecked]: forward function -let core_slice_index_usize_get_unchecked - (t : Type0) : usize → const_raw_ptr (slice t) → result (const_raw_ptr t) = - admit () // TODO - -// [core::slice::index::usize::get_unchecked_mut]: forward function -let core_slice_index_usize_get_unchecked_mut - (t : Type0) : usize → mut_raw_ptr (slice t) → result (mut_raw_ptr t) = - admit () // TODO - -// [core::slice::index::usize::index]: forward function -let core_slice_index_usize_index (t : Type0) : usize → slice t → result t = - admit () // TODO - -// [core::slice::index::usize::index_mut]: forward function -let core_slice_index_usize_index_mut (t : Type0) : - usize → slice t → result (t & (t -> result (slice t))) = - admit () // TODO - -// Trait implementation: [core::slice::index::private_slice_index::usize] -let core_slice_index_private_slice_index_SealedUsizeInst - : core_slice_index_private_slice_index_Sealed usize = () - -// Trait implementation: [core::slice::index::usize] -let core_slice_index_SliceIndexUsizeSliceTInst (t : Type0) : - core_slice_index_SliceIndex usize (slice t) = { - sealedInst = core_slice_index_private_slice_index_SealedUsizeInst; - output = t; - get = core_slice_index_usize_get t; - get_mut = core_slice_index_usize_get_mut t; - get_unchecked = core_slice_index_usize_get_unchecked t; - get_unchecked_mut = core_slice_index_usize_get_unchecked_mut t; - index = core_slice_index_usize_index t; - index_mut = core_slice_index_usize_index_mut t; -} - -// [alloc::vec::Vec::index]: forward function -let alloc_vec_Vec_index (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (self : alloc_vec_Vec t) (i : idx) : result inst.output = - admit () // TODO - -// [alloc::vec::Vec::index_mut]: forward function -let alloc_vec_Vec_index_mut (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (self : alloc_vec_Vec t) (i : idx) : - result (inst.output & (inst.output -> result (alloc_vec_Vec t))) = - admit () // TODO - -// Trait implementation: [alloc::vec::Vec] -let alloc_vec_Vec_coreopsindexIndexInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_Index (alloc_vec_Vec t) idx = { - output = inst.output; - index = alloc_vec_Vec_index t idx inst; -} - -// Trait implementation: [alloc::vec::Vec] -let alloc_vec_Vec_coreopsindexIndexMutInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_IndexMut (alloc_vec_Vec t) idx = { - indexInst = alloc_vec_Vec_coreopsindexIndexInst t idx inst; - index_mut = alloc_vec_Vec_index_mut t idx inst; -} - -(*** Theorems *) - -let alloc_vec_Vec_index_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : - Lemma ( - alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i == - alloc_vec_Vec_index_usize v i) - [SMTPat (alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)] - = - admit() - -let alloc_vec_Vec_index_mut_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : - Lemma ( - alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i == - alloc_vec_Vec_index_mut_usize v i) - [SMTPat (alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)] - = - admit() diff --git a/backends/fstar/split/Makefile b/backends/fstar/split/Makefile deleted file mode 100644 index a16b0edb..00000000 --- a/backends/fstar/split/Makefile +++ /dev/null @@ -1,47 +0,0 @@ -INCLUDE_DIRS = . - -FSTAR_INCLUDES = $(addprefix --include ,$(INCLUDE_DIRS)) - -FSTAR_HINTS ?= --use_hints --use_hint_hashes --record_hints - -FSTAR_OPTIONS = $(FSTAR_HINTS) \ - --cache_checked_modules $(FSTAR_INCLUDES) --cmi \ - --warn_error '+241@247+285-274' \ - -FSTAR_NO_FLAGS = fstar.exe --already_cached 'Prims FStar LowStar Steel' --odir obj --cache_dir obj - -FSTAR = $(FSTAR_NO_FLAGS) $(FSTAR_OPTIONS) - -# The F* roots are used to compute the dependency graph, and generate the .depend file -FSTAR_ROOTS ?= $(wildcard *.fst *.fsti) - -# Build all the files -all: $(addprefix obj/,$(addsuffix .checked,$(FSTAR_ROOTS))) - -# This is the right way to ensure the .depend file always gets re-built. -ifeq (,$(filter %-in,$(MAKECMDGOALS))) -ifndef NODEPEND -ifndef MAKE_RESTARTS -.depend: .FORCE - $(FSTAR_NO_FLAGS) --dep full $(notdir $(FSTAR_ROOTS)) > $@ - -.PHONY: .FORCE -.FORCE: -endif -endif - -include .depend -endif - -# For the interactive mode -%.fst-in %.fsti-in: - @echo $(FSTAR_OPTIONS) - -# Generete the .checked files in batch mode -%.checked: - $(FSTAR) $(FSTAR_OPTIONS) $< && \ - touch -c $@ - -.PHONY: clean -clean: - rm -f obj/* diff --git a/backends/fstar/split/Primitives.fst b/backends/fstar/split/Primitives.fst deleted file mode 100644 index a3ffbde4..00000000 --- a/backends/fstar/split/Primitives.fst +++ /dev/null @@ -1,884 +0,0 @@ -/// This file lists primitive and assumed functions and types -module Primitives -open FStar.Mul -open FStar.List.Tot - -#set-options "--z3rlimit 15 --fuel 0 --ifuel 1" - -(*** Utilities *) -val list_update (#a : Type0) (ls : list a) (i : nat{i < length ls}) (x : a) : - ls':list a{ - length ls' = length ls /\ - index ls' i == x - } -#push-options "--fuel 1" -let rec list_update #a ls i x = - match ls with - | x' :: ls -> if i = 0 then x :: ls else x' :: list_update ls (i-1) x -#pop-options - -(*** Result *) -type error : Type0 = -| Failure -| OutOfFuel - -type result (a : Type0) : Type0 = -| Return : v:a -> result a -| Fail : e:error -> result a - -// Monadic return operator -unfold let return (#a : Type0) (x : a) : result a = Return x - -// Monadic bind operator. -// Allows to use the notation: -// ``` -// let* x = y in -// ... -// ``` -unfold let (let*) (#a #b : Type0) (m: result a) - (f: (x:a) -> Pure (result b) (requires (m == Return x)) (ensures fun _ -> True)) : - result b = - match m with - | Return x -> f x - | Fail e -> Fail e - -// Monadic assert(...) -let massert (b:bool) : result unit = if b then Return () else Fail Failure - -// Normalize and unwrap a successful result (used for globals). -let eval_global (#a : Type0) (x : result a{Return? (normalize_term x)}) : a = Return?.v x - -(*** Misc *) -type char = FStar.Char.char -type string = string - -let is_zero (n: nat) : bool = n = 0 -let decrease (n: nat{n > 0}) : nat = n - 1 - -let core_mem_replace (a : Type0) (x : a) (y : a) : a = x -let core_mem_replace_back (a : Type0) (x : a) (y : a) : a = y - -// We don't really use raw pointers for now -type mut_raw_ptr (t : Type0) = { v : t } -type const_raw_ptr (t : Type0) = { v : t } - -(*** Scalars *) -/// Rem.: most of the following code was partially generated - -assume val size_numbits : pos - -// TODO: we could use FStar.Int.int_t and FStar.UInt.int_t - -let isize_min : int = -9223372036854775808 // TODO: should be opaque -let isize_max : int = 9223372036854775807 // TODO: should be opaque -let i8_min : int = -128 -let i8_max : int = 127 -let i16_min : int = -32768 -let i16_max : int = 32767 -let i32_min : int = -2147483648 -let i32_max : int = 2147483647 -let i64_min : int = -9223372036854775808 -let i64_max : int = 9223372036854775807 -let i128_min : int = -170141183460469231731687303715884105728 -let i128_max : int = 170141183460469231731687303715884105727 -let usize_min : int = 0 -let usize_max : int = 4294967295 // TODO: should be opaque -let u8_min : int = 0 -let u8_max : int = 255 -let u16_min : int = 0 -let u16_max : int = 65535 -let u32_min : int = 0 -let u32_max : int = 4294967295 -let u64_min : int = 0 -let u64_max : int = 18446744073709551615 -let u128_min : int = 0 -let u128_max : int = 340282366920938463463374607431768211455 - -type scalar_ty = -| Isize -| I8 -| I16 -| I32 -| I64 -| I128 -| Usize -| U8 -| U16 -| U32 -| U64 -| U128 - -let is_unsigned = function - | Isize | I8 | I16 | I32 | I64 | I128 -> false - | Usize | U8 | U16 | U32 | U64 | U128 -> true - -let scalar_min (ty : scalar_ty) : int = - match ty with - | Isize -> isize_min - | I8 -> i8_min - | I16 -> i16_min - | I32 -> i32_min - | I64 -> i64_min - | I128 -> i128_min - | Usize -> usize_min - | U8 -> u8_min - | U16 -> u16_min - | U32 -> u32_min - | U64 -> u64_min - | U128 -> u128_min - -let scalar_max (ty : scalar_ty) : int = - match ty with - | Isize -> isize_max - | I8 -> i8_max - | I16 -> i16_max - | I32 -> i32_max - | I64 -> i64_max - | I128 -> i128_max - | Usize -> usize_max - | U8 -> u8_max - | U16 -> u16_max - | U32 -> u32_max - | U64 -> u64_max - | U128 -> u128_max - -type scalar (ty : scalar_ty) : eqtype = x:int{scalar_min ty <= x && x <= scalar_max ty} - -let mk_scalar (ty : scalar_ty) (x : int) : result (scalar ty) = - if scalar_min ty <= x && scalar_max ty >= x then Return x else Fail Failure - -let scalar_neg (#ty : scalar_ty) (x : scalar ty) : result (scalar ty) = mk_scalar ty (-x) - -let scalar_div (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - if y <> 0 then mk_scalar ty (x / y) else Fail Failure - -/// The remainder operation -let int_rem (x : int) (y : int{y <> 0}) : int = - if x >= 0 then (x % y) else -(x % y) - -(* Checking consistency with Rust *) -let _ = assert_norm(int_rem 1 2 = 1) -let _ = assert_norm(int_rem (-1) 2 = -1) -let _ = assert_norm(int_rem 1 (-2) = 1) -let _ = assert_norm(int_rem (-1) (-2) = -1) - -let scalar_rem (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - if y <> 0 then mk_scalar ty (int_rem x y) else Fail Failure - -let scalar_add (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - mk_scalar ty (x + y) - -let scalar_sub (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - mk_scalar ty (x - y) - -let scalar_mul (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - mk_scalar ty (x * y) - -let scalar_xor (#ty : scalar_ty) - (x : scalar ty) (y : scalar ty) : scalar ty = - match ty with - | U8 -> FStar.UInt.logxor #8 x y - | U16 -> FStar.UInt.logxor #16 x y - | U32 -> FStar.UInt.logxor #32 x y - | U64 -> FStar.UInt.logxor #64 x y - | U128 -> FStar.UInt.logxor #128 x y - | Usize -> admit() // TODO - | I8 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 8); - normalize_spec (scalar I8); - FStar.Int.logxor #8 x y - | I16 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 16); - normalize_spec (scalar I16); - FStar.Int.logxor #16 x y - | I32 -> FStar.Int.logxor #32 x y - | I64 -> FStar.Int.logxor #64 x y - | I128 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 128); - normalize_spec (scalar I128); - FStar.Int.logxor #128 x y - | Isize -> admit() // TODO - -let scalar_or (#ty : scalar_ty) - (x : scalar ty) (y : scalar ty) : scalar ty = - match ty with - | U8 -> FStar.UInt.logor #8 x y - | U16 -> FStar.UInt.logor #16 x y - | U32 -> FStar.UInt.logor #32 x y - | U64 -> FStar.UInt.logor #64 x y - | U128 -> FStar.UInt.logor #128 x y - | Usize -> admit() // TODO - | I8 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 8); - normalize_spec (scalar I8); - FStar.Int.logor #8 x y - | I16 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 16); - normalize_spec (scalar I16); - FStar.Int.logor #16 x y - | I32 -> FStar.Int.logor #32 x y - | I64 -> FStar.Int.logor #64 x y - | I128 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 128); - normalize_spec (scalar I128); - FStar.Int.logor #128 x y - | Isize -> admit() // TODO - -let scalar_and (#ty : scalar_ty) - (x : scalar ty) (y : scalar ty) : scalar ty = - match ty with - | U8 -> FStar.UInt.logand #8 x y - | U16 -> FStar.UInt.logand #16 x y - | U32 -> FStar.UInt.logand #32 x y - | U64 -> FStar.UInt.logand #64 x y - | U128 -> FStar.UInt.logand #128 x y - | Usize -> admit() // TODO - | I8 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 8); - normalize_spec (scalar I8); - FStar.Int.logand #8 x y - | I16 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 16); - normalize_spec (scalar I16); - FStar.Int.logand #16 x y - | I32 -> FStar.Int.logand #32 x y - | I64 -> FStar.Int.logand #64 x y - | I128 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 128); - normalize_spec (scalar I128); - FStar.Int.logand #128 x y - | Isize -> admit() // TODO - -// Shift left -let scalar_shl (#ty0 #ty1 : scalar_ty) - (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) = - admit() - -// Shift right -let scalar_shr (#ty0 #ty1 : scalar_ty) - (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) = - admit() - -(** Cast an integer from a [src_ty] to a [tgt_ty] *) -// TODO: check the semantics of casts in Rust -let scalar_cast (src_ty : scalar_ty) (tgt_ty : scalar_ty) (x : scalar src_ty) : result (scalar tgt_ty) = - mk_scalar tgt_ty x - -// This can't fail, but for now we make all casts faillible (easier for the translation) -let scalar_cast_bool (tgt_ty : scalar_ty) (x : bool) : result (scalar tgt_ty) = - mk_scalar tgt_ty (if x then 1 else 0) - -/// The scalar types -type isize : eqtype = scalar Isize -type i8 : eqtype = scalar I8 -type i16 : eqtype = scalar I16 -type i32 : eqtype = scalar I32 -type i64 : eqtype = scalar I64 -type i128 : eqtype = scalar I128 -type usize : eqtype = scalar Usize -type u8 : eqtype = scalar U8 -type u16 : eqtype = scalar U16 -type u32 : eqtype = scalar U32 -type u64 : eqtype = scalar U64 -type u128 : eqtype = scalar U128 - - -let core_isize_min : isize = isize_min -let core_isize_max : isize = isize_max -let core_i8_min : i8 = i8_min -let core_i8_max : i8 = i8_max -let core_i16_min : i16 = i16_min -let core_i16_max : i16 = i16_max -let core_i32_min : i32 = i32_min -let core_i32_max : i32 = i32_max -let core_i64_min : i64 = i64_min -let core_i64_max : i64 = i64_max -let core_i128_min : i128 = i128_min -let core_i128_max : i128 = i128_max - -let core_usize_min : usize = usize_min -let core_usize_max : usize = usize_max -let core_u8_min : u8 = u8_min -let core_u8_max : u8 = u8_max -let core_u16_min : u16 = u16_min -let core_u16_max : u16 = u16_max -let core_u32_min : u32 = u32_min -let core_u32_max : u32 = u32_max -let core_u64_min : u64 = u64_min -let core_u64_max : u64 = u64_max -let core_u128_min : u128 = u128_min -let core_u128_max : u128 = u128_max - -/// Negation -let isize_neg = scalar_neg #Isize -let i8_neg = scalar_neg #I8 -let i16_neg = scalar_neg #I16 -let i32_neg = scalar_neg #I32 -let i64_neg = scalar_neg #I64 -let i128_neg = scalar_neg #I128 - -/// Division -let isize_div = scalar_div #Isize -let i8_div = scalar_div #I8 -let i16_div = scalar_div #I16 -let i32_div = scalar_div #I32 -let i64_div = scalar_div #I64 -let i128_div = scalar_div #I128 -let usize_div = scalar_div #Usize -let u8_div = scalar_div #U8 -let u16_div = scalar_div #U16 -let u32_div = scalar_div #U32 -let u64_div = scalar_div #U64 -let u128_div = scalar_div #U128 - -/// Remainder -let isize_rem = scalar_rem #Isize -let i8_rem = scalar_rem #I8 -let i16_rem = scalar_rem #I16 -let i32_rem = scalar_rem #I32 -let i64_rem = scalar_rem #I64 -let i128_rem = scalar_rem #I128 -let usize_rem = scalar_rem #Usize -let u8_rem = scalar_rem #U8 -let u16_rem = scalar_rem #U16 -let u32_rem = scalar_rem #U32 -let u64_rem = scalar_rem #U64 -let u128_rem = scalar_rem #U128 - -/// Addition -let isize_add = scalar_add #Isize -let i8_add = scalar_add #I8 -let i16_add = scalar_add #I16 -let i32_add = scalar_add #I32 -let i64_add = scalar_add #I64 -let i128_add = scalar_add #I128 -let usize_add = scalar_add #Usize -let u8_add = scalar_add #U8 -let u16_add = scalar_add #U16 -let u32_add = scalar_add #U32 -let u64_add = scalar_add #U64 -let u128_add = scalar_add #U128 - -/// Subtraction -let isize_sub = scalar_sub #Isize -let i8_sub = scalar_sub #I8 -let i16_sub = scalar_sub #I16 -let i32_sub = scalar_sub #I32 -let i64_sub = scalar_sub #I64 -let i128_sub = scalar_sub #I128 -let usize_sub = scalar_sub #Usize -let u8_sub = scalar_sub #U8 -let u16_sub = scalar_sub #U16 -let u32_sub = scalar_sub #U32 -let u64_sub = scalar_sub #U64 -let u128_sub = scalar_sub #U128 - -/// Multiplication -let isize_mul = scalar_mul #Isize -let i8_mul = scalar_mul #I8 -let i16_mul = scalar_mul #I16 -let i32_mul = scalar_mul #I32 -let i64_mul = scalar_mul #I64 -let i128_mul = scalar_mul #I128 -let usize_mul = scalar_mul #Usize -let u8_mul = scalar_mul #U8 -let u16_mul = scalar_mul #U16 -let u32_mul = scalar_mul #U32 -let u64_mul = scalar_mul #U64 -let u128_mul = scalar_mul #U128 - -/// Xor -let u8_xor = scalar_xor #U8 -let u16_xor = scalar_xor #U16 -let u32_xor = scalar_xor #U32 -let u64_xor = scalar_xor #U64 -let u128_xor = scalar_xor #U128 -let usize_xor = scalar_xor #Usize -let i8_xor = scalar_xor #I8 -let i16_xor = scalar_xor #I16 -let i32_xor = scalar_xor #I32 -let i64_xor = scalar_xor #I64 -let i128_xor = scalar_xor #I128 -let isize_xor = scalar_xor #Isize - -/// Or -let u8_or = scalar_or #U8 -let u16_or = scalar_or #U16 -let u32_or = scalar_or #U32 -let u64_or = scalar_or #U64 -let u128_or = scalar_or #U128 -let usize_or = scalar_or #Usize -let i8_or = scalar_or #I8 -let i16_or = scalar_or #I16 -let i32_or = scalar_or #I32 -let i64_or = scalar_or #I64 -let i128_or = scalar_or #I128 -let isize_or = scalar_or #Isize - -/// And -let u8_and = scalar_and #U8 -let u16_and = scalar_and #U16 -let u32_and = scalar_and #U32 -let u64_and = scalar_and #U64 -let u128_and = scalar_and #U128 -let usize_and = scalar_and #Usize -let i8_and = scalar_and #I8 -let i16_and = scalar_and #I16 -let i32_and = scalar_and #I32 -let i64_and = scalar_and #I64 -let i128_and = scalar_and #I128 -let isize_and = scalar_and #Isize - -/// Shift left -let u8_shl #ty = scalar_shl #U8 #ty -let u16_shl #ty = scalar_shl #U16 #ty -let u32_shl #ty = scalar_shl #U32 #ty -let u64_shl #ty = scalar_shl #U64 #ty -let u128_shl #ty = scalar_shl #U128 #ty -let usize_shl #ty = scalar_shl #Usize #ty -let i8_shl #ty = scalar_shl #I8 #ty -let i16_shl #ty = scalar_shl #I16 #ty -let i32_shl #ty = scalar_shl #I32 #ty -let i64_shl #ty = scalar_shl #I64 #ty -let i128_shl #ty = scalar_shl #I128 #ty -let isize_shl #ty = scalar_shl #Isize #ty - -/// Shift right -let u8_shr #ty = scalar_shr #U8 #ty -let u16_shr #ty = scalar_shr #U16 #ty -let u32_shr #ty = scalar_shr #U32 #ty -let u64_shr #ty = scalar_shr #U64 #ty -let u128_shr #ty = scalar_shr #U128 #ty -let usize_shr #ty = scalar_shr #Usize #ty -let i8_shr #ty = scalar_shr #I8 #ty -let i16_shr #ty = scalar_shr #I16 #ty -let i32_shr #ty = scalar_shr #I32 #ty -let i64_shr #ty = scalar_shr #I64 #ty -let i128_shr #ty = scalar_shr #I128 #ty -let isize_shr #ty = scalar_shr #Isize #ty - -(*** core::ops *) - -// Trait declaration: [core::ops::index::Index] -noeq type core_ops_index_Index (self idx : Type0) = { - output : Type0; - index : self → idx → result output -} - -// Trait declaration: [core::ops::index::IndexMut] -noeq type core_ops_index_IndexMut (self idx : Type0) = { - indexInst : core_ops_index_Index self idx; - index_mut : self → idx → result indexInst.output; - index_mut_back : self → idx → indexInst.output → result self; -} - -// Trait declaration [core::ops::deref::Deref] -noeq type core_ops_deref_Deref (self : Type0) = { - target : Type0; - deref : self → result target; -} - -// Trait declaration [core::ops::deref::DerefMut] -noeq type core_ops_deref_DerefMut (self : Type0) = { - derefInst : core_ops_deref_Deref self; - deref_mut : self → result derefInst.target; - deref_mut_back : self → derefInst.target → result self; -} - -type core_ops_range_Range (a : Type0) = { - start : a; - end_ : a; -} - -(*** [alloc] *) - -let alloc_boxed_Box_deref (t : Type0) (x : t) : result t = Return x -let alloc_boxed_Box_deref_mut (t : Type0) (x : t) : result t = Return x -let alloc_boxed_Box_deref_mut_back (t : Type) (_ : t) (x : t) : result t = Return x - -// Trait instance -let alloc_boxed_Box_coreopsDerefInst (self : Type0) : core_ops_deref_Deref self = { - target = self; - deref = alloc_boxed_Box_deref self; -} - -// Trait instance -let alloc_boxed_Box_coreopsDerefMutInst (self : Type0) : core_ops_deref_DerefMut self = { - derefInst = alloc_boxed_Box_coreopsDerefInst self; - deref_mut = alloc_boxed_Box_deref_mut self; - deref_mut_back = alloc_boxed_Box_deref_mut_back self; -} - -(*** Array *) -type array (a : Type0) (n : usize) = s:list a{length s = n} - -// We tried putting the normalize_term condition as a refinement on the list -// but it didn't work. It works with the requires clause. -let mk_array (a : Type0) (n : usize) - (l : list a) : - Pure (array a n) - (requires (normalize_term(FStar.List.Tot.length l) = n)) - (ensures (fun _ -> True)) = - normalize_term_spec (FStar.List.Tot.length l); - l - -let array_index_usize (a : Type0) (n : usize) (x : array a n) (i : usize) : result a = - if i < length x then Return (index x i) - else Fail Failure - -let array_update_usize (a : Type0) (n : usize) (x : array a n) (i : usize) (nx : a) : result (array a n) = - if i < length x then Return (list_update x i nx) - else Fail Failure - -(*** Slice *) -type slice (a : Type0) = s:list a{length s <= usize_max} - -let slice_len (a : Type0) (s : slice a) : usize = length s - -let slice_index_usize (a : Type0) (x : slice a) (i : usize) : result a = - if i < length x then Return (index x i) - else Fail Failure - -let slice_update_usize (a : Type0) (x : slice a) (i : usize) (nx : a) : result (slice a) = - if i < length x then Return (list_update x i nx) - else Fail Failure - -(*** Subslices *) - -let array_to_slice (a : Type0) (n : usize) (x : array a n) : result (slice a) = Return x -let array_from_slice (a : Type0) (n : usize) (x : array a n) (s : slice a) : result (array a n) = - if length s = n then Return s - else Fail Failure - -// TODO: finish the definitions below (there lacks [List.drop] and [List.take] in the standard library *) -let array_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) : result (slice a) = - admit() - -let array_update_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) (ns : slice a) : result (array a n) = - admit() - -let array_repeat (a : Type0) (n : usize) (x : a) : array a n = - admit() - -let slice_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) : result (slice a) = - admit() - -let slice_update_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) (ns : slice a) : result (slice a) = - admit() - -(*** Vector *) -type alloc_vec_Vec (a : Type0) = v:list a{length v <= usize_max} - -let alloc_vec_Vec_new (a : Type0) : alloc_vec_Vec a = assert_norm(length #a [] == 0); [] -let alloc_vec_Vec_len (a : Type0) (v : alloc_vec_Vec a) : usize = length v - -// Helper -let alloc_vec_Vec_index_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : result a = - if i < length v then Return (index v i) else Fail Failure -// Helper -let alloc_vec_Vec_update_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) = - if i < length v then Return (list_update v i x) else Fail Failure - -// The **forward** function shouldn't be used -let alloc_vec_Vec_push_fwd (a : Type0) (v : alloc_vec_Vec a) (x : a) : unit = () -let alloc_vec_Vec_push (a : Type0) (v : alloc_vec_Vec a) (x : a) : - Pure (result (alloc_vec_Vec a)) - (requires True) - (ensures (fun res -> - match res with - | Fail e -> e == Failure - | Return v' -> length v' = length v + 1)) = - if length v < usize_max then begin - (**) assert_norm(length [x] == 1); - (**) append_length v [x]; - (**) assert(length (append v [x]) = length v + 1); - Return (append v [x]) - end - else Fail Failure - -// The **forward** function shouldn't be used -let alloc_vec_Vec_insert_fwd (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result unit = - if i < length v then Return () else Fail Failure -let alloc_vec_Vec_insert (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) = - if i < length v then Return (list_update v i x) else Fail Failure - -// Trait declaration: [core::slice::index::private_slice_index::Sealed] -type core_slice_index_private_slice_index_Sealed (self : Type0) = unit - -// Trait declaration: [core::slice::index::SliceIndex] -noeq type core_slice_index_SliceIndex (self t : Type0) = { - sealedInst : core_slice_index_private_slice_index_Sealed self; - output : Type0; - get : self → t → result (option output); - get_mut : self → t → result (option output); - get_mut_back : self → t → option output → result t; - get_unchecked : self → const_raw_ptr t → result (const_raw_ptr output); - get_unchecked_mut : self → mut_raw_ptr t → result (mut_raw_ptr output); - index : self → t → result output; - index_mut : self → t → result output; - index_mut_back : self → t → output → result t; -} - -// [core::slice::index::[T]::index]: forward function -let core_slice_index_Slice_index - (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (s : slice t) (i : idx) : result inst.output = - let* x = inst.get i s in - match x with - | None -> Fail Failure - | Some x -> Return x - -// [core::slice::index::Range:::get]: forward function -let core_slice_index_RangeUsize_get (t : Type0) (i : core_ops_range_Range usize) (s : slice t) : - result (option (slice t)) = - admit () // TODO - -// [core::slice::index::Range::get_mut]: forward function -let core_slice_index_RangeUsize_get_mut - (t : Type0) : core_ops_range_Range usize → slice t → result (option (slice t)) = - admit () // TODO - -// [core::slice::index::Range::get_mut]: backward function 0 -let core_slice_index_RangeUsize_get_mut_back - (t : Type0) : - core_ops_range_Range usize → slice t → option (slice t) → result (slice t) = - admit () // TODO - -// [core::slice::index::Range::get_unchecked]: forward function -let core_slice_index_RangeUsize_get_unchecked - (t : Type0) : - core_ops_range_Range usize → const_raw_ptr (slice t) → result (const_raw_ptr (slice t)) = - // Don't know what the model should be - for now we always fail to make - // sure code which uses it fails - fun _ _ -> Fail Failure - -// [core::slice::index::Range::get_unchecked_mut]: forward function -let core_slice_index_RangeUsize_get_unchecked_mut - (t : Type0) : - core_ops_range_Range usize → mut_raw_ptr (slice t) → result (mut_raw_ptr (slice t)) = - // Don't know what the model should be - for now we always fail to make - // sure code which uses it fails - fun _ _ -> Fail Failure - -// [core::slice::index::Range::index]: forward function -let core_slice_index_RangeUsize_index - (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) = - admit () // TODO - -// [core::slice::index::Range::index_mut]: forward function -let core_slice_index_RangeUsize_index_mut - (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) = - admit () // TODO - -// [core::slice::index::Range::index_mut]: backward function 0 -let core_slice_index_RangeUsize_index_mut_back - (t : Type0) : core_ops_range_Range usize → slice t → slice t → result (slice t) = - admit () // TODO - -// [core::slice::index::[T]::index_mut]: forward function -let core_slice_index_Slice_index_mut - (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) : - slice t → idx → result inst.output = - admit () // - -// [core::slice::index::[T]::index_mut]: backward function 0 -let core_slice_index_Slice_index_mut_back - (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) : - slice t → idx → inst.output → result (slice t) = - admit () // TODO - -// [core::array::[T; N]::index]: forward function -let core_array_Array_index - (t idx : Type0) (n : usize) (inst : core_ops_index_Index (slice t) idx) - (a : array t n) (i : idx) : result inst.output = - admit () // TODO - -// [core::array::[T; N]::index_mut]: forward function -let core_array_Array_index_mut - (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx) - (a : array t n) (i : idx) : result inst.indexInst.output = - admit () // TODO - -// [core::array::[T; N]::index_mut]: backward function 0 -let core_array_Array_index_mut_back - (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx) - (a : array t n) (i : idx) (x : inst.indexInst.output) : result (array t n) = - admit () // TODO - -// Trait implementation: [core::slice::index::private_slice_index::Range] -let core_slice_index_private_slice_index_SealedRangeUsizeInst - : core_slice_index_private_slice_index_Sealed (core_ops_range_Range usize) = () - -// Trait implementation: [core::slice::index::Range] -let core_slice_index_SliceIndexRangeUsizeSliceTInst (t : Type0) : - core_slice_index_SliceIndex (core_ops_range_Range usize) (slice t) = { - sealedInst = core_slice_index_private_slice_index_SealedRangeUsizeInst; - output = slice t; - get = core_slice_index_RangeUsize_get t; - get_mut = core_slice_index_RangeUsize_get_mut t; - get_mut_back = core_slice_index_RangeUsize_get_mut_back t; - get_unchecked = core_slice_index_RangeUsize_get_unchecked t; - get_unchecked_mut = core_slice_index_RangeUsize_get_unchecked_mut t; - index = core_slice_index_RangeUsize_index t; - index_mut = core_slice_index_RangeUsize_index_mut t; - index_mut_back = core_slice_index_RangeUsize_index_mut_back t; -} - -// Trait implementation: [core::slice::index::[T]] -let core_ops_index_IndexSliceTIInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_Index (slice t) idx = { - output = inst.output; - index = core_slice_index_Slice_index t idx inst; -} - -// Trait implementation: [core::slice::index::[T]] -let core_ops_index_IndexMutSliceTIInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_IndexMut (slice t) idx = { - indexInst = core_ops_index_IndexSliceTIInst t idx inst; - index_mut = core_slice_index_Slice_index_mut t idx inst; - index_mut_back = core_slice_index_Slice_index_mut_back t idx inst; -} - -// Trait implementation: [core::array::[T; N]] -let core_ops_index_IndexArrayInst (t idx : Type0) (n : usize) - (inst : core_ops_index_Index (slice t) idx) : - core_ops_index_Index (array t n) idx = { - output = inst.output; - index = core_array_Array_index t idx n inst; -} - -// Trait implementation: [core::array::[T; N]] -let core_ops_index_IndexMutArrayIInst (t idx : Type0) (n : usize) - (inst : core_ops_index_IndexMut (slice t) idx) : - core_ops_index_IndexMut (array t n) idx = { - indexInst = core_ops_index_IndexArrayInst t idx n inst.indexInst; - index_mut = core_array_Array_index_mut t idx n inst; - index_mut_back = core_array_Array_index_mut_back t idx n inst; -} - -// [core::slice::index::usize::get]: forward function -let core_slice_index_usize_get - (t : Type0) : usize → slice t → result (option t) = - admit () // TODO - -// [core::slice::index::usize::get_mut]: forward function -let core_slice_index_usize_get_mut - (t : Type0) : usize → slice t → result (option t) = - admit () // TODO - -// [core::slice::index::usize::get_mut]: backward function 0 -let core_slice_index_usize_get_mut_back - (t : Type0) : usize → slice t → option t → result (slice t) = - admit () // TODO - -// [core::slice::index::usize::get_unchecked]: forward function -let core_slice_index_usize_get_unchecked - (t : Type0) : usize → const_raw_ptr (slice t) → result (const_raw_ptr t) = - admit () // TODO - -// [core::slice::index::usize::get_unchecked_mut]: forward function -let core_slice_index_usize_get_unchecked_mut - (t : Type0) : usize → mut_raw_ptr (slice t) → result (mut_raw_ptr t) = - admit () // TODO - -// [core::slice::index::usize::index]: forward function -let core_slice_index_usize_index (t : Type0) : usize → slice t → result t = - admit () // TODO - -// [core::slice::index::usize::index_mut]: forward function -let core_slice_index_usize_index_mut (t : Type0) : usize → slice t → result t = - admit () // TODO - -// [core::slice::index::usize::index_mut]: backward function 0 -let core_slice_index_usize_index_mut_back - (t : Type0) : usize → slice t → t → result (slice t) = - admit () // TODO - -// Trait implementation: [core::slice::index::private_slice_index::usize] -let core_slice_index_private_slice_index_SealedUsizeInst - : core_slice_index_private_slice_index_Sealed usize = () - -// Trait implementation: [core::slice::index::usize] -let core_slice_index_SliceIndexUsizeSliceTInst (t : Type0) : - core_slice_index_SliceIndex usize (slice t) = { - sealedInst = core_slice_index_private_slice_index_SealedUsizeInst; - output = t; - get = core_slice_index_usize_get t; - get_mut = core_slice_index_usize_get_mut t; - get_mut_back = core_slice_index_usize_get_mut_back t; - get_unchecked = core_slice_index_usize_get_unchecked t; - get_unchecked_mut = core_slice_index_usize_get_unchecked_mut t; - index = core_slice_index_usize_index t; - index_mut = core_slice_index_usize_index_mut t; - index_mut_back = core_slice_index_usize_index_mut_back t; -} - -// [alloc::vec::Vec::index]: forward function -let alloc_vec_Vec_index (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (self : alloc_vec_Vec t) (i : idx) : result inst.output = - admit () // TODO - -// [alloc::vec::Vec::index_mut]: forward function -let alloc_vec_Vec_index_mut (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (self : alloc_vec_Vec t) (i : idx) : result inst.output = - admit () // TODO - -// [alloc::vec::Vec::index_mut]: backward function 0 -let alloc_vec_Vec_index_mut_back - (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (self : alloc_vec_Vec t) (i : idx) (x : inst.output) : result (alloc_vec_Vec t) = - admit () // TODO - -// Trait implementation: [alloc::vec::Vec] -let alloc_vec_Vec_coreopsindexIndexInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_Index (alloc_vec_Vec t) idx = { - output = inst.output; - index = alloc_vec_Vec_index t idx inst; -} - -// Trait implementation: [alloc::vec::Vec] -let alloc_vec_Vec_coreopsindexIndexMutInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_IndexMut (alloc_vec_Vec t) idx = { - indexInst = alloc_vec_Vec_coreopsindexIndexInst t idx inst; - index_mut = alloc_vec_Vec_index_mut t idx inst; - index_mut_back = alloc_vec_Vec_index_mut_back t idx inst; -} - -(*** Theorems *) - -let alloc_vec_Vec_index_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : - Lemma ( - alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i == - alloc_vec_Vec_index_usize v i) - [SMTPat (alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)] - = - admit() - -let alloc_vec_Vec_index_mut_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : - Lemma ( - alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i == - alloc_vec_Vec_index_usize v i) - [SMTPat (alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)] - = - admit() - -let alloc_vec_Vec_index_mut_back_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : - Lemma ( - alloc_vec_Vec_index_mut_back a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i x == - alloc_vec_Vec_update_usize v i x) - [SMTPat (alloc_vec_Vec_index_mut_back a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i x)] - = - admit() -- cgit v1.2.3 From a4efda3fd27364316bd65f34bc3eac3fd2cbf87d Mon Sep 17 00:00:00 2001 From: Son Ho Date: Fri, 8 Mar 2024 16:13:19 +0100 Subject: Remove the split test files for F* --- tests/fstar-split/.gitignore | 1 - tests/fstar-split/Makefile | 33 - tests/fstar-split/Makefile.template | 48 - .../fstar-split/arrays/Arrays.Clauses.Template.fst | 21 - tests/fstar-split/arrays/Arrays.Clauses.fst | 19 - tests/fstar-split/arrays/Arrays.Funs.fst | 445 --- tests/fstar-split/arrays/Arrays.Types.fst | 11 - tests/fstar-split/arrays/Makefile | 49 - tests/fstar-split/arrays/Primitives.fst | 884 ------ .../betree/BetreeMain.Clauses.Template.fst | 117 - tests/fstar-split/betree/BetreeMain.Clauses.fst | 210 -- tests/fstar-split/betree/BetreeMain.Funs.fst | 1006 ------ .../betree/BetreeMain.FunsExternal.fsti | 35 - tests/fstar-split/betree/BetreeMain.Types.fst | 61 - .../betree/BetreeMain.TypesExternal.fsti | 10 - tests/fstar-split/betree/Makefile | 49 - tests/fstar-split/betree/Primitives.fst | 884 ------ tests/fstar-split/demo/Demo.fst | 187 -- tests/fstar-split/demo/Makefile | 49 - tests/fstar-split/demo/Primitives.fst | 884 ------ .../hashmap/Hashmap.Clauses.Template.fst | 71 - tests/fstar-split/hashmap/Hashmap.Clauses.fst | 61 - tests/fstar-split/hashmap/Hashmap.Funs.fst | 529 ---- tests/fstar-split/hashmap/Hashmap.Properties.fst | 3186 -------------------- tests/fstar-split/hashmap/Hashmap.Properties.fsti | 267 -- tests/fstar-split/hashmap/Hashmap.Types.fst | 23 - tests/fstar-split/hashmap/Makefile | 49 - tests/fstar-split/hashmap/Primitives.fst | 884 ------ .../HashmapMain.Clauses.Template.fst | 72 - .../hashmap_on_disk/HashmapMain.Clauses.fst | 61 - .../hashmap_on_disk/HashmapMain.Funs.fst | 576 ---- .../hashmap_on_disk/HashmapMain.FunsExternal.fsti | 18 - .../hashmap_on_disk/HashmapMain.Properties.fst | 48 - .../hashmap_on_disk/HashmapMain.Types.fst | 24 - .../hashmap_on_disk/HashmapMain.TypesExternal.fsti | 10 - tests/fstar-split/hashmap_on_disk/Makefile | 49 - tests/fstar-split/hashmap_on_disk/Primitives.fst | 884 ------ tests/fstar-split/misc/Bitwise.fst | 32 - tests/fstar-split/misc/Constants.fst | 145 - tests/fstar-split/misc/External.Funs.fst | 82 - tests/fstar-split/misc/External.FunsExternal.fsti | 32 - tests/fstar-split/misc/External.Types.fst | 8 - tests/fstar-split/misc/External.TypesExternal.fsti | 14 - tests/fstar-split/misc/Loops.Clauses.Template.fst | 138 - tests/fstar-split/misc/Loops.Clauses.fst | 112 - tests/fstar-split/misc/Loops.Funs.fst | 753 ----- tests/fstar-split/misc/Loops.Types.fst | 13 - tests/fstar-split/misc/Makefile | 49 - tests/fstar-split/misc/NoNestedBorrows.fst | 618 ---- tests/fstar-split/misc/Paper.fst | 109 - tests/fstar-split/misc/PoloniusList.fst | 34 - tests/fstar-split/misc/Primitives.fst | 884 ------ tests/fstar-split/traits/Makefile | 49 - tests/fstar-split/traits/Primitives.fst | 884 ------ tests/fstar-split/traits/Traits.fst | 468 --- 55 files changed, 16239 deletions(-) delete mode 100644 tests/fstar-split/.gitignore delete mode 100644 tests/fstar-split/Makefile delete mode 100644 tests/fstar-split/Makefile.template delete mode 100644 tests/fstar-split/arrays/Arrays.Clauses.Template.fst delete mode 100644 tests/fstar-split/arrays/Arrays.Clauses.fst delete mode 100644 tests/fstar-split/arrays/Arrays.Funs.fst delete mode 100644 tests/fstar-split/arrays/Arrays.Types.fst delete mode 100644 tests/fstar-split/arrays/Makefile delete mode 100644 tests/fstar-split/arrays/Primitives.fst delete mode 100644 tests/fstar-split/betree/BetreeMain.Clauses.Template.fst delete mode 100644 tests/fstar-split/betree/BetreeMain.Clauses.fst delete mode 100644 tests/fstar-split/betree/BetreeMain.Funs.fst delete mode 100644 tests/fstar-split/betree/BetreeMain.FunsExternal.fsti delete mode 100644 tests/fstar-split/betree/BetreeMain.Types.fst delete mode 100644 tests/fstar-split/betree/BetreeMain.TypesExternal.fsti delete mode 100644 tests/fstar-split/betree/Makefile delete mode 100644 tests/fstar-split/betree/Primitives.fst delete mode 100644 tests/fstar-split/demo/Demo.fst delete mode 100644 tests/fstar-split/demo/Makefile delete mode 100644 tests/fstar-split/demo/Primitives.fst delete mode 100644 tests/fstar-split/hashmap/Hashmap.Clauses.Template.fst delete mode 100644 tests/fstar-split/hashmap/Hashmap.Clauses.fst delete mode 100644 tests/fstar-split/hashmap/Hashmap.Funs.fst delete mode 100644 tests/fstar-split/hashmap/Hashmap.Properties.fst delete mode 100644 tests/fstar-split/hashmap/Hashmap.Properties.fsti delete mode 100644 tests/fstar-split/hashmap/Hashmap.Types.fst delete mode 100644 tests/fstar-split/hashmap/Makefile delete mode 100644 tests/fstar-split/hashmap/Primitives.fst delete mode 100644 tests/fstar-split/hashmap_on_disk/HashmapMain.Clauses.Template.fst delete mode 100644 tests/fstar-split/hashmap_on_disk/HashmapMain.Clauses.fst delete mode 100644 tests/fstar-split/hashmap_on_disk/HashmapMain.Funs.fst delete mode 100644 tests/fstar-split/hashmap_on_disk/HashmapMain.FunsExternal.fsti delete mode 100644 tests/fstar-split/hashmap_on_disk/HashmapMain.Properties.fst delete mode 100644 tests/fstar-split/hashmap_on_disk/HashmapMain.Types.fst delete mode 100644 tests/fstar-split/hashmap_on_disk/HashmapMain.TypesExternal.fsti delete mode 100644 tests/fstar-split/hashmap_on_disk/Makefile delete mode 100644 tests/fstar-split/hashmap_on_disk/Primitives.fst delete mode 100644 tests/fstar-split/misc/Bitwise.fst delete mode 100644 tests/fstar-split/misc/Constants.fst delete mode 100644 tests/fstar-split/misc/External.Funs.fst delete mode 100644 tests/fstar-split/misc/External.FunsExternal.fsti delete mode 100644 tests/fstar-split/misc/External.Types.fst delete mode 100644 tests/fstar-split/misc/External.TypesExternal.fsti delete mode 100644 tests/fstar-split/misc/Loops.Clauses.Template.fst delete mode 100644 tests/fstar-split/misc/Loops.Clauses.fst delete mode 100644 tests/fstar-split/misc/Loops.Funs.fst delete mode 100644 tests/fstar-split/misc/Loops.Types.fst delete mode 100644 tests/fstar-split/misc/Makefile delete mode 100644 tests/fstar-split/misc/NoNestedBorrows.fst delete mode 100644 tests/fstar-split/misc/Paper.fst delete mode 100644 tests/fstar-split/misc/PoloniusList.fst delete mode 100644 tests/fstar-split/misc/Primitives.fst delete mode 100644 tests/fstar-split/traits/Makefile delete mode 100644 tests/fstar-split/traits/Primitives.fst delete mode 100644 tests/fstar-split/traits/Traits.fst diff --git a/tests/fstar-split/.gitignore b/tests/fstar-split/.gitignore deleted file mode 100644 index 28a11147..00000000 --- a/tests/fstar-split/.gitignore +++ /dev/null @@ -1 +0,0 @@ -*/obj \ No newline at end of file diff --git a/tests/fstar-split/Makefile b/tests/fstar-split/Makefile deleted file mode 100644 index 6cf03386..00000000 --- a/tests/fstar-split/Makefile +++ /dev/null @@ -1,33 +0,0 @@ -ALL_DIRS ?= $(filter-out Makefile%, $(wildcard *)) - -VERIFY_DIRS = $(addprefix verif-,$(ALL_DIRS)) - -CLEAN_DIRS = $(addprefix clean-,$(ALL_DIRS)) - -COPY_MAKEFILES = $(addprefix copy-makefile-,$(ALL_DIRS)) - -.PHONY: all -all: prepare-projects verify - -.PHONY: prepare-projects -prepare-projects: $(COPY_MAKEFILES) - -.PHONY: verify -verify: $(VERIFY_DIRS) - -.PHONY: verif-% -verif-%: - cd $* && make all - -.PHONY: copy-makefile-% -copy-makefile-%: - rm -f $*/Makefile - echo "# This file was automatically generated - modify ../Makefile.template instead" >> $*/Makefile - cat Makefile.template >> $*/Makefile - -.PHONY: clean -clean: $(CLEAN_DIRS) - -.PHONY: clean-% -clean-%: - cd $* && make clean diff --git a/tests/fstar-split/Makefile.template b/tests/fstar-split/Makefile.template deleted file mode 100644 index 14790d6d..00000000 --- a/tests/fstar-split/Makefile.template +++ /dev/null @@ -1,48 +0,0 @@ -INCLUDE_DIRS = . - -FSTAR_INCLUDES = $(addprefix --include ,$(INCLUDE_DIRS)) - -FSTAR_HINTS ?= --use_hints --use_hint_hashes --record_hints - -FSTAR_OPTIONS = $(FSTAR_HINTS) \ - --cache_checked_modules $(FSTAR_INCLUDES) --cmi \ - --warn_error '+241@247+285-274' \ - -FSTAR_EXE ?= fstar.exe -FSTAR_NO_FLAGS = $(FSTAR_EXE) --already_cached 'Prims FStar LowStar Steel' --odir obj --cache_dir obj - -FSTAR = $(FSTAR_NO_FLAGS) $(FSTAR_OPTIONS) - -# The F* roots are used to compute the dependency graph, and generate the .depend file -FSTAR_ROOTS ?= $(wildcard *.fst *.fsti) - -# Build all the files -all: $(addprefix obj/,$(addsuffix .checked,$(FSTAR_ROOTS))) - -# This is the right way to ensure the .depend file always gets re-built. -ifeq (,$(filter %-in,$(MAKECMDGOALS))) -ifndef NODEPEND -ifndef MAKE_RESTARTS -.depend: .FORCE - $(FSTAR_NO_FLAGS) --dep full $(notdir $(FSTAR_ROOTS)) > $@ - -.PHONY: .FORCE -.FORCE: -endif -endif - -include .depend -endif - -# For the interactive mode -%.fst-in %.fsti-in: - @echo $(FSTAR_OPTIONS) - -# Generete the .checked files in batch mode -%.checked: - $(FSTAR) $(FSTAR_OPTIONS) $< && \ - touch -c $@ - -.PHONY: clean -clean: - rm -f obj/* diff --git a/tests/fstar-split/arrays/Arrays.Clauses.Template.fst b/tests/fstar-split/arrays/Arrays.Clauses.Template.fst deleted file mode 100644 index 8cc32583..00000000 --- a/tests/fstar-split/arrays/Arrays.Clauses.Template.fst +++ /dev/null @@ -1,21 +0,0 @@ -(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *) -(** [arrays]: templates for the decreases clauses *) -module Arrays.Clauses.Template -open Primitives -open Arrays.Types - -#set-options "--z3rlimit 50 --fuel 1 --ifuel 1" - -(** [arrays::sum]: decreases clause - Source: 'src/arrays.rs', lines 242:0-250:1 *) -unfold -let sum_loop_decreases (s : slice u32) (sum1 : u32) (i : usize) : nat = - admit () - -(** [arrays::sum2]: decreases clause - Source: 'src/arrays.rs', lines 252:0-261:1 *) -unfold -let sum2_loop_decreases (s : slice u32) (s2 : slice u32) (sum1 : u32) - (i : usize) : nat = - admit () - diff --git a/tests/fstar-split/arrays/Arrays.Clauses.fst b/tests/fstar-split/arrays/Arrays.Clauses.fst deleted file mode 100644 index aca328c2..00000000 --- a/tests/fstar-split/arrays/Arrays.Clauses.fst +++ /dev/null @@ -1,19 +0,0 @@ -(** [arrays]: decreases clauses *) -module Arrays.Clauses -open Primitives -open Arrays.Types -open FStar.List.Tot - -#set-options "--z3rlimit 50 --fuel 1 --ifuel 1" - -(** [arrays::sum]: decreases clause *) -unfold -let sum_loop_decreases (s : slice u32) (sum : u32) (i : usize) : nat = - if i < length s then length s - i else 0 - -(** [arrays::sum2]: decreases clause *) -unfold -let sum2_loop_decreases (s : slice u32) (s2 : slice u32) (sum : u32) - (i : usize) : nat = - if i < length s then length s - i else 0 - diff --git a/tests/fstar-split/arrays/Arrays.Funs.fst b/tests/fstar-split/arrays/Arrays.Funs.fst deleted file mode 100644 index 3efe7789..00000000 --- a/tests/fstar-split/arrays/Arrays.Funs.fst +++ /dev/null @@ -1,445 +0,0 @@ -(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *) -(** [arrays]: function definitions *) -module Arrays.Funs -open Primitives -include Arrays.Types -include Arrays.Clauses - -#set-options "--z3rlimit 50 --fuel 1 --ifuel 1" - -(** [arrays::incr]: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/arrays.rs', lines 8:0-8:24 *) -let incr (x : u32) : result u32 = - u32_add x 1 - -(** [arrays::array_to_shared_slice_]: forward function - Source: 'src/arrays.rs', lines 16:0-16:53 *) -let array_to_shared_slice_ (t : Type0) (s : array t 32) : result (slice t) = - array_to_slice t 32 s - -(** [arrays::array_to_mut_slice_]: forward function - Source: 'src/arrays.rs', lines 21:0-21:58 *) -let array_to_mut_slice_ (t : Type0) (s : array t 32) : result (slice t) = - array_to_slice t 32 s - -(** [arrays::array_to_mut_slice_]: backward function 0 - Source: 'src/arrays.rs', lines 21:0-21:58 *) -let array_to_mut_slice__back - (t : Type0) (s : array t 32) (ret : slice t) : result (array t 32) = - array_from_slice t 32 s ret - -(** [arrays::array_len]: forward function - Source: 'src/arrays.rs', lines 25:0-25:40 *) -let array_len (t : Type0) (s : array t 32) : result usize = - let* s1 = array_to_slice t 32 s in let i = slice_len t s1 in Return i - -(** [arrays::shared_array_len]: forward function - Source: 'src/arrays.rs', lines 29:0-29:48 *) -let shared_array_len (t : Type0) (s : array t 32) : result usize = - let* s1 = array_to_slice t 32 s in let i = slice_len t s1 in Return i - -(** [arrays::shared_slice_len]: forward function - Source: 'src/arrays.rs', lines 33:0-33:44 *) -let shared_slice_len (t : Type0) (s : slice t) : result usize = - let i = slice_len t s in Return i - -(** [arrays::index_array_shared]: forward function - Source: 'src/arrays.rs', lines 37:0-37:57 *) -let index_array_shared (t : Type0) (s : array t 32) (i : usize) : result t = - array_index_usize t 32 s i - -(** [arrays::index_array_u32]: forward function - Source: 'src/arrays.rs', lines 44:0-44:53 *) -let index_array_u32 (s : array u32 32) (i : usize) : result u32 = - array_index_usize u32 32 s i - -(** [arrays::index_array_copy]: forward function - Source: 'src/arrays.rs', lines 48:0-48:45 *) -let index_array_copy (x : array u32 32) : result u32 = - array_index_usize u32 32 x 0 - -(** [arrays::index_mut_array]: forward function - Source: 'src/arrays.rs', lines 52:0-52:62 *) -let index_mut_array (t : Type0) (s : array t 32) (i : usize) : result t = - array_index_usize t 32 s i - -(** [arrays::index_mut_array]: backward function 0 - Source: 'src/arrays.rs', lines 52:0-52:62 *) -let index_mut_array_back - (t : Type0) (s : array t 32) (i : usize) (ret : t) : result (array t 32) = - array_update_usize t 32 s i ret - -(** [arrays::index_slice]: forward function - Source: 'src/arrays.rs', lines 56:0-56:46 *) -let index_slice (t : Type0) (s : slice t) (i : usize) : result t = - slice_index_usize t s i - -(** [arrays::index_mut_slice]: forward function - Source: 'src/arrays.rs', lines 60:0-60:58 *) -let index_mut_slice (t : Type0) (s : slice t) (i : usize) : result t = - slice_index_usize t s i - -(** [arrays::index_mut_slice]: backward function 0 - Source: 'src/arrays.rs', lines 60:0-60:58 *) -let index_mut_slice_back - (t : Type0) (s : slice t) (i : usize) (ret : t) : result (slice t) = - slice_update_usize t s i ret - -(** [arrays::slice_subslice_shared_]: forward function - Source: 'src/arrays.rs', lines 64:0-64:70 *) -let slice_subslice_shared_ - (x : slice u32) (y : usize) (z : usize) : result (slice u32) = - core_slice_index_Slice_index u32 (core_ops_range_Range usize) - (core_slice_index_SliceIndexRangeUsizeSliceTInst u32) x - { start = y; end_ = z } - -(** [arrays::slice_subslice_mut_]: forward function - Source: 'src/arrays.rs', lines 68:0-68:75 *) -let slice_subslice_mut_ - (x : slice u32) (y : usize) (z : usize) : result (slice u32) = - core_slice_index_Slice_index_mut u32 (core_ops_range_Range usize) - (core_slice_index_SliceIndexRangeUsizeSliceTInst u32) x - { start = y; end_ = z } - -(** [arrays::slice_subslice_mut_]: backward function 0 - Source: 'src/arrays.rs', lines 68:0-68:75 *) -let slice_subslice_mut__back - (x : slice u32) (y : usize) (z : usize) (ret : slice u32) : - result (slice u32) - = - core_slice_index_Slice_index_mut_back u32 (core_ops_range_Range usize) - (core_slice_index_SliceIndexRangeUsizeSliceTInst u32) x - { start = y; end_ = z } ret - -(** [arrays::array_to_slice_shared_]: forward function - Source: 'src/arrays.rs', lines 72:0-72:54 *) -let array_to_slice_shared_ (x : array u32 32) : result (slice u32) = - array_to_slice u32 32 x - -(** [arrays::array_to_slice_mut_]: forward function - Source: 'src/arrays.rs', lines 76:0-76:59 *) -let array_to_slice_mut_ (x : array u32 32) : result (slice u32) = - array_to_slice u32 32 x - -(** [arrays::array_to_slice_mut_]: backward function 0 - Source: 'src/arrays.rs', lines 76:0-76:59 *) -let array_to_slice_mut__back - (x : array u32 32) (ret : slice u32) : result (array u32 32) = - array_from_slice u32 32 x ret - -(** [arrays::array_subslice_shared_]: forward function - Source: 'src/arrays.rs', lines 80:0-80:74 *) -let array_subslice_shared_ - (x : array u32 32) (y : usize) (z : usize) : result (slice u32) = - core_array_Array_index u32 (core_ops_range_Range usize) 32 - (core_ops_index_IndexSliceTIInst u32 (core_ops_range_Range usize) - (core_slice_index_SliceIndexRangeUsizeSliceTInst u32)) x - { start = y; end_ = z } - -(** [arrays::array_subslice_mut_]: forward function - Source: 'src/arrays.rs', lines 84:0-84:79 *) -let array_subslice_mut_ - (x : array u32 32) (y : usize) (z : usize) : result (slice u32) = - core_array_Array_index_mut u32 (core_ops_range_Range usize) 32 - (core_ops_index_IndexMutSliceTIInst u32 (core_ops_range_Range usize) - (core_slice_index_SliceIndexRangeUsizeSliceTInst u32)) x - { start = y; end_ = z } - -(** [arrays::array_subslice_mut_]: backward function 0 - Source: 'src/arrays.rs', lines 84:0-84:79 *) -let array_subslice_mut__back - (x : array u32 32) (y : usize) (z : usize) (ret : slice u32) : - result (array u32 32) - = - core_array_Array_index_mut_back u32 (core_ops_range_Range usize) 32 - (core_ops_index_IndexMutSliceTIInst u32 (core_ops_range_Range usize) - (core_slice_index_SliceIndexRangeUsizeSliceTInst u32)) x - { start = y; end_ = z } ret - -(** [arrays::index_slice_0]: forward function - Source: 'src/arrays.rs', lines 88:0-88:38 *) -let index_slice_0 (t : Type0) (s : slice t) : result t = - slice_index_usize t s 0 - -(** [arrays::index_array_0]: forward function - Source: 'src/arrays.rs', lines 92:0-92:42 *) -let index_array_0 (t : Type0) (s : array t 32) : result t = - array_index_usize t 32 s 0 - -(** [arrays::index_index_array]: forward function - Source: 'src/arrays.rs', lines 103:0-103:71 *) -let index_index_array - (s : array (array u32 32) 32) (i : usize) (j : usize) : result u32 = - let* a = array_index_usize (array u32 32) 32 s i in - array_index_usize u32 32 a j - -(** [arrays::update_update_array]: forward function - Source: 'src/arrays.rs', lines 114:0-114:70 *) -let update_update_array - (s : array (array u32 32) 32) (i : usize) (j : usize) : result unit = - let* a = array_index_usize (array u32 32) 32 s i in - let* a1 = array_update_usize u32 32 a j 0 in - let* _ = array_update_usize (array u32 32) 32 s i a1 in - Return () - -(** [arrays::array_local_deep_copy]: forward function - Source: 'src/arrays.rs', lines 118:0-118:43 *) -let array_local_deep_copy (x : array u32 32) : result unit = - Return () - -(** [arrays::take_array]: forward function - Source: 'src/arrays.rs', lines 122:0-122:30 *) -let take_array (a : array u32 2) : result unit = - Return () - -(** [arrays::take_array_borrow]: forward function - Source: 'src/arrays.rs', lines 123:0-123:38 *) -let take_array_borrow (a : array u32 2) : result unit = - Return () - -(** [arrays::take_slice]: forward function - Source: 'src/arrays.rs', lines 124:0-124:28 *) -let take_slice (s : slice u32) : result unit = - Return () - -(** [arrays::take_mut_slice]: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/arrays.rs', lines 125:0-125:36 *) -let take_mut_slice (s : slice u32) : result (slice u32) = - Return s - -(** [arrays::const_array]: forward function - Source: 'src/arrays.rs', lines 127:0-127:32 *) -let const_array : result (array u32 2) = - Return (mk_array u32 2 [ 0; 0 ]) - -(** [arrays::const_slice]: forward function - Source: 'src/arrays.rs', lines 131:0-131:20 *) -let const_slice : result unit = - let* _ = array_to_slice u32 2 (mk_array u32 2 [ 0; 0 ]) in Return () - -(** [arrays::take_all]: forward function - Source: 'src/arrays.rs', lines 141:0-141:17 *) -let take_all : result unit = - let* _ = take_array (mk_array u32 2 [ 0; 0 ]) in - let* _ = take_array_borrow (mk_array u32 2 [ 0; 0 ]) in - let* s = array_to_slice u32 2 (mk_array u32 2 [ 0; 0 ]) in - let* _ = take_slice s in - let* s1 = array_to_slice u32 2 (mk_array u32 2 [ 0; 0 ]) in - let* s2 = take_mut_slice s1 in - let* _ = array_from_slice u32 2 (mk_array u32 2 [ 0; 0 ]) s2 in - Return () - -(** [arrays::index_array]: forward function - Source: 'src/arrays.rs', lines 155:0-155:38 *) -let index_array (x : array u32 2) : result u32 = - array_index_usize u32 2 x 0 - -(** [arrays::index_array_borrow]: forward function - Source: 'src/arrays.rs', lines 158:0-158:46 *) -let index_array_borrow (x : array u32 2) : result u32 = - array_index_usize u32 2 x 0 - -(** [arrays::index_slice_u32_0]: forward function - Source: 'src/arrays.rs', lines 162:0-162:42 *) -let index_slice_u32_0 (x : slice u32) : result u32 = - slice_index_usize u32 x 0 - -(** [arrays::index_mut_slice_u32_0]: forward function - Source: 'src/arrays.rs', lines 166:0-166:50 *) -let index_mut_slice_u32_0 (x : slice u32) : result u32 = - slice_index_usize u32 x 0 - -(** [arrays::index_mut_slice_u32_0]: backward function 0 - Source: 'src/arrays.rs', lines 166:0-166:50 *) -let index_mut_slice_u32_0_back (x : slice u32) : result (slice u32) = - let* _ = slice_index_usize u32 x 0 in Return x - -(** [arrays::index_all]: forward function - Source: 'src/arrays.rs', lines 170:0-170:25 *) -let index_all : result u32 = - let* i = index_array (mk_array u32 2 [ 0; 0 ]) in - let* i1 = index_array (mk_array u32 2 [ 0; 0 ]) in - let* i2 = u32_add i i1 in - let* i3 = index_array_borrow (mk_array u32 2 [ 0; 0 ]) in - let* i4 = u32_add i2 i3 in - let* s = array_to_slice u32 2 (mk_array u32 2 [ 0; 0 ]) in - let* i5 = index_slice_u32_0 s in - let* i6 = u32_add i4 i5 in - let* s1 = array_to_slice u32 2 (mk_array u32 2 [ 0; 0 ]) in - let* i7 = index_mut_slice_u32_0 s1 in - let* i8 = u32_add i6 i7 in - let* s2 = index_mut_slice_u32_0_back s1 in - let* _ = array_from_slice u32 2 (mk_array u32 2 [ 0; 0 ]) s2 in - Return i8 - -(** [arrays::update_array]: forward function - Source: 'src/arrays.rs', lines 184:0-184:36 *) -let update_array (x : array u32 2) : result unit = - let* _ = array_update_usize u32 2 x 0 1 in Return () - -(** [arrays::update_array_mut_borrow]: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/arrays.rs', lines 187:0-187:48 *) -let update_array_mut_borrow (x : array u32 2) : result (array u32 2) = - array_update_usize u32 2 x 0 1 - -(** [arrays::update_mut_slice]: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/arrays.rs', lines 190:0-190:38 *) -let update_mut_slice (x : slice u32) : result (slice u32) = - slice_update_usize u32 x 0 1 - -(** [arrays::update_all]: forward function - Source: 'src/arrays.rs', lines 194:0-194:19 *) -let update_all : result unit = - let* _ = update_array (mk_array u32 2 [ 0; 0 ]) in - let* x = update_array_mut_borrow (mk_array u32 2 [ 0; 0 ]) in - let* s = array_to_slice u32 2 x in - let* s1 = update_mut_slice s in - let* _ = array_from_slice u32 2 x s1 in - Return () - -(** [arrays::range_all]: forward function - Source: 'src/arrays.rs', lines 205:0-205:18 *) -let range_all : result unit = - let* s = - core_array_Array_index_mut u32 (core_ops_range_Range usize) 4 - (core_ops_index_IndexMutSliceTIInst u32 (core_ops_range_Range usize) - (core_slice_index_SliceIndexRangeUsizeSliceTInst u32)) - (mk_array u32 4 [ 0; 0; 0; 0 ]) { start = 1; end_ = 3 } in - let* s1 = update_mut_slice s in - let* _ = - core_array_Array_index_mut_back u32 (core_ops_range_Range usize) 4 - (core_ops_index_IndexMutSliceTIInst u32 (core_ops_range_Range usize) - (core_slice_index_SliceIndexRangeUsizeSliceTInst u32)) - (mk_array u32 4 [ 0; 0; 0; 0 ]) { start = 1; end_ = 3 } s1 in - Return () - -(** [arrays::deref_array_borrow]: forward function - Source: 'src/arrays.rs', lines 214:0-214:46 *) -let deref_array_borrow (x : array u32 2) : result u32 = - array_index_usize u32 2 x 0 - -(** [arrays::deref_array_mut_borrow]: forward function - Source: 'src/arrays.rs', lines 219:0-219:54 *) -let deref_array_mut_borrow (x : array u32 2) : result u32 = - array_index_usize u32 2 x 0 - -(** [arrays::deref_array_mut_borrow]: backward function 0 - Source: 'src/arrays.rs', lines 219:0-219:54 *) -let deref_array_mut_borrow_back (x : array u32 2) : result (array u32 2) = - let* _ = array_index_usize u32 2 x 0 in Return x - -(** [arrays::take_array_t]: forward function - Source: 'src/arrays.rs', lines 227:0-227:31 *) -let take_array_t (a : array aB_t 2) : result unit = - Return () - -(** [arrays::non_copyable_array]: forward function - Source: 'src/arrays.rs', lines 229:0-229:27 *) -let non_copyable_array : result unit = - let* _ = take_array_t (mk_array aB_t 2 [ AB_A; AB_B ]) in Return () - -(** [arrays::sum]: loop 0: forward function - Source: 'src/arrays.rs', lines 242:0-250:1 *) -let rec sum_loop - (s : slice u32) (sum1 : u32) (i : usize) : - Tot (result u32) (decreases (sum_loop_decreases s sum1 i)) - = - let i1 = slice_len u32 s in - if i < i1 - then - let* i2 = slice_index_usize u32 s i in - let* sum3 = u32_add sum1 i2 in - let* i3 = usize_add i 1 in - sum_loop s sum3 i3 - else Return sum1 - -(** [arrays::sum]: forward function - Source: 'src/arrays.rs', lines 242:0-242:28 *) -let sum (s : slice u32) : result u32 = - sum_loop s 0 0 - -(** [arrays::sum2]: loop 0: forward function - Source: 'src/arrays.rs', lines 252:0-261:1 *) -let rec sum2_loop - (s : slice u32) (s2 : slice u32) (sum1 : u32) (i : usize) : - Tot (result u32) (decreases (sum2_loop_decreases s s2 sum1 i)) - = - let i1 = slice_len u32 s in - if i < i1 - then - let* i2 = slice_index_usize u32 s i in - let* i3 = slice_index_usize u32 s2 i in - let* i4 = u32_add i2 i3 in - let* sum3 = u32_add sum1 i4 in - let* i5 = usize_add i 1 in - sum2_loop s s2 sum3 i5 - else Return sum1 - -(** [arrays::sum2]: forward function - Source: 'src/arrays.rs', lines 252:0-252:41 *) -let sum2 (s : slice u32) (s2 : slice u32) : result u32 = - let i = slice_len u32 s in - let i1 = slice_len u32 s2 in - if not (i = i1) then Fail Failure else sum2_loop s s2 0 0 - -(** [arrays::f0]: forward function - Source: 'src/arrays.rs', lines 263:0-263:11 *) -let f0 : result unit = - let* s = array_to_slice u32 2 (mk_array u32 2 [ 1; 2 ]) in - let* s1 = slice_update_usize u32 s 0 1 in - let* _ = array_from_slice u32 2 (mk_array u32 2 [ 1; 2 ]) s1 in - Return () - -(** [arrays::f1]: forward function - Source: 'src/arrays.rs', lines 268:0-268:11 *) -let f1 : result unit = - let* _ = array_update_usize u32 2 (mk_array u32 2 [ 1; 2 ]) 0 1 in Return () - -(** [arrays::f2]: forward function - Source: 'src/arrays.rs', lines 273:0-273:17 *) -let f2 (i : u32) : result unit = - Return () - -(** [arrays::f4]: forward function - Source: 'src/arrays.rs', lines 282:0-282:54 *) -let f4 (x : array u32 32) (y : usize) (z : usize) : result (slice u32) = - core_array_Array_index u32 (core_ops_range_Range usize) 32 - (core_ops_index_IndexSliceTIInst u32 (core_ops_range_Range usize) - (core_slice_index_SliceIndexRangeUsizeSliceTInst u32)) x - { start = y; end_ = z } - -(** [arrays::f3]: forward function - Source: 'src/arrays.rs', lines 275:0-275:18 *) -let f3 : result u32 = - let* i = array_index_usize u32 2 (mk_array u32 2 [ 1; 2 ]) 0 in - let* _ = f2 i in - let b = array_repeat u32 32 0 in - let* s = array_to_slice u32 2 (mk_array u32 2 [ 1; 2 ]) in - let* s1 = f4 b 16 18 in - sum2 s s1 - -(** [arrays::SZ] - Source: 'src/arrays.rs', lines 286:0-286:19 *) -let sz_body : result usize = Return 32 -let sz_c : usize = eval_global sz_body - -(** [arrays::f5]: forward function - Source: 'src/arrays.rs', lines 289:0-289:31 *) -let f5 (x : array u32 32) : result u32 = - array_index_usize u32 32 x 0 - -(** [arrays::ite]: forward function - Source: 'src/arrays.rs', lines 294:0-294:12 *) -let ite : result unit = - let* s = array_to_slice u32 2 (mk_array u32 2 [ 0; 0 ]) in - let* s1 = array_to_slice u32 2 (mk_array u32 2 [ 0; 0 ]) in - let* s2 = index_mut_slice_u32_0_back s1 in - let* _ = array_from_slice u32 2 (mk_array u32 2 [ 0; 0 ]) s2 in - let* s3 = index_mut_slice_u32_0_back s in - let* _ = array_from_slice u32 2 (mk_array u32 2 [ 0; 0 ]) s3 in - Return () - diff --git a/tests/fstar-split/arrays/Arrays.Types.fst b/tests/fstar-split/arrays/Arrays.Types.fst deleted file mode 100644 index d3596e92..00000000 --- a/tests/fstar-split/arrays/Arrays.Types.fst +++ /dev/null @@ -1,11 +0,0 @@ -(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *) -(** [arrays]: type definitions *) -module Arrays.Types -open Primitives - -#set-options "--z3rlimit 50 --fuel 1 --ifuel 1" - -(** [arrays::AB] - Source: 'src/arrays.rs', lines 3:0-3:11 *) -type aB_t = | AB_A : aB_t | AB_B : aB_t - diff --git a/tests/fstar-split/arrays/Makefile b/tests/fstar-split/arrays/Makefile deleted file mode 100644 index fa7d1f36..00000000 --- a/tests/fstar-split/arrays/Makefile +++ /dev/null @@ -1,49 +0,0 @@ -# This file was automatically generated - modify ../Makefile.template instead -INCLUDE_DIRS = . - -FSTAR_INCLUDES = $(addprefix --include ,$(INCLUDE_DIRS)) - -FSTAR_HINTS ?= --use_hints --use_hint_hashes --record_hints - -FSTAR_OPTIONS = $(FSTAR_HINTS) \ - --cache_checked_modules $(FSTAR_INCLUDES) --cmi \ - --warn_error '+241@247+285-274' \ - -FSTAR_EXE ?= fstar.exe -FSTAR_NO_FLAGS = $(FSTAR_EXE) --already_cached 'Prims FStar LowStar Steel' --odir obj --cache_dir obj - -FSTAR = $(FSTAR_NO_FLAGS) $(FSTAR_OPTIONS) - -# The F* roots are used to compute the dependency graph, and generate the .depend file -FSTAR_ROOTS ?= $(wildcard *.fst *.fsti) - -# Build all the files -all: $(addprefix obj/,$(addsuffix .checked,$(FSTAR_ROOTS))) - -# This is the right way to ensure the .depend file always gets re-built. -ifeq (,$(filter %-in,$(MAKECMDGOALS))) -ifndef NODEPEND -ifndef MAKE_RESTARTS -.depend: .FORCE - $(FSTAR_NO_FLAGS) --dep full $(notdir $(FSTAR_ROOTS)) > $@ - -.PHONY: .FORCE -.FORCE: -endif -endif - -include .depend -endif - -# For the interactive mode -%.fst-in %.fsti-in: - @echo $(FSTAR_OPTIONS) - -# Generete the .checked files in batch mode -%.checked: - $(FSTAR) $(FSTAR_OPTIONS) $< && \ - touch -c $@ - -.PHONY: clean -clean: - rm -f obj/* diff --git a/tests/fstar-split/arrays/Primitives.fst b/tests/fstar-split/arrays/Primitives.fst deleted file mode 100644 index a3ffbde4..00000000 --- a/tests/fstar-split/arrays/Primitives.fst +++ /dev/null @@ -1,884 +0,0 @@ -/// This file lists primitive and assumed functions and types -module Primitives -open FStar.Mul -open FStar.List.Tot - -#set-options "--z3rlimit 15 --fuel 0 --ifuel 1" - -(*** Utilities *) -val list_update (#a : Type0) (ls : list a) (i : nat{i < length ls}) (x : a) : - ls':list a{ - length ls' = length ls /\ - index ls' i == x - } -#push-options "--fuel 1" -let rec list_update #a ls i x = - match ls with - | x' :: ls -> if i = 0 then x :: ls else x' :: list_update ls (i-1) x -#pop-options - -(*** Result *) -type error : Type0 = -| Failure -| OutOfFuel - -type result (a : Type0) : Type0 = -| Return : v:a -> result a -| Fail : e:error -> result a - -// Monadic return operator -unfold let return (#a : Type0) (x : a) : result a = Return x - -// Monadic bind operator. -// Allows to use the notation: -// ``` -// let* x = y in -// ... -// ``` -unfold let (let*) (#a #b : Type0) (m: result a) - (f: (x:a) -> Pure (result b) (requires (m == Return x)) (ensures fun _ -> True)) : - result b = - match m with - | Return x -> f x - | Fail e -> Fail e - -// Monadic assert(...) -let massert (b:bool) : result unit = if b then Return () else Fail Failure - -// Normalize and unwrap a successful result (used for globals). -let eval_global (#a : Type0) (x : result a{Return? (normalize_term x)}) : a = Return?.v x - -(*** Misc *) -type char = FStar.Char.char -type string = string - -let is_zero (n: nat) : bool = n = 0 -let decrease (n: nat{n > 0}) : nat = n - 1 - -let core_mem_replace (a : Type0) (x : a) (y : a) : a = x -let core_mem_replace_back (a : Type0) (x : a) (y : a) : a = y - -// We don't really use raw pointers for now -type mut_raw_ptr (t : Type0) = { v : t } -type const_raw_ptr (t : Type0) = { v : t } - -(*** Scalars *) -/// Rem.: most of the following code was partially generated - -assume val size_numbits : pos - -// TODO: we could use FStar.Int.int_t and FStar.UInt.int_t - -let isize_min : int = -9223372036854775808 // TODO: should be opaque -let isize_max : int = 9223372036854775807 // TODO: should be opaque -let i8_min : int = -128 -let i8_max : int = 127 -let i16_min : int = -32768 -let i16_max : int = 32767 -let i32_min : int = -2147483648 -let i32_max : int = 2147483647 -let i64_min : int = -9223372036854775808 -let i64_max : int = 9223372036854775807 -let i128_min : int = -170141183460469231731687303715884105728 -let i128_max : int = 170141183460469231731687303715884105727 -let usize_min : int = 0 -let usize_max : int = 4294967295 // TODO: should be opaque -let u8_min : int = 0 -let u8_max : int = 255 -let u16_min : int = 0 -let u16_max : int = 65535 -let u32_min : int = 0 -let u32_max : int = 4294967295 -let u64_min : int = 0 -let u64_max : int = 18446744073709551615 -let u128_min : int = 0 -let u128_max : int = 340282366920938463463374607431768211455 - -type scalar_ty = -| Isize -| I8 -| I16 -| I32 -| I64 -| I128 -| Usize -| U8 -| U16 -| U32 -| U64 -| U128 - -let is_unsigned = function - | Isize | I8 | I16 | I32 | I64 | I128 -> false - | Usize | U8 | U16 | U32 | U64 | U128 -> true - -let scalar_min (ty : scalar_ty) : int = - match ty with - | Isize -> isize_min - | I8 -> i8_min - | I16 -> i16_min - | I32 -> i32_min - | I64 -> i64_min - | I128 -> i128_min - | Usize -> usize_min - | U8 -> u8_min - | U16 -> u16_min - | U32 -> u32_min - | U64 -> u64_min - | U128 -> u128_min - -let scalar_max (ty : scalar_ty) : int = - match ty with - | Isize -> isize_max - | I8 -> i8_max - | I16 -> i16_max - | I32 -> i32_max - | I64 -> i64_max - | I128 -> i128_max - | Usize -> usize_max - | U8 -> u8_max - | U16 -> u16_max - | U32 -> u32_max - | U64 -> u64_max - | U128 -> u128_max - -type scalar (ty : scalar_ty) : eqtype = x:int{scalar_min ty <= x && x <= scalar_max ty} - -let mk_scalar (ty : scalar_ty) (x : int) : result (scalar ty) = - if scalar_min ty <= x && scalar_max ty >= x then Return x else Fail Failure - -let scalar_neg (#ty : scalar_ty) (x : scalar ty) : result (scalar ty) = mk_scalar ty (-x) - -let scalar_div (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - if y <> 0 then mk_scalar ty (x / y) else Fail Failure - -/// The remainder operation -let int_rem (x : int) (y : int{y <> 0}) : int = - if x >= 0 then (x % y) else -(x % y) - -(* Checking consistency with Rust *) -let _ = assert_norm(int_rem 1 2 = 1) -let _ = assert_norm(int_rem (-1) 2 = -1) -let _ = assert_norm(int_rem 1 (-2) = 1) -let _ = assert_norm(int_rem (-1) (-2) = -1) - -let scalar_rem (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - if y <> 0 then mk_scalar ty (int_rem x y) else Fail Failure - -let scalar_add (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - mk_scalar ty (x + y) - -let scalar_sub (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - mk_scalar ty (x - y) - -let scalar_mul (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - mk_scalar ty (x * y) - -let scalar_xor (#ty : scalar_ty) - (x : scalar ty) (y : scalar ty) : scalar ty = - match ty with - | U8 -> FStar.UInt.logxor #8 x y - | U16 -> FStar.UInt.logxor #16 x y - | U32 -> FStar.UInt.logxor #32 x y - | U64 -> FStar.UInt.logxor #64 x y - | U128 -> FStar.UInt.logxor #128 x y - | Usize -> admit() // TODO - | I8 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 8); - normalize_spec (scalar I8); - FStar.Int.logxor #8 x y - | I16 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 16); - normalize_spec (scalar I16); - FStar.Int.logxor #16 x y - | I32 -> FStar.Int.logxor #32 x y - | I64 -> FStar.Int.logxor #64 x y - | I128 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 128); - normalize_spec (scalar I128); - FStar.Int.logxor #128 x y - | Isize -> admit() // TODO - -let scalar_or (#ty : scalar_ty) - (x : scalar ty) (y : scalar ty) : scalar ty = - match ty with - | U8 -> FStar.UInt.logor #8 x y - | U16 -> FStar.UInt.logor #16 x y - | U32 -> FStar.UInt.logor #32 x y - | U64 -> FStar.UInt.logor #64 x y - | U128 -> FStar.UInt.logor #128 x y - | Usize -> admit() // TODO - | I8 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 8); - normalize_spec (scalar I8); - FStar.Int.logor #8 x y - | I16 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 16); - normalize_spec (scalar I16); - FStar.Int.logor #16 x y - | I32 -> FStar.Int.logor #32 x y - | I64 -> FStar.Int.logor #64 x y - | I128 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 128); - normalize_spec (scalar I128); - FStar.Int.logor #128 x y - | Isize -> admit() // TODO - -let scalar_and (#ty : scalar_ty) - (x : scalar ty) (y : scalar ty) : scalar ty = - match ty with - | U8 -> FStar.UInt.logand #8 x y - | U16 -> FStar.UInt.logand #16 x y - | U32 -> FStar.UInt.logand #32 x y - | U64 -> FStar.UInt.logand #64 x y - | U128 -> FStar.UInt.logand #128 x y - | Usize -> admit() // TODO - | I8 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 8); - normalize_spec (scalar I8); - FStar.Int.logand #8 x y - | I16 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 16); - normalize_spec (scalar I16); - FStar.Int.logand #16 x y - | I32 -> FStar.Int.logand #32 x y - | I64 -> FStar.Int.logand #64 x y - | I128 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 128); - normalize_spec (scalar I128); - FStar.Int.logand #128 x y - | Isize -> admit() // TODO - -// Shift left -let scalar_shl (#ty0 #ty1 : scalar_ty) - (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) = - admit() - -// Shift right -let scalar_shr (#ty0 #ty1 : scalar_ty) - (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) = - admit() - -(** Cast an integer from a [src_ty] to a [tgt_ty] *) -// TODO: check the semantics of casts in Rust -let scalar_cast (src_ty : scalar_ty) (tgt_ty : scalar_ty) (x : scalar src_ty) : result (scalar tgt_ty) = - mk_scalar tgt_ty x - -// This can't fail, but for now we make all casts faillible (easier for the translation) -let scalar_cast_bool (tgt_ty : scalar_ty) (x : bool) : result (scalar tgt_ty) = - mk_scalar tgt_ty (if x then 1 else 0) - -/// The scalar types -type isize : eqtype = scalar Isize -type i8 : eqtype = scalar I8 -type i16 : eqtype = scalar I16 -type i32 : eqtype = scalar I32 -type i64 : eqtype = scalar I64 -type i128 : eqtype = scalar I128 -type usize : eqtype = scalar Usize -type u8 : eqtype = scalar U8 -type u16 : eqtype = scalar U16 -type u32 : eqtype = scalar U32 -type u64 : eqtype = scalar U64 -type u128 : eqtype = scalar U128 - - -let core_isize_min : isize = isize_min -let core_isize_max : isize = isize_max -let core_i8_min : i8 = i8_min -let core_i8_max : i8 = i8_max -let core_i16_min : i16 = i16_min -let core_i16_max : i16 = i16_max -let core_i32_min : i32 = i32_min -let core_i32_max : i32 = i32_max -let core_i64_min : i64 = i64_min -let core_i64_max : i64 = i64_max -let core_i128_min : i128 = i128_min -let core_i128_max : i128 = i128_max - -let core_usize_min : usize = usize_min -let core_usize_max : usize = usize_max -let core_u8_min : u8 = u8_min -let core_u8_max : u8 = u8_max -let core_u16_min : u16 = u16_min -let core_u16_max : u16 = u16_max -let core_u32_min : u32 = u32_min -let core_u32_max : u32 = u32_max -let core_u64_min : u64 = u64_min -let core_u64_max : u64 = u64_max -let core_u128_min : u128 = u128_min -let core_u128_max : u128 = u128_max - -/// Negation -let isize_neg = scalar_neg #Isize -let i8_neg = scalar_neg #I8 -let i16_neg = scalar_neg #I16 -let i32_neg = scalar_neg #I32 -let i64_neg = scalar_neg #I64 -let i128_neg = scalar_neg #I128 - -/// Division -let isize_div = scalar_div #Isize -let i8_div = scalar_div #I8 -let i16_div = scalar_div #I16 -let i32_div = scalar_div #I32 -let i64_div = scalar_div #I64 -let i128_div = scalar_div #I128 -let usize_div = scalar_div #Usize -let u8_div = scalar_div #U8 -let u16_div = scalar_div #U16 -let u32_div = scalar_div #U32 -let u64_div = scalar_div #U64 -let u128_div = scalar_div #U128 - -/// Remainder -let isize_rem = scalar_rem #Isize -let i8_rem = scalar_rem #I8 -let i16_rem = scalar_rem #I16 -let i32_rem = scalar_rem #I32 -let i64_rem = scalar_rem #I64 -let i128_rem = scalar_rem #I128 -let usize_rem = scalar_rem #Usize -let u8_rem = scalar_rem #U8 -let u16_rem = scalar_rem #U16 -let u32_rem = scalar_rem #U32 -let u64_rem = scalar_rem #U64 -let u128_rem = scalar_rem #U128 - -/// Addition -let isize_add = scalar_add #Isize -let i8_add = scalar_add #I8 -let i16_add = scalar_add #I16 -let i32_add = scalar_add #I32 -let i64_add = scalar_add #I64 -let i128_add = scalar_add #I128 -let usize_add = scalar_add #Usize -let u8_add = scalar_add #U8 -let u16_add = scalar_add #U16 -let u32_add = scalar_add #U32 -let u64_add = scalar_add #U64 -let u128_add = scalar_add #U128 - -/// Subtraction -let isize_sub = scalar_sub #Isize -let i8_sub = scalar_sub #I8 -let i16_sub = scalar_sub #I16 -let i32_sub = scalar_sub #I32 -let i64_sub = scalar_sub #I64 -let i128_sub = scalar_sub #I128 -let usize_sub = scalar_sub #Usize -let u8_sub = scalar_sub #U8 -let u16_sub = scalar_sub #U16 -let u32_sub = scalar_sub #U32 -let u64_sub = scalar_sub #U64 -let u128_sub = scalar_sub #U128 - -/// Multiplication -let isize_mul = scalar_mul #Isize -let i8_mul = scalar_mul #I8 -let i16_mul = scalar_mul #I16 -let i32_mul = scalar_mul #I32 -let i64_mul = scalar_mul #I64 -let i128_mul = scalar_mul #I128 -let usize_mul = scalar_mul #Usize -let u8_mul = scalar_mul #U8 -let u16_mul = scalar_mul #U16 -let u32_mul = scalar_mul #U32 -let u64_mul = scalar_mul #U64 -let u128_mul = scalar_mul #U128 - -/// Xor -let u8_xor = scalar_xor #U8 -let u16_xor = scalar_xor #U16 -let u32_xor = scalar_xor #U32 -let u64_xor = scalar_xor #U64 -let u128_xor = scalar_xor #U128 -let usize_xor = scalar_xor #Usize -let i8_xor = scalar_xor #I8 -let i16_xor = scalar_xor #I16 -let i32_xor = scalar_xor #I32 -let i64_xor = scalar_xor #I64 -let i128_xor = scalar_xor #I128 -let isize_xor = scalar_xor #Isize - -/// Or -let u8_or = scalar_or #U8 -let u16_or = scalar_or #U16 -let u32_or = scalar_or #U32 -let u64_or = scalar_or #U64 -let u128_or = scalar_or #U128 -let usize_or = scalar_or #Usize -let i8_or = scalar_or #I8 -let i16_or = scalar_or #I16 -let i32_or = scalar_or #I32 -let i64_or = scalar_or #I64 -let i128_or = scalar_or #I128 -let isize_or = scalar_or #Isize - -/// And -let u8_and = scalar_and #U8 -let u16_and = scalar_and #U16 -let u32_and = scalar_and #U32 -let u64_and = scalar_and #U64 -let u128_and = scalar_and #U128 -let usize_and = scalar_and #Usize -let i8_and = scalar_and #I8 -let i16_and = scalar_and #I16 -let i32_and = scalar_and #I32 -let i64_and = scalar_and #I64 -let i128_and = scalar_and #I128 -let isize_and = scalar_and #Isize - -/// Shift left -let u8_shl #ty = scalar_shl #U8 #ty -let u16_shl #ty = scalar_shl #U16 #ty -let u32_shl #ty = scalar_shl #U32 #ty -let u64_shl #ty = scalar_shl #U64 #ty -let u128_shl #ty = scalar_shl #U128 #ty -let usize_shl #ty = scalar_shl #Usize #ty -let i8_shl #ty = scalar_shl #I8 #ty -let i16_shl #ty = scalar_shl #I16 #ty -let i32_shl #ty = scalar_shl #I32 #ty -let i64_shl #ty = scalar_shl #I64 #ty -let i128_shl #ty = scalar_shl #I128 #ty -let isize_shl #ty = scalar_shl #Isize #ty - -/// Shift right -let u8_shr #ty = scalar_shr #U8 #ty -let u16_shr #ty = scalar_shr #U16 #ty -let u32_shr #ty = scalar_shr #U32 #ty -let u64_shr #ty = scalar_shr #U64 #ty -let u128_shr #ty = scalar_shr #U128 #ty -let usize_shr #ty = scalar_shr #Usize #ty -let i8_shr #ty = scalar_shr #I8 #ty -let i16_shr #ty = scalar_shr #I16 #ty -let i32_shr #ty = scalar_shr #I32 #ty -let i64_shr #ty = scalar_shr #I64 #ty -let i128_shr #ty = scalar_shr #I128 #ty -let isize_shr #ty = scalar_shr #Isize #ty - -(*** core::ops *) - -// Trait declaration: [core::ops::index::Index] -noeq type core_ops_index_Index (self idx : Type0) = { - output : Type0; - index : self → idx → result output -} - -// Trait declaration: [core::ops::index::IndexMut] -noeq type core_ops_index_IndexMut (self idx : Type0) = { - indexInst : core_ops_index_Index self idx; - index_mut : self → idx → result indexInst.output; - index_mut_back : self → idx → indexInst.output → result self; -} - -// Trait declaration [core::ops::deref::Deref] -noeq type core_ops_deref_Deref (self : Type0) = { - target : Type0; - deref : self → result target; -} - -// Trait declaration [core::ops::deref::DerefMut] -noeq type core_ops_deref_DerefMut (self : Type0) = { - derefInst : core_ops_deref_Deref self; - deref_mut : self → result derefInst.target; - deref_mut_back : self → derefInst.target → result self; -} - -type core_ops_range_Range (a : Type0) = { - start : a; - end_ : a; -} - -(*** [alloc] *) - -let alloc_boxed_Box_deref (t : Type0) (x : t) : result t = Return x -let alloc_boxed_Box_deref_mut (t : Type0) (x : t) : result t = Return x -let alloc_boxed_Box_deref_mut_back (t : Type) (_ : t) (x : t) : result t = Return x - -// Trait instance -let alloc_boxed_Box_coreopsDerefInst (self : Type0) : core_ops_deref_Deref self = { - target = self; - deref = alloc_boxed_Box_deref self; -} - -// Trait instance -let alloc_boxed_Box_coreopsDerefMutInst (self : Type0) : core_ops_deref_DerefMut self = { - derefInst = alloc_boxed_Box_coreopsDerefInst self; - deref_mut = alloc_boxed_Box_deref_mut self; - deref_mut_back = alloc_boxed_Box_deref_mut_back self; -} - -(*** Array *) -type array (a : Type0) (n : usize) = s:list a{length s = n} - -// We tried putting the normalize_term condition as a refinement on the list -// but it didn't work. It works with the requires clause. -let mk_array (a : Type0) (n : usize) - (l : list a) : - Pure (array a n) - (requires (normalize_term(FStar.List.Tot.length l) = n)) - (ensures (fun _ -> True)) = - normalize_term_spec (FStar.List.Tot.length l); - l - -let array_index_usize (a : Type0) (n : usize) (x : array a n) (i : usize) : result a = - if i < length x then Return (index x i) - else Fail Failure - -let array_update_usize (a : Type0) (n : usize) (x : array a n) (i : usize) (nx : a) : result (array a n) = - if i < length x then Return (list_update x i nx) - else Fail Failure - -(*** Slice *) -type slice (a : Type0) = s:list a{length s <= usize_max} - -let slice_len (a : Type0) (s : slice a) : usize = length s - -let slice_index_usize (a : Type0) (x : slice a) (i : usize) : result a = - if i < length x then Return (index x i) - else Fail Failure - -let slice_update_usize (a : Type0) (x : slice a) (i : usize) (nx : a) : result (slice a) = - if i < length x then Return (list_update x i nx) - else Fail Failure - -(*** Subslices *) - -let array_to_slice (a : Type0) (n : usize) (x : array a n) : result (slice a) = Return x -let array_from_slice (a : Type0) (n : usize) (x : array a n) (s : slice a) : result (array a n) = - if length s = n then Return s - else Fail Failure - -// TODO: finish the definitions below (there lacks [List.drop] and [List.take] in the standard library *) -let array_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) : result (slice a) = - admit() - -let array_update_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) (ns : slice a) : result (array a n) = - admit() - -let array_repeat (a : Type0) (n : usize) (x : a) : array a n = - admit() - -let slice_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) : result (slice a) = - admit() - -let slice_update_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) (ns : slice a) : result (slice a) = - admit() - -(*** Vector *) -type alloc_vec_Vec (a : Type0) = v:list a{length v <= usize_max} - -let alloc_vec_Vec_new (a : Type0) : alloc_vec_Vec a = assert_norm(length #a [] == 0); [] -let alloc_vec_Vec_len (a : Type0) (v : alloc_vec_Vec a) : usize = length v - -// Helper -let alloc_vec_Vec_index_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : result a = - if i < length v then Return (index v i) else Fail Failure -// Helper -let alloc_vec_Vec_update_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) = - if i < length v then Return (list_update v i x) else Fail Failure - -// The **forward** function shouldn't be used -let alloc_vec_Vec_push_fwd (a : Type0) (v : alloc_vec_Vec a) (x : a) : unit = () -let alloc_vec_Vec_push (a : Type0) (v : alloc_vec_Vec a) (x : a) : - Pure (result (alloc_vec_Vec a)) - (requires True) - (ensures (fun res -> - match res with - | Fail e -> e == Failure - | Return v' -> length v' = length v + 1)) = - if length v < usize_max then begin - (**) assert_norm(length [x] == 1); - (**) append_length v [x]; - (**) assert(length (append v [x]) = length v + 1); - Return (append v [x]) - end - else Fail Failure - -// The **forward** function shouldn't be used -let alloc_vec_Vec_insert_fwd (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result unit = - if i < length v then Return () else Fail Failure -let alloc_vec_Vec_insert (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) = - if i < length v then Return (list_update v i x) else Fail Failure - -// Trait declaration: [core::slice::index::private_slice_index::Sealed] -type core_slice_index_private_slice_index_Sealed (self : Type0) = unit - -// Trait declaration: [core::slice::index::SliceIndex] -noeq type core_slice_index_SliceIndex (self t : Type0) = { - sealedInst : core_slice_index_private_slice_index_Sealed self; - output : Type0; - get : self → t → result (option output); - get_mut : self → t → result (option output); - get_mut_back : self → t → option output → result t; - get_unchecked : self → const_raw_ptr t → result (const_raw_ptr output); - get_unchecked_mut : self → mut_raw_ptr t → result (mut_raw_ptr output); - index : self → t → result output; - index_mut : self → t → result output; - index_mut_back : self → t → output → result t; -} - -// [core::slice::index::[T]::index]: forward function -let core_slice_index_Slice_index - (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (s : slice t) (i : idx) : result inst.output = - let* x = inst.get i s in - match x with - | None -> Fail Failure - | Some x -> Return x - -// [core::slice::index::Range:::get]: forward function -let core_slice_index_RangeUsize_get (t : Type0) (i : core_ops_range_Range usize) (s : slice t) : - result (option (slice t)) = - admit () // TODO - -// [core::slice::index::Range::get_mut]: forward function -let core_slice_index_RangeUsize_get_mut - (t : Type0) : core_ops_range_Range usize → slice t → result (option (slice t)) = - admit () // TODO - -// [core::slice::index::Range::get_mut]: backward function 0 -let core_slice_index_RangeUsize_get_mut_back - (t : Type0) : - core_ops_range_Range usize → slice t → option (slice t) → result (slice t) = - admit () // TODO - -// [core::slice::index::Range::get_unchecked]: forward function -let core_slice_index_RangeUsize_get_unchecked - (t : Type0) : - core_ops_range_Range usize → const_raw_ptr (slice t) → result (const_raw_ptr (slice t)) = - // Don't know what the model should be - for now we always fail to make - // sure code which uses it fails - fun _ _ -> Fail Failure - -// [core::slice::index::Range::get_unchecked_mut]: forward function -let core_slice_index_RangeUsize_get_unchecked_mut - (t : Type0) : - core_ops_range_Range usize → mut_raw_ptr (slice t) → result (mut_raw_ptr (slice t)) = - // Don't know what the model should be - for now we always fail to make - // sure code which uses it fails - fun _ _ -> Fail Failure - -// [core::slice::index::Range::index]: forward function -let core_slice_index_RangeUsize_index - (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) = - admit () // TODO - -// [core::slice::index::Range::index_mut]: forward function -let core_slice_index_RangeUsize_index_mut - (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) = - admit () // TODO - -// [core::slice::index::Range::index_mut]: backward function 0 -let core_slice_index_RangeUsize_index_mut_back - (t : Type0) : core_ops_range_Range usize → slice t → slice t → result (slice t) = - admit () // TODO - -// [core::slice::index::[T]::index_mut]: forward function -let core_slice_index_Slice_index_mut - (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) : - slice t → idx → result inst.output = - admit () // - -// [core::slice::index::[T]::index_mut]: backward function 0 -let core_slice_index_Slice_index_mut_back - (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) : - slice t → idx → inst.output → result (slice t) = - admit () // TODO - -// [core::array::[T; N]::index]: forward function -let core_array_Array_index - (t idx : Type0) (n : usize) (inst : core_ops_index_Index (slice t) idx) - (a : array t n) (i : idx) : result inst.output = - admit () // TODO - -// [core::array::[T; N]::index_mut]: forward function -let core_array_Array_index_mut - (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx) - (a : array t n) (i : idx) : result inst.indexInst.output = - admit () // TODO - -// [core::array::[T; N]::index_mut]: backward function 0 -let core_array_Array_index_mut_back - (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx) - (a : array t n) (i : idx) (x : inst.indexInst.output) : result (array t n) = - admit () // TODO - -// Trait implementation: [core::slice::index::private_slice_index::Range] -let core_slice_index_private_slice_index_SealedRangeUsizeInst - : core_slice_index_private_slice_index_Sealed (core_ops_range_Range usize) = () - -// Trait implementation: [core::slice::index::Range] -let core_slice_index_SliceIndexRangeUsizeSliceTInst (t : Type0) : - core_slice_index_SliceIndex (core_ops_range_Range usize) (slice t) = { - sealedInst = core_slice_index_private_slice_index_SealedRangeUsizeInst; - output = slice t; - get = core_slice_index_RangeUsize_get t; - get_mut = core_slice_index_RangeUsize_get_mut t; - get_mut_back = core_slice_index_RangeUsize_get_mut_back t; - get_unchecked = core_slice_index_RangeUsize_get_unchecked t; - get_unchecked_mut = core_slice_index_RangeUsize_get_unchecked_mut t; - index = core_slice_index_RangeUsize_index t; - index_mut = core_slice_index_RangeUsize_index_mut t; - index_mut_back = core_slice_index_RangeUsize_index_mut_back t; -} - -// Trait implementation: [core::slice::index::[T]] -let core_ops_index_IndexSliceTIInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_Index (slice t) idx = { - output = inst.output; - index = core_slice_index_Slice_index t idx inst; -} - -// Trait implementation: [core::slice::index::[T]] -let core_ops_index_IndexMutSliceTIInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_IndexMut (slice t) idx = { - indexInst = core_ops_index_IndexSliceTIInst t idx inst; - index_mut = core_slice_index_Slice_index_mut t idx inst; - index_mut_back = core_slice_index_Slice_index_mut_back t idx inst; -} - -// Trait implementation: [core::array::[T; N]] -let core_ops_index_IndexArrayInst (t idx : Type0) (n : usize) - (inst : core_ops_index_Index (slice t) idx) : - core_ops_index_Index (array t n) idx = { - output = inst.output; - index = core_array_Array_index t idx n inst; -} - -// Trait implementation: [core::array::[T; N]] -let core_ops_index_IndexMutArrayIInst (t idx : Type0) (n : usize) - (inst : core_ops_index_IndexMut (slice t) idx) : - core_ops_index_IndexMut (array t n) idx = { - indexInst = core_ops_index_IndexArrayInst t idx n inst.indexInst; - index_mut = core_array_Array_index_mut t idx n inst; - index_mut_back = core_array_Array_index_mut_back t idx n inst; -} - -// [core::slice::index::usize::get]: forward function -let core_slice_index_usize_get - (t : Type0) : usize → slice t → result (option t) = - admit () // TODO - -// [core::slice::index::usize::get_mut]: forward function -let core_slice_index_usize_get_mut - (t : Type0) : usize → slice t → result (option t) = - admit () // TODO - -// [core::slice::index::usize::get_mut]: backward function 0 -let core_slice_index_usize_get_mut_back - (t : Type0) : usize → slice t → option t → result (slice t) = - admit () // TODO - -// [core::slice::index::usize::get_unchecked]: forward function -let core_slice_index_usize_get_unchecked - (t : Type0) : usize → const_raw_ptr (slice t) → result (const_raw_ptr t) = - admit () // TODO - -// [core::slice::index::usize::get_unchecked_mut]: forward function -let core_slice_index_usize_get_unchecked_mut - (t : Type0) : usize → mut_raw_ptr (slice t) → result (mut_raw_ptr t) = - admit () // TODO - -// [core::slice::index::usize::index]: forward function -let core_slice_index_usize_index (t : Type0) : usize → slice t → result t = - admit () // TODO - -// [core::slice::index::usize::index_mut]: forward function -let core_slice_index_usize_index_mut (t : Type0) : usize → slice t → result t = - admit () // TODO - -// [core::slice::index::usize::index_mut]: backward function 0 -let core_slice_index_usize_index_mut_back - (t : Type0) : usize → slice t → t → result (slice t) = - admit () // TODO - -// Trait implementation: [core::slice::index::private_slice_index::usize] -let core_slice_index_private_slice_index_SealedUsizeInst - : core_slice_index_private_slice_index_Sealed usize = () - -// Trait implementation: [core::slice::index::usize] -let core_slice_index_SliceIndexUsizeSliceTInst (t : Type0) : - core_slice_index_SliceIndex usize (slice t) = { - sealedInst = core_slice_index_private_slice_index_SealedUsizeInst; - output = t; - get = core_slice_index_usize_get t; - get_mut = core_slice_index_usize_get_mut t; - get_mut_back = core_slice_index_usize_get_mut_back t; - get_unchecked = core_slice_index_usize_get_unchecked t; - get_unchecked_mut = core_slice_index_usize_get_unchecked_mut t; - index = core_slice_index_usize_index t; - index_mut = core_slice_index_usize_index_mut t; - index_mut_back = core_slice_index_usize_index_mut_back t; -} - -// [alloc::vec::Vec::index]: forward function -let alloc_vec_Vec_index (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (self : alloc_vec_Vec t) (i : idx) : result inst.output = - admit () // TODO - -// [alloc::vec::Vec::index_mut]: forward function -let alloc_vec_Vec_index_mut (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (self : alloc_vec_Vec t) (i : idx) : result inst.output = - admit () // TODO - -// [alloc::vec::Vec::index_mut]: backward function 0 -let alloc_vec_Vec_index_mut_back - (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (self : alloc_vec_Vec t) (i : idx) (x : inst.output) : result (alloc_vec_Vec t) = - admit () // TODO - -// Trait implementation: [alloc::vec::Vec] -let alloc_vec_Vec_coreopsindexIndexInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_Index (alloc_vec_Vec t) idx = { - output = inst.output; - index = alloc_vec_Vec_index t idx inst; -} - -// Trait implementation: [alloc::vec::Vec] -let alloc_vec_Vec_coreopsindexIndexMutInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_IndexMut (alloc_vec_Vec t) idx = { - indexInst = alloc_vec_Vec_coreopsindexIndexInst t idx inst; - index_mut = alloc_vec_Vec_index_mut t idx inst; - index_mut_back = alloc_vec_Vec_index_mut_back t idx inst; -} - -(*** Theorems *) - -let alloc_vec_Vec_index_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : - Lemma ( - alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i == - alloc_vec_Vec_index_usize v i) - [SMTPat (alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)] - = - admit() - -let alloc_vec_Vec_index_mut_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : - Lemma ( - alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i == - alloc_vec_Vec_index_usize v i) - [SMTPat (alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)] - = - admit() - -let alloc_vec_Vec_index_mut_back_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : - Lemma ( - alloc_vec_Vec_index_mut_back a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i x == - alloc_vec_Vec_update_usize v i x) - [SMTPat (alloc_vec_Vec_index_mut_back a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i x)] - = - admit() diff --git a/tests/fstar-split/betree/BetreeMain.Clauses.Template.fst b/tests/fstar-split/betree/BetreeMain.Clauses.Template.fst deleted file mode 100644 index 537705c5..00000000 --- a/tests/fstar-split/betree/BetreeMain.Clauses.Template.fst +++ /dev/null @@ -1,117 +0,0 @@ -(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *) -(** [betree_main]: templates for the decreases clauses *) -module BetreeMain.Clauses.Template -open Primitives -open BetreeMain.Types - -#set-options "--z3rlimit 50 --fuel 1 --ifuel 1" - -(** [betree_main::betree::{betree_main::betree::List#1}::len]: decreases clause - Source: 'src/betree.rs', lines 276:4-276:24 *) -unfold -let betree_List_len_decreases (t : Type0) (self : betree_List_t t) : nat = - admit () - -(** [betree_main::betree::{betree_main::betree::List#1}::split_at]: decreases clause - Source: 'src/betree.rs', lines 284:4-284:51 *) -unfold -let betree_List_split_at_decreases (t : Type0) (self : betree_List_t t) - (n : u64) : nat = - admit () - -(** [betree_main::betree::{betree_main::betree::List<(u64, T)>#2}::partition_at_pivot]: decreases clause - Source: 'src/betree.rs', lines 339:4-339:73 *) -unfold -let betree_ListTupleU64T_partition_at_pivot_decreases (t : Type0) - (self : betree_List_t (u64 & t)) (pivot : u64) : nat = - admit () - -(** [betree_main::betree::{betree_main::betree::Node#5}::lookup_first_message_for_key]: decreases clause - Source: 'src/betree.rs', lines 789:4-792:34 *) -unfold -let betree_Node_lookup_first_message_for_key_decreases (key : u64) - (msgs : betree_List_t (u64 & betree_Message_t)) : nat = - admit () - -(** [betree_main::betree::{betree_main::betree::Node#5}::lookup_in_bindings]: decreases clause - Source: 'src/betree.rs', lines 636:4-636:80 *) -unfold -let betree_Node_lookup_in_bindings_decreases (key : u64) - (bindings : betree_List_t (u64 & u64)) : nat = - admit () - -(** [betree_main::betree::{betree_main::betree::Node#5}::apply_upserts]: decreases clause - Source: 'src/betree.rs', lines 819:4-819:90 *) -unfold -let betree_Node_apply_upserts_decreases - (msgs : betree_List_t (u64 & betree_Message_t)) (prev : option u64) - (key : u64) (st : state) : nat = - admit () - -(** [betree_main::betree::{betree_main::betree::Internal#4}::lookup_in_children]: decreases clause - Source: 'src/betree.rs', lines 395:4-395:63 *) -unfold -let betree_Internal_lookup_in_children_decreases (self : betree_Internal_t) - (key : u64) (st : state) : nat = - admit () - -(** [betree_main::betree::{betree_main::betree::Node#5}::lookup]: decreases clause - Source: 'src/betree.rs', lines 709:4-709:58 *) -unfold -let betree_Node_lookup_decreases (self : betree_Node_t) (key : u64) - (st : state) : nat = - admit () - -(** [betree_main::betree::{betree_main::betree::Node#5}::filter_messages_for_key]: decreases clause - Source: 'src/betree.rs', lines 674:4-674:77 *) -unfold -let betree_Node_filter_messages_for_key_decreases (key : u64) - (msgs : betree_List_t (u64 & betree_Message_t)) : nat = - admit () - -(** [betree_main::betree::{betree_main::betree::Node#5}::lookup_first_message_after_key]: decreases clause - Source: 'src/betree.rs', lines 689:4-692:34 *) -unfold -let betree_Node_lookup_first_message_after_key_decreases (key : u64) - (msgs : betree_List_t (u64 & betree_Message_t)) : nat = - admit () - -(** [betree_main::betree::{betree_main::betree::Node#5}::apply_messages_to_internal]: decreases clause - Source: 'src/betree.rs', lines 502:4-505:5 *) -unfold -let betree_Node_apply_messages_to_internal_decreases - (msgs : betree_List_t (u64 & betree_Message_t)) - (new_msgs : betree_List_t (u64 & betree_Message_t)) : nat = - admit () - -(** [betree_main::betree::{betree_main::betree::Node#5}::lookup_mut_in_bindings]: decreases clause - Source: 'src/betree.rs', lines 653:4-656:32 *) -unfold -let betree_Node_lookup_mut_in_bindings_decreases (key : u64) - (bindings : betree_List_t (u64 & u64)) : nat = - admit () - -(** [betree_main::betree::{betree_main::betree::Node#5}::apply_messages_to_leaf]: decreases clause - Source: 'src/betree.rs', lines 444:4-447:5 *) -unfold -let betree_Node_apply_messages_to_leaf_decreases - (bindings : betree_List_t (u64 & u64)) - (new_msgs : betree_List_t (u64 & betree_Message_t)) : nat = - admit () - -(** [betree_main::betree::{betree_main::betree::Internal#4}::flush]: decreases clause - Source: 'src/betree.rs', lines 410:4-415:26 *) -unfold -let betree_Internal_flush_decreases (self : betree_Internal_t) - (params : betree_Params_t) (node_id_cnt : betree_NodeIdCounter_t) - (content : betree_List_t (u64 & betree_Message_t)) (st : state) : nat = - admit () - -(** [betree_main::betree::{betree_main::betree::Node#5}::apply_messages]: decreases clause - Source: 'src/betree.rs', lines 588:4-593:5 *) -unfold -let betree_Node_apply_messages_decreases (self : betree_Node_t) - (params : betree_Params_t) (node_id_cnt : betree_NodeIdCounter_t) - (msgs : betree_List_t (u64 & betree_Message_t)) (st : state) : nat = - admit () - diff --git a/tests/fstar-split/betree/BetreeMain.Clauses.fst b/tests/fstar-split/betree/BetreeMain.Clauses.fst deleted file mode 100644 index 21f953d1..00000000 --- a/tests/fstar-split/betree/BetreeMain.Clauses.fst +++ /dev/null @@ -1,210 +0,0 @@ -(** [betree_main]: templates for the decreases clauses *) -module BetreeMain.Clauses -open Primitives -open BetreeMain.Types - -#set-options "--z3rlimit 50 --fuel 0 --ifuel 1" - -(*** Well-founded relations *) - -(* We had a few issues when proving termination of the mutually recursive functions: - * - betree_Internal_flush - * - betree_Node_apply_messages - * - * The quantity which effectively decreases is: - * (betree_size, messages_length) - * where messages_length is 0 when there are no messages - * (and where we use the lexicographic ordering, of course) - * - * However, the `%[...]` and `{:well-founded ...} notations are not available outside - * of `decrease` clauses. - * - * We thus resorted to writing and proving correct a well-founded relation over - * pairs of natural numbers. The trick is that `<<` can be used outside of decrease - * clauses, and can be used to trigger SMT patterns. - * - * What follows is adapted from: - * https://www.fstar-lang.org/tutorial/book/part2/part2_well_founded.html - * - * Also, the following PR might make things easier: - * https://github.com/FStarLang/FStar/pull/2561 - *) - -module P = FStar.Preorder -module W = FStar.WellFounded -module L = FStar.LexicographicOrdering - -let lt_nat (x y:nat) : Type = x < y == true -let rec wf_lt_nat (x:nat) - : W.acc lt_nat x - = W.AccIntro (fun y _ -> wf_lt_nat y) - -// A type abbreviation for a pair of nats -let nat_pair = (x:nat & nat) - -// Making a lexicographic ordering from a pair of nat ordering -let lex_order_nat_pair : P.relation nat_pair = - L.lex_t lt_nat (fun _ -> lt_nat) - -// The lex order on nat pairs is well-founded, using our general proof -// of lexicographic composition of well-founded orders -let lex_order_nat_pair_wf : W.well_founded lex_order_nat_pair = - L.lex_t_wf wf_lt_nat (fun _ -> wf_lt_nat) - -// A utility to introduce lt_nat -let mk_lt_nat (x:nat) (y:nat { x < y }) : lt_nat x y = - let _ : equals (x < y) true = Refl in - () - -// A utility to make a lex ordering of nat pairs -let mk_lex_order_nat_pair (xy0:nat_pair) - (xy1:nat_pair { - let (|x0, y0|) = xy0 in - let (|x1, y1|) = xy1 in - x0 < x1 \/ (x0 == x1 /\ y0 < y1) - }) : lex_order_nat_pair xy0 xy1 = - let (|x0, y0|) = xy0 in - let (|x1, y1|) = xy1 in - if x0 < x1 then L.Left_lex x0 x1 y0 y1 (mk_lt_nat x0 x1) - else L.Right_lex x0 y0 y1 (mk_lt_nat y0 y1) - -let rec coerce #a #r #x (p:W.acc #a r x) : Tot (W.acc r x) (decreases p) = - W.AccIntro (fun y r -> coerce (p.access_smaller y r)) - -let coerce_wf #a #r (p: (x:a -> W.acc r x)) : x:a -> W.acc r x = - fun x -> coerce (p x) - -(* We need this axiom, which comes from the following discussion: - * https://github.com/FStarLang/FStar/issues/1916 - * An issue here is that the `{well-founded ... }` notation - *) -assume -val axiom_well_founded (a : Type) (rel : a -> a -> Type0) - (rwf : W.well_founded #a rel) (x y : a) : - Lemma (requires (rel x y)) (ensures (x << y)) - -(* This lemma has a pattern (which makes it work) *) -let wf_nat_pair_lem (p0 p1 : nat_pair) : - Lemma - (requires ( - let (|x0, y0|) = p0 in - let (|x1, y1|) = p1 in - x0 < x1 || (x0 = x1 && y0 < y1))) - (ensures (p0 << p1)) - [SMTPat (p0 << p1)] = - let rel = lex_order_nat_pair in - let rel_wf = lex_order_nat_pair_wf in - let _ = mk_lex_order_nat_pair p0 p1 in - assert(rel p0 p1); - axiom_well_founded nat_pair rel rel_wf p0 p1 - -(*** Decrease clauses *) -/// "Standard" decrease clauses - -(** [betree_main::betree::List::{1}::len]: decreases clause *) -unfold -let betree_List_len_decreases (t : Type0) (self : betree_List_t t) : betree_List_t t = - self - -(** [betree_main::betree::List::{1}::split_at]: decreases clause *) -unfold -let betree_List_split_at_decreases (t : Type0) (self : betree_List_t t) - (n : u64) : nat = - n - -(** [betree_main::betree::List::{2}::partition_at_pivot]: decreases clause *) -unfold -let betree_ListTupleU64T_partition_at_pivot_decreases (t : Type0) - (self : betree_List_t (u64 & t)) (pivot : u64) : betree_List_t (u64 & t) = - self - -(** [betree_main::betree::Node::{5}::lookup_in_bindings]: decreases clause *) -unfold -let betree_Node_lookup_in_bindings_decreases (key : u64) - (bindings : betree_List_t (u64 & u64)) : betree_List_t (u64 & u64) = - bindings - -(** [betree_main::betree::Node::{5}::lookup_first_message_for_key]: decreases clause *) -unfold -let betree_Node_lookup_first_message_for_key_decreases (key : u64) - (msgs : betree_List_t (u64 & betree_Message_t)) : betree_List_t (u64 & betree_Message_t) = - msgs - -(** [betree_main::betree::Node::{5}::apply_upserts]: decreases clause *) -unfold -let betree_Node_apply_upserts_decreases - (msgs : betree_List_t (u64 & betree_Message_t)) (prev : option u64) - (key : u64) (st : state) : betree_List_t (u64 & betree_Message_t) = - msgs - -(** [betree_main::betree::Internal::{4}::lookup_in_children]: decreases clause *) -unfold -let betree_Internal_lookup_in_children_decreases (self : betree_Internal_t) - (key : u64) (st : state) : betree_Internal_t = - self - -(** [betree_main::betree::Node::{5}::lookup]: decreases clause *) -unfold -let betree_Node_lookup_decreases (self : betree_Node_t) (key : u64) - (st : state) : betree_Node_t = - self - -(** [betree_main::betree::Node::{5}::lookup_mut_in_bindings]: decreases clause *) -unfold -let betree_Node_lookup_mut_in_bindings_decreases (key : u64) - (bindings : betree_List_t (u64 & u64)) : betree_List_t (u64 & u64) = - bindings - -unfold -let betree_Node_apply_messages_to_leaf_decreases - (bindings : betree_List_t (u64 & u64)) - (new_msgs : betree_List_t (u64 & betree_Message_t)) : betree_List_t (u64 & betree_Message_t) = - new_msgs - -(** [betree_main::betree::Node::{5}::filter_messages_for_key]: decreases clause *) -unfold -let betree_Node_filter_messages_for_key_decreases (key : u64) - (msgs : betree_List_t (u64 & betree_Message_t)) : betree_List_t (u64 & betree_Message_t) = - msgs - -(** [betree_main::betree::Node::{5}::lookup_first_message_after_key]: decreases clause *) -unfold -let betree_Node_lookup_first_message_after_key_decreases (key : u64) - (msgs : betree_List_t (u64 & betree_Message_t)) : betree_List_t (u64 & betree_Message_t) = - msgs - -let betree_Node_apply_messages_to_internal_decreases - (msgs : betree_List_t (u64 & betree_Message_t)) - (new_msgs : betree_List_t (u64 & betree_Message_t)) : betree_List_t (u64 & betree_Message_t) = - new_msgs - -(*** Decrease clauses - nat_pair *) -/// The following decrease clauses use the [nat_pair] definition and the well-founded -/// relation proven above. - -let rec betree_size (bt : betree_Node_t) : nat = - match bt with - | Betree_Node_Internal node -> 1 + betree_Internal_size node - | Betree_Node_Leaf _ -> 1 - -and betree_Internal_size (node : betree_Internal_t) : nat = - 1 + betree_size node.left + betree_size node.right - -let rec betree_List_len (#a : Type0) (ls : betree_List_t a) : nat = - match ls with - | Betree_List_Cons _ tl -> 1 + betree_List_len tl - | Betree_List_Nil -> 0 - -(** [betree_main::betree::Internal::{4}::flush]: decreases clause *) -unfold -let betree_Internal_flush_decreases (self : betree_Internal_t) - (params : betree_Params_t) (node_id_cnt : betree_NodeIdCounter_t) - (content : betree_List_t (u64 & betree_Message_t)) (st : state) : nat_pair = - (|betree_Internal_size self, 0|) - -(** [betree_main::betree::Node::{5}::apply_messages]: decreases clause *) -unfold -let betree_Node_apply_messages_decreases (self : betree_Node_t) - (params : betree_Params_t) (node_id_cnt : betree_NodeIdCounter_t) - (msgs : betree_List_t (u64 & betree_Message_t)) (st : state) : nat_pair = - (|betree_size self, betree_List_len msgs|) diff --git a/tests/fstar-split/betree/BetreeMain.Funs.fst b/tests/fstar-split/betree/BetreeMain.Funs.fst deleted file mode 100644 index 33133236..00000000 --- a/tests/fstar-split/betree/BetreeMain.Funs.fst +++ /dev/null @@ -1,1006 +0,0 @@ -(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *) -(** [betree_main]: function definitions *) -module BetreeMain.Funs -open Primitives -include BetreeMain.Types -include BetreeMain.FunsExternal -include BetreeMain.Clauses - -#set-options "--z3rlimit 50 --fuel 1 --ifuel 1" - -(** [betree_main::betree::load_internal_node]: forward function - Source: 'src/betree.rs', lines 36:0-36:52 *) -let betree_load_internal_node - (id : u64) (st : state) : - result (state & (betree_List_t (u64 & betree_Message_t))) - = - betree_utils_load_internal_node id st - -(** [betree_main::betree::store_internal_node]: forward function - Source: 'src/betree.rs', lines 41:0-41:60 *) -let betree_store_internal_node - (id : u64) (content : betree_List_t (u64 & betree_Message_t)) (st : state) : - result (state & unit) - = - let* (st1, _) = betree_utils_store_internal_node id content st in - Return (st1, ()) - -(** [betree_main::betree::load_leaf_node]: forward function - Source: 'src/betree.rs', lines 46:0-46:44 *) -let betree_load_leaf_node - (id : u64) (st : state) : result (state & (betree_List_t (u64 & u64))) = - betree_utils_load_leaf_node id st - -(** [betree_main::betree::store_leaf_node]: forward function - Source: 'src/betree.rs', lines 51:0-51:52 *) -let betree_store_leaf_node - (id : u64) (content : betree_List_t (u64 & u64)) (st : state) : - result (state & unit) - = - let* (st1, _) = betree_utils_store_leaf_node id content st in - Return (st1, ()) - -(** [betree_main::betree::fresh_node_id]: forward function - Source: 'src/betree.rs', lines 55:0-55:48 *) -let betree_fresh_node_id (counter : u64) : result u64 = - let* _ = u64_add counter 1 in Return counter - -(** [betree_main::betree::fresh_node_id]: backward function 0 - Source: 'src/betree.rs', lines 55:0-55:48 *) -let betree_fresh_node_id_back (counter : u64) : result u64 = - u64_add counter 1 - -(** [betree_main::betree::{betree_main::betree::NodeIdCounter}::new]: forward function - Source: 'src/betree.rs', lines 206:4-206:20 *) -let betree_NodeIdCounter_new : result betree_NodeIdCounter_t = - Return { next_node_id = 0 } - -(** [betree_main::betree::{betree_main::betree::NodeIdCounter}::fresh_id]: forward function - Source: 'src/betree.rs', lines 210:4-210:36 *) -let betree_NodeIdCounter_fresh_id - (self : betree_NodeIdCounter_t) : result u64 = - let* _ = u64_add self.next_node_id 1 in Return self.next_node_id - -(** [betree_main::betree::{betree_main::betree::NodeIdCounter}::fresh_id]: backward function 0 - Source: 'src/betree.rs', lines 210:4-210:36 *) -let betree_NodeIdCounter_fresh_id_back - (self : betree_NodeIdCounter_t) : result betree_NodeIdCounter_t = - let* i = u64_add self.next_node_id 1 in Return { next_node_id = i } - -(** [betree_main::betree::upsert_update]: forward function - Source: 'src/betree.rs', lines 234:0-234:70 *) -let betree_upsert_update - (prev : option u64) (st : betree_UpsertFunState_t) : result u64 = - begin match prev with - | None -> - begin match st with - | Betree_UpsertFunState_Add v -> Return v - | Betree_UpsertFunState_Sub _ -> Return 0 - end - | Some prev1 -> - begin match st with - | Betree_UpsertFunState_Add v -> - let* margin = u64_sub core_u64_max prev1 in - if margin >= v then u64_add prev1 v else Return core_u64_max - | Betree_UpsertFunState_Sub v -> - if prev1 >= v then u64_sub prev1 v else Return 0 - end - end - -(** [betree_main::betree::{betree_main::betree::List#1}::len]: forward function - Source: 'src/betree.rs', lines 276:4-276:24 *) -let rec betree_List_len - (t : Type0) (self : betree_List_t t) : - Tot (result u64) (decreases (betree_List_len_decreases t self)) - = - begin match self with - | Betree_List_Cons _ tl -> let* i = betree_List_len t tl in u64_add 1 i - | Betree_List_Nil -> Return 0 - end - -(** [betree_main::betree::{betree_main::betree::List#1}::split_at]: forward function - Source: 'src/betree.rs', lines 284:4-284:51 *) -let rec betree_List_split_at - (t : Type0) (self : betree_List_t t) (n : u64) : - Tot (result ((betree_List_t t) & (betree_List_t t))) - (decreases (betree_List_split_at_decreases t self n)) - = - if n = 0 - then Return (Betree_List_Nil, self) - else - begin match self with - | Betree_List_Cons hd tl -> - let* i = u64_sub n 1 in - let* p = betree_List_split_at t tl i in - let (ls0, ls1) = p in - Return (Betree_List_Cons hd ls0, ls1) - | Betree_List_Nil -> Fail Failure - end - -(** [betree_main::betree::{betree_main::betree::List#1}::push_front]: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/betree.rs', lines 299:4-299:34 *) -let betree_List_push_front - (t : Type0) (self : betree_List_t t) (x : t) : result (betree_List_t t) = - let tl = core_mem_replace (betree_List_t t) self Betree_List_Nil in - Return (Betree_List_Cons x tl) - -(** [betree_main::betree::{betree_main::betree::List#1}::pop_front]: forward function - Source: 'src/betree.rs', lines 306:4-306:32 *) -let betree_List_pop_front (t : Type0) (self : betree_List_t t) : result t = - let ls = core_mem_replace (betree_List_t t) self Betree_List_Nil in - begin match ls with - | Betree_List_Cons x _ -> Return x - | Betree_List_Nil -> Fail Failure - end - -(** [betree_main::betree::{betree_main::betree::List#1}::pop_front]: backward function 0 - Source: 'src/betree.rs', lines 306:4-306:32 *) -let betree_List_pop_front_back - (t : Type0) (self : betree_List_t t) : result (betree_List_t t) = - let ls = core_mem_replace (betree_List_t t) self Betree_List_Nil in - begin match ls with - | Betree_List_Cons _ tl -> Return tl - | Betree_List_Nil -> Fail Failure - end - -(** [betree_main::betree::{betree_main::betree::List#1}::hd]: forward function - Source: 'src/betree.rs', lines 318:4-318:22 *) -let betree_List_hd (t : Type0) (self : betree_List_t t) : result t = - begin match self with - | Betree_List_Cons hd _ -> Return hd - | Betree_List_Nil -> Fail Failure - end - -(** [betree_main::betree::{betree_main::betree::List<(u64, T)>#2}::head_has_key]: forward function - Source: 'src/betree.rs', lines 327:4-327:44 *) -let betree_ListTupleU64T_head_has_key - (t : Type0) (self : betree_List_t (u64 & t)) (key : u64) : result bool = - begin match self with - | Betree_List_Cons hd _ -> let (i, _) = hd in Return (i = key) - | Betree_List_Nil -> Return false - end - -(** [betree_main::betree::{betree_main::betree::List<(u64, T)>#2}::partition_at_pivot]: forward function - Source: 'src/betree.rs', lines 339:4-339:73 *) -let rec betree_ListTupleU64T_partition_at_pivot - (t : Type0) (self : betree_List_t (u64 & t)) (pivot : u64) : - Tot (result ((betree_List_t (u64 & t)) & (betree_List_t (u64 & t)))) - (decreases (betree_ListTupleU64T_partition_at_pivot_decreases t self pivot)) - = - begin match self with - | Betree_List_Cons hd tl -> - let (i, x) = hd in - if i >= pivot - then Return (Betree_List_Nil, Betree_List_Cons (i, x) tl) - else - let* p = betree_ListTupleU64T_partition_at_pivot t tl pivot in - let (ls0, ls1) = p in - Return (Betree_List_Cons (i, x) ls0, ls1) - | Betree_List_Nil -> Return (Betree_List_Nil, Betree_List_Nil) - end - -(** [betree_main::betree::{betree_main::betree::Leaf#3}::split]: forward function - Source: 'src/betree.rs', lines 359:4-364:17 *) -let betree_Leaf_split - (self : betree_Leaf_t) (content : betree_List_t (u64 & u64)) - (params : betree_Params_t) (node_id_cnt : betree_NodeIdCounter_t) - (st : state) : - result (state & betree_Internal_t) - = - let* p = betree_List_split_at (u64 & u64) content params.split_size in - let (content0, content1) = p in - let* p1 = betree_List_hd (u64 & u64) content1 in - let (pivot, _) = p1 in - let* id0 = betree_NodeIdCounter_fresh_id node_id_cnt in - let* node_id_cnt1 = betree_NodeIdCounter_fresh_id_back node_id_cnt in - let* id1 = betree_NodeIdCounter_fresh_id node_id_cnt1 in - let* (st1, _) = betree_store_leaf_node id0 content0 st in - let* (st2, _) = betree_store_leaf_node id1 content1 st1 in - let n = Betree_Node_Leaf { id = id0; size = params.split_size } in - let n1 = Betree_Node_Leaf { id = id1; size = params.split_size } in - Return (st2, { id = self.id; pivot = pivot; left = n; right = n1 }) - -(** [betree_main::betree::{betree_main::betree::Leaf#3}::split]: backward function 2 - Source: 'src/betree.rs', lines 359:4-364:17 *) -let betree_Leaf_split_back - (self : betree_Leaf_t) (content : betree_List_t (u64 & u64)) - (params : betree_Params_t) (node_id_cnt : betree_NodeIdCounter_t) - (st : state) : - result betree_NodeIdCounter_t - = - let* p = betree_List_split_at (u64 & u64) content params.split_size in - let (content0, content1) = p in - let* _ = betree_List_hd (u64 & u64) content1 in - let* id0 = betree_NodeIdCounter_fresh_id node_id_cnt in - let* node_id_cnt1 = betree_NodeIdCounter_fresh_id_back node_id_cnt in - let* id1 = betree_NodeIdCounter_fresh_id node_id_cnt1 in - let* (st1, _) = betree_store_leaf_node id0 content0 st in - let* _ = betree_store_leaf_node id1 content1 st1 in - betree_NodeIdCounter_fresh_id_back node_id_cnt1 - -(** [betree_main::betree::{betree_main::betree::Node#5}::lookup_first_message_for_key]: forward function - Source: 'src/betree.rs', lines 789:4-792:34 *) -let rec betree_Node_lookup_first_message_for_key - (key : u64) (msgs : betree_List_t (u64 & betree_Message_t)) : - Tot (result (betree_List_t (u64 & betree_Message_t))) - (decreases (betree_Node_lookup_first_message_for_key_decreases key msgs)) - = - begin match msgs with - | Betree_List_Cons x next_msgs -> - let (i, m) = x in - if i >= key - then Return (Betree_List_Cons (i, m) next_msgs) - else betree_Node_lookup_first_message_for_key key next_msgs - | Betree_List_Nil -> Return Betree_List_Nil - end - -(** [betree_main::betree::{betree_main::betree::Node#5}::lookup_first_message_for_key]: backward function 0 - Source: 'src/betree.rs', lines 789:4-792:34 *) -let rec betree_Node_lookup_first_message_for_key_back - (key : u64) (msgs : betree_List_t (u64 & betree_Message_t)) - (ret : betree_List_t (u64 & betree_Message_t)) : - Tot (result (betree_List_t (u64 & betree_Message_t))) - (decreases (betree_Node_lookup_first_message_for_key_decreases key msgs)) - = - begin match msgs with - | Betree_List_Cons x next_msgs -> - let (i, m) = x in - if i >= key - then Return ret - else - let* next_msgs1 = - betree_Node_lookup_first_message_for_key_back key next_msgs ret in - Return (Betree_List_Cons (i, m) next_msgs1) - | Betree_List_Nil -> Return ret - end - -(** [betree_main::betree::{betree_main::betree::Node#5}::lookup_in_bindings]: forward function - Source: 'src/betree.rs', lines 636:4-636:80 *) -let rec betree_Node_lookup_in_bindings - (key : u64) (bindings : betree_List_t (u64 & u64)) : - Tot (result (option u64)) - (decreases (betree_Node_lookup_in_bindings_decreases key bindings)) - = - begin match bindings with - | Betree_List_Cons hd tl -> - let (i, i1) = hd in - if i = key - then Return (Some i1) - else if i > key then Return None else betree_Node_lookup_in_bindings key tl - | Betree_List_Nil -> Return None - end - -(** [betree_main::betree::{betree_main::betree::Node#5}::apply_upserts]: forward function - Source: 'src/betree.rs', lines 819:4-819:90 *) -let rec betree_Node_apply_upserts - (msgs : betree_List_t (u64 & betree_Message_t)) (prev : option u64) - (key : u64) (st : state) : - Tot (result (state & u64)) - (decreases (betree_Node_apply_upserts_decreases msgs prev key st)) - = - let* b = betree_ListTupleU64T_head_has_key betree_Message_t msgs key in - if b - then - let* msg = betree_List_pop_front (u64 & betree_Message_t) msgs in - let (_, m) = msg in - begin match m with - | Betree_Message_Insert _ -> Fail Failure - | Betree_Message_Delete -> Fail Failure - | Betree_Message_Upsert s -> - let* v = betree_upsert_update prev s in - let* msgs1 = betree_List_pop_front_back (u64 & betree_Message_t) msgs in - betree_Node_apply_upserts msgs1 (Some v) key st - end - else - let* (st1, v) = core_option_Option_unwrap u64 prev st in - let* _ = - betree_List_push_front (u64 & betree_Message_t) msgs (key, - Betree_Message_Insert v) in - Return (st1, v) - -(** [betree_main::betree::{betree_main::betree::Node#5}::apply_upserts]: backward function 0 - Source: 'src/betree.rs', lines 819:4-819:90 *) -let rec betree_Node_apply_upserts_back - (msgs : betree_List_t (u64 & betree_Message_t)) (prev : option u64) - (key : u64) (st : state) : - Tot (result (betree_List_t (u64 & betree_Message_t))) - (decreases (betree_Node_apply_upserts_decreases msgs prev key st)) - = - let* b = betree_ListTupleU64T_head_has_key betree_Message_t msgs key in - if b - then - let* msg = betree_List_pop_front (u64 & betree_Message_t) msgs in - let (_, m) = msg in - begin match m with - | Betree_Message_Insert _ -> Fail Failure - | Betree_Message_Delete -> Fail Failure - | Betree_Message_Upsert s -> - let* v = betree_upsert_update prev s in - let* msgs1 = betree_List_pop_front_back (u64 & betree_Message_t) msgs in - betree_Node_apply_upserts_back msgs1 (Some v) key st - end - else - let* (_, v) = core_option_Option_unwrap u64 prev st in - betree_List_push_front (u64 & betree_Message_t) msgs (key, - Betree_Message_Insert v) - -(** [betree_main::betree::{betree_main::betree::Internal#4}::lookup_in_children]: forward function - Source: 'src/betree.rs', lines 395:4-395:63 *) -let rec betree_Internal_lookup_in_children - (self : betree_Internal_t) (key : u64) (st : state) : - Tot (result (state & (option u64))) - (decreases (betree_Internal_lookup_in_children_decreases self key st)) - = - if key < self.pivot - then betree_Node_lookup self.left key st - else betree_Node_lookup self.right key st - -(** [betree_main::betree::{betree_main::betree::Internal#4}::lookup_in_children]: backward function 0 - Source: 'src/betree.rs', lines 395:4-395:63 *) -and betree_Internal_lookup_in_children_back - (self : betree_Internal_t) (key : u64) (st : state) : - Tot (result betree_Internal_t) - (decreases (betree_Internal_lookup_in_children_decreases self key st)) - = - if key < self.pivot - then - let* n = betree_Node_lookup_back self.left key st in - Return { self with left = n } - else - let* n = betree_Node_lookup_back self.right key st in - Return { self with right = n } - -(** [betree_main::betree::{betree_main::betree::Node#5}::lookup]: forward function - Source: 'src/betree.rs', lines 709:4-709:58 *) -and betree_Node_lookup - (self : betree_Node_t) (key : u64) (st : state) : - Tot (result (state & (option u64))) - (decreases (betree_Node_lookup_decreases self key st)) - = - begin match self with - | Betree_Node_Internal node -> - let* (st1, msgs) = betree_load_internal_node node.id st in - let* pending = betree_Node_lookup_first_message_for_key key msgs in - begin match pending with - | Betree_List_Cons p l -> - let (k, msg) = p in - if k <> key - then - let* (st2, o) = betree_Internal_lookup_in_children node key st1 in - let* _ = - betree_Node_lookup_first_message_for_key_back key msgs - (Betree_List_Cons (k, msg) l) in - Return (st2, o) - else - begin match msg with - | Betree_Message_Insert v -> - let* _ = - betree_Node_lookup_first_message_for_key_back key msgs - (Betree_List_Cons (k, Betree_Message_Insert v) l) in - Return (st1, Some v) - | Betree_Message_Delete -> - let* _ = - betree_Node_lookup_first_message_for_key_back key msgs - (Betree_List_Cons (k, Betree_Message_Delete) l) in - Return (st1, None) - | Betree_Message_Upsert ufs -> - let* (st2, v) = betree_Internal_lookup_in_children node key st1 in - let* (st3, v1) = - betree_Node_apply_upserts (Betree_List_Cons (k, - Betree_Message_Upsert ufs) l) v key st2 in - let* node1 = betree_Internal_lookup_in_children_back node key st1 in - let* pending1 = - betree_Node_apply_upserts_back (Betree_List_Cons (k, - Betree_Message_Upsert ufs) l) v key st2 in - let* msgs1 = - betree_Node_lookup_first_message_for_key_back key msgs pending1 in - let* (st4, _) = betree_store_internal_node node1.id msgs1 st3 in - Return (st4, Some v1) - end - | Betree_List_Nil -> - let* (st2, o) = betree_Internal_lookup_in_children node key st1 in - let* _ = - betree_Node_lookup_first_message_for_key_back key msgs Betree_List_Nil - in - Return (st2, o) - end - | Betree_Node_Leaf node -> - let* (st1, bindings) = betree_load_leaf_node node.id st in - let* o = betree_Node_lookup_in_bindings key bindings in - Return (st1, o) - end - -(** [betree_main::betree::{betree_main::betree::Node#5}::lookup]: backward function 0 - Source: 'src/betree.rs', lines 709:4-709:58 *) -and betree_Node_lookup_back - (self : betree_Node_t) (key : u64) (st : state) : - Tot (result betree_Node_t) - (decreases (betree_Node_lookup_decreases self key st)) - = - begin match self with - | Betree_Node_Internal node -> - let* (st1, msgs) = betree_load_internal_node node.id st in - let* pending = betree_Node_lookup_first_message_for_key key msgs in - begin match pending with - | Betree_List_Cons p l -> - let (k, msg) = p in - if k <> key - then - let* _ = - betree_Node_lookup_first_message_for_key_back key msgs - (Betree_List_Cons (k, msg) l) in - let* node1 = betree_Internal_lookup_in_children_back node key st1 in - Return (Betree_Node_Internal node1) - else - begin match msg with - | Betree_Message_Insert v -> - let* _ = - betree_Node_lookup_first_message_for_key_back key msgs - (Betree_List_Cons (k, Betree_Message_Insert v) l) in - Return (Betree_Node_Internal node) - | Betree_Message_Delete -> - let* _ = - betree_Node_lookup_first_message_for_key_back key msgs - (Betree_List_Cons (k, Betree_Message_Delete) l) in - Return (Betree_Node_Internal node) - | Betree_Message_Upsert ufs -> - let* (st2, v) = betree_Internal_lookup_in_children node key st1 in - let* (st3, _) = - betree_Node_apply_upserts (Betree_List_Cons (k, - Betree_Message_Upsert ufs) l) v key st2 in - let* node1 = betree_Internal_lookup_in_children_back node key st1 in - let* pending1 = - betree_Node_apply_upserts_back (Betree_List_Cons (k, - Betree_Message_Upsert ufs) l) v key st2 in - let* msgs1 = - betree_Node_lookup_first_message_for_key_back key msgs pending1 in - let* _ = betree_store_internal_node node1.id msgs1 st3 in - Return (Betree_Node_Internal node1) - end - | Betree_List_Nil -> - let* _ = - betree_Node_lookup_first_message_for_key_back key msgs Betree_List_Nil - in - let* node1 = betree_Internal_lookup_in_children_back node key st1 in - Return (Betree_Node_Internal node1) - end - | Betree_Node_Leaf node -> - let* (_, bindings) = betree_load_leaf_node node.id st in - let* _ = betree_Node_lookup_in_bindings key bindings in - Return (Betree_Node_Leaf node) - end - -(** [betree_main::betree::{betree_main::betree::Node#5}::filter_messages_for_key]: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/betree.rs', lines 674:4-674:77 *) -let rec betree_Node_filter_messages_for_key - (key : u64) (msgs : betree_List_t (u64 & betree_Message_t)) : - Tot (result (betree_List_t (u64 & betree_Message_t))) - (decreases (betree_Node_filter_messages_for_key_decreases key msgs)) - = - begin match msgs with - | Betree_List_Cons p l -> - let (k, m) = p in - if k = key - then - let* msgs1 = - betree_List_pop_front_back (u64 & betree_Message_t) (Betree_List_Cons - (k, m) l) in - betree_Node_filter_messages_for_key key msgs1 - else Return (Betree_List_Cons (k, m) l) - | Betree_List_Nil -> Return Betree_List_Nil - end - -(** [betree_main::betree::{betree_main::betree::Node#5}::lookup_first_message_after_key]: forward function - Source: 'src/betree.rs', lines 689:4-692:34 *) -let rec betree_Node_lookup_first_message_after_key - (key : u64) (msgs : betree_List_t (u64 & betree_Message_t)) : - Tot (result (betree_List_t (u64 & betree_Message_t))) - (decreases (betree_Node_lookup_first_message_after_key_decreases key msgs)) - = - begin match msgs with - | Betree_List_Cons p next_msgs -> - let (k, m) = p in - if k = key - then betree_Node_lookup_first_message_after_key key next_msgs - else Return (Betree_List_Cons (k, m) next_msgs) - | Betree_List_Nil -> Return Betree_List_Nil - end - -(** [betree_main::betree::{betree_main::betree::Node#5}::lookup_first_message_after_key]: backward function 0 - Source: 'src/betree.rs', lines 689:4-692:34 *) -let rec betree_Node_lookup_first_message_after_key_back - (key : u64) (msgs : betree_List_t (u64 & betree_Message_t)) - (ret : betree_List_t (u64 & betree_Message_t)) : - Tot (result (betree_List_t (u64 & betree_Message_t))) - (decreases (betree_Node_lookup_first_message_after_key_decreases key msgs)) - = - begin match msgs with - | Betree_List_Cons p next_msgs -> - let (k, m) = p in - if k = key - then - let* next_msgs1 = - betree_Node_lookup_first_message_after_key_back key next_msgs ret in - Return (Betree_List_Cons (k, m) next_msgs1) - else Return ret - | Betree_List_Nil -> Return ret - end - -(** [betree_main::betree::{betree_main::betree::Node#5}::apply_to_internal]: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/betree.rs', lines 521:4-521:89 *) -let betree_Node_apply_to_internal - (msgs : betree_List_t (u64 & betree_Message_t)) (key : u64) - (new_msg : betree_Message_t) : - result (betree_List_t (u64 & betree_Message_t)) - = - let* msgs1 = betree_Node_lookup_first_message_for_key key msgs in - let* b = betree_ListTupleU64T_head_has_key betree_Message_t msgs1 key in - if b - then - begin match new_msg with - | Betree_Message_Insert i -> - let* msgs2 = betree_Node_filter_messages_for_key key msgs1 in - let* msgs3 = - betree_List_push_front (u64 & betree_Message_t) msgs2 (key, - Betree_Message_Insert i) in - betree_Node_lookup_first_message_for_key_back key msgs msgs3 - | Betree_Message_Delete -> - let* msgs2 = betree_Node_filter_messages_for_key key msgs1 in - let* msgs3 = - betree_List_push_front (u64 & betree_Message_t) msgs2 (key, - Betree_Message_Delete) in - betree_Node_lookup_first_message_for_key_back key msgs msgs3 - | Betree_Message_Upsert s -> - let* p = betree_List_hd (u64 & betree_Message_t) msgs1 in - let (_, m) = p in - begin match m with - | Betree_Message_Insert prev -> - let* v = betree_upsert_update (Some prev) s in - let* msgs2 = betree_List_pop_front_back (u64 & betree_Message_t) msgs1 - in - let* msgs3 = - betree_List_push_front (u64 & betree_Message_t) msgs2 (key, - Betree_Message_Insert v) in - betree_Node_lookup_first_message_for_key_back key msgs msgs3 - | Betree_Message_Delete -> - let* v = betree_upsert_update None s in - let* msgs2 = betree_List_pop_front_back (u64 & betree_Message_t) msgs1 - in - let* msgs3 = - betree_List_push_front (u64 & betree_Message_t) msgs2 (key, - Betree_Message_Insert v) in - betree_Node_lookup_first_message_for_key_back key msgs msgs3 - | Betree_Message_Upsert _ -> - let* msgs2 = betree_Node_lookup_first_message_after_key key msgs1 in - let* msgs3 = - betree_List_push_front (u64 & betree_Message_t) msgs2 (key, - Betree_Message_Upsert s) in - let* msgs4 = - betree_Node_lookup_first_message_after_key_back key msgs1 msgs3 in - betree_Node_lookup_first_message_for_key_back key msgs msgs4 - end - end - else - let* msgs2 = - betree_List_push_front (u64 & betree_Message_t) msgs1 (key, new_msg) in - betree_Node_lookup_first_message_for_key_back key msgs msgs2 - -(** [betree_main::betree::{betree_main::betree::Node#5}::apply_messages_to_internal]: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/betree.rs', lines 502:4-505:5 *) -let rec betree_Node_apply_messages_to_internal - (msgs : betree_List_t (u64 & betree_Message_t)) - (new_msgs : betree_List_t (u64 & betree_Message_t)) : - Tot (result (betree_List_t (u64 & betree_Message_t))) - (decreases (betree_Node_apply_messages_to_internal_decreases msgs new_msgs)) - = - begin match new_msgs with - | Betree_List_Cons new_msg new_msgs_tl -> - let (i, m) = new_msg in - let* msgs1 = betree_Node_apply_to_internal msgs i m in - betree_Node_apply_messages_to_internal msgs1 new_msgs_tl - | Betree_List_Nil -> Return msgs - end - -(** [betree_main::betree::{betree_main::betree::Node#5}::lookup_mut_in_bindings]: forward function - Source: 'src/betree.rs', lines 653:4-656:32 *) -let rec betree_Node_lookup_mut_in_bindings - (key : u64) (bindings : betree_List_t (u64 & u64)) : - Tot (result (betree_List_t (u64 & u64))) - (decreases (betree_Node_lookup_mut_in_bindings_decreases key bindings)) - = - begin match bindings with - | Betree_List_Cons hd tl -> - let (i, i1) = hd in - if i >= key - then Return (Betree_List_Cons (i, i1) tl) - else betree_Node_lookup_mut_in_bindings key tl - | Betree_List_Nil -> Return Betree_List_Nil - end - -(** [betree_main::betree::{betree_main::betree::Node#5}::lookup_mut_in_bindings]: backward function 0 - Source: 'src/betree.rs', lines 653:4-656:32 *) -let rec betree_Node_lookup_mut_in_bindings_back - (key : u64) (bindings : betree_List_t (u64 & u64)) - (ret : betree_List_t (u64 & u64)) : - Tot (result (betree_List_t (u64 & u64))) - (decreases (betree_Node_lookup_mut_in_bindings_decreases key bindings)) - = - begin match bindings with - | Betree_List_Cons hd tl -> - let (i, i1) = hd in - if i >= key - then Return ret - else - let* tl1 = betree_Node_lookup_mut_in_bindings_back key tl ret in - Return (Betree_List_Cons (i, i1) tl1) - | Betree_List_Nil -> Return ret - end - -(** [betree_main::betree::{betree_main::betree::Node#5}::apply_to_leaf]: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/betree.rs', lines 460:4-460:87 *) -let betree_Node_apply_to_leaf - (bindings : betree_List_t (u64 & u64)) (key : u64) - (new_msg : betree_Message_t) : - result (betree_List_t (u64 & u64)) - = - let* bindings1 = betree_Node_lookup_mut_in_bindings key bindings in - let* b = betree_ListTupleU64T_head_has_key u64 bindings1 key in - if b - then - let* hd = betree_List_pop_front (u64 & u64) bindings1 in - begin match new_msg with - | Betree_Message_Insert v -> - let* bindings2 = betree_List_pop_front_back (u64 & u64) bindings1 in - let* bindings3 = betree_List_push_front (u64 & u64) bindings2 (key, v) in - betree_Node_lookup_mut_in_bindings_back key bindings bindings3 - | Betree_Message_Delete -> - let* bindings2 = betree_List_pop_front_back (u64 & u64) bindings1 in - betree_Node_lookup_mut_in_bindings_back key bindings bindings2 - | Betree_Message_Upsert s -> - let (_, i) = hd in - let* v = betree_upsert_update (Some i) s in - let* bindings2 = betree_List_pop_front_back (u64 & u64) bindings1 in - let* bindings3 = betree_List_push_front (u64 & u64) bindings2 (key, v) in - betree_Node_lookup_mut_in_bindings_back key bindings bindings3 - end - else - begin match new_msg with - | Betree_Message_Insert v -> - let* bindings2 = betree_List_push_front (u64 & u64) bindings1 (key, v) in - betree_Node_lookup_mut_in_bindings_back key bindings bindings2 - | Betree_Message_Delete -> - betree_Node_lookup_mut_in_bindings_back key bindings bindings1 - | Betree_Message_Upsert s -> - let* v = betree_upsert_update None s in - let* bindings2 = betree_List_push_front (u64 & u64) bindings1 (key, v) in - betree_Node_lookup_mut_in_bindings_back key bindings bindings2 - end - -(** [betree_main::betree::{betree_main::betree::Node#5}::apply_messages_to_leaf]: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/betree.rs', lines 444:4-447:5 *) -let rec betree_Node_apply_messages_to_leaf - (bindings : betree_List_t (u64 & u64)) - (new_msgs : betree_List_t (u64 & betree_Message_t)) : - Tot (result (betree_List_t (u64 & u64))) - (decreases (betree_Node_apply_messages_to_leaf_decreases bindings new_msgs)) - = - begin match new_msgs with - | Betree_List_Cons new_msg new_msgs_tl -> - let (i, m) = new_msg in - let* bindings1 = betree_Node_apply_to_leaf bindings i m in - betree_Node_apply_messages_to_leaf bindings1 new_msgs_tl - | Betree_List_Nil -> Return bindings - end - -(** [betree_main::betree::{betree_main::betree::Internal#4}::flush]: forward function - Source: 'src/betree.rs', lines 410:4-415:26 *) -let rec betree_Internal_flush - (self : betree_Internal_t) (params : betree_Params_t) - (node_id_cnt : betree_NodeIdCounter_t) - (content : betree_List_t (u64 & betree_Message_t)) (st : state) : - Tot (result (state & (betree_List_t (u64 & betree_Message_t)))) - (decreases ( - betree_Internal_flush_decreases self params node_id_cnt content st)) - = - let* p = - betree_ListTupleU64T_partition_at_pivot betree_Message_t content self.pivot - in - let (msgs_left, msgs_right) = p in - let* len_left = betree_List_len (u64 & betree_Message_t) msgs_left in - if len_left >= params.min_flush_size - then - let* (st1, _) = - betree_Node_apply_messages self.left params node_id_cnt msgs_left st in - let* (_, node_id_cnt1) = - betree_Node_apply_messages_back self.left params node_id_cnt msgs_left st - in - let* len_right = betree_List_len (u64 & betree_Message_t) msgs_right in - if len_right >= params.min_flush_size - then - let* (st2, _) = - betree_Node_apply_messages self.right params node_id_cnt1 msgs_right - st1 in - let* _ = - betree_Node_apply_messages_back self.right params node_id_cnt1 - msgs_right st1 in - Return (st2, Betree_List_Nil) - else Return (st1, msgs_right) - else - let* (st1, _) = - betree_Node_apply_messages self.right params node_id_cnt msgs_right st in - let* _ = - betree_Node_apply_messages_back self.right params node_id_cnt msgs_right - st in - Return (st1, msgs_left) - -(** [betree_main::betree::{betree_main::betree::Internal#4}::flush]: backward function 0 - Source: 'src/betree.rs', lines 410:4-415:26 *) -and betree_Internal_flush_back - (self : betree_Internal_t) (params : betree_Params_t) - (node_id_cnt : betree_NodeIdCounter_t) - (content : betree_List_t (u64 & betree_Message_t)) (st : state) : - Tot (result (betree_Internal_t & betree_NodeIdCounter_t)) - (decreases ( - betree_Internal_flush_decreases self params node_id_cnt content st)) - = - let* p = - betree_ListTupleU64T_partition_at_pivot betree_Message_t content self.pivot - in - let (msgs_left, msgs_right) = p in - let* len_left = betree_List_len (u64 & betree_Message_t) msgs_left in - if len_left >= params.min_flush_size - then - let* (st1, _) = - betree_Node_apply_messages self.left params node_id_cnt msgs_left st in - let* (n, node_id_cnt1) = - betree_Node_apply_messages_back self.left params node_id_cnt msgs_left st - in - let* len_right = betree_List_len (u64 & betree_Message_t) msgs_right in - if len_right >= params.min_flush_size - then - let* (n1, node_id_cnt2) = - betree_Node_apply_messages_back self.right params node_id_cnt1 - msgs_right st1 in - Return ({ self with left = n; right = n1 }, node_id_cnt2) - else Return ({ self with left = n }, node_id_cnt1) - else - let* (n, node_id_cnt1) = - betree_Node_apply_messages_back self.right params node_id_cnt msgs_right - st in - Return ({ self with right = n }, node_id_cnt1) - -(** [betree_main::betree::{betree_main::betree::Node#5}::apply_messages]: forward function - Source: 'src/betree.rs', lines 588:4-593:5 *) -and betree_Node_apply_messages - (self : betree_Node_t) (params : betree_Params_t) - (node_id_cnt : betree_NodeIdCounter_t) - (msgs : betree_List_t (u64 & betree_Message_t)) (st : state) : - Tot (result (state & unit)) - (decreases ( - betree_Node_apply_messages_decreases self params node_id_cnt msgs st)) - = - begin match self with - | Betree_Node_Internal node -> - let* (st1, content) = betree_load_internal_node node.id st in - let* content1 = betree_Node_apply_messages_to_internal content msgs in - let* num_msgs = betree_List_len (u64 & betree_Message_t) content1 in - if num_msgs >= params.min_flush_size - then - let* (st2, content2) = - betree_Internal_flush node params node_id_cnt content1 st1 in - let* (node1, _) = - betree_Internal_flush_back node params node_id_cnt content1 st1 in - let* (st3, _) = betree_store_internal_node node1.id content2 st2 in - Return (st3, ()) - else - let* (st2, _) = betree_store_internal_node node.id content1 st1 in - Return (st2, ()) - | Betree_Node_Leaf node -> - let* (st1, content) = betree_load_leaf_node node.id st in - let* content1 = betree_Node_apply_messages_to_leaf content msgs in - let* len = betree_List_len (u64 & u64) content1 in - let* i = u64_mul 2 params.split_size in - if len >= i - then - let* (st2, _) = betree_Leaf_split node content1 params node_id_cnt st1 in - let* (st3, _) = betree_store_leaf_node node.id Betree_List_Nil st2 in - Return (st3, ()) - else - let* (st2, _) = betree_store_leaf_node node.id content1 st1 in - Return (st2, ()) - end - -(** [betree_main::betree::{betree_main::betree::Node#5}::apply_messages]: backward function 0 - Source: 'src/betree.rs', lines 588:4-593:5 *) -and betree_Node_apply_messages_back - (self : betree_Node_t) (params : betree_Params_t) - (node_id_cnt : betree_NodeIdCounter_t) - (msgs : betree_List_t (u64 & betree_Message_t)) (st : state) : - Tot (result (betree_Node_t & betree_NodeIdCounter_t)) - (decreases ( - betree_Node_apply_messages_decreases self params node_id_cnt msgs st)) - = - begin match self with - | Betree_Node_Internal node -> - let* (st1, content) = betree_load_internal_node node.id st in - let* content1 = betree_Node_apply_messages_to_internal content msgs in - let* num_msgs = betree_List_len (u64 & betree_Message_t) content1 in - if num_msgs >= params.min_flush_size - then - let* (st2, content2) = - betree_Internal_flush node params node_id_cnt content1 st1 in - let* (node1, node_id_cnt1) = - betree_Internal_flush_back node params node_id_cnt content1 st1 in - let* _ = betree_store_internal_node node1.id content2 st2 in - Return (Betree_Node_Internal node1, node_id_cnt1) - else - let* _ = betree_store_internal_node node.id content1 st1 in - Return (Betree_Node_Internal node, node_id_cnt) - | Betree_Node_Leaf node -> - let* (st1, content) = betree_load_leaf_node node.id st in - let* content1 = betree_Node_apply_messages_to_leaf content msgs in - let* len = betree_List_len (u64 & u64) content1 in - let* i = u64_mul 2 params.split_size in - if len >= i - then - let* (st2, new_node) = - betree_Leaf_split node content1 params node_id_cnt st1 in - let* _ = betree_store_leaf_node node.id Betree_List_Nil st2 in - let* node_id_cnt1 = - betree_Leaf_split_back node content1 params node_id_cnt st1 in - Return (Betree_Node_Internal new_node, node_id_cnt1) - else - let* _ = betree_store_leaf_node node.id content1 st1 in - Return (Betree_Node_Leaf { node with size = len }, node_id_cnt) - end - -(** [betree_main::betree::{betree_main::betree::Node#5}::apply]: forward function - Source: 'src/betree.rs', lines 576:4-582:5 *) -let betree_Node_apply - (self : betree_Node_t) (params : betree_Params_t) - (node_id_cnt : betree_NodeIdCounter_t) (key : u64) - (new_msg : betree_Message_t) (st : state) : - result (state & unit) - = - let* (st1, _) = - betree_Node_apply_messages self params node_id_cnt (Betree_List_Cons (key, - new_msg) Betree_List_Nil) st in - let* _ = - betree_Node_apply_messages_back self params node_id_cnt (Betree_List_Cons - (key, new_msg) Betree_List_Nil) st in - Return (st1, ()) - -(** [betree_main::betree::{betree_main::betree::Node#5}::apply]: backward function 0 - Source: 'src/betree.rs', lines 576:4-582:5 *) -let betree_Node_apply_back - (self : betree_Node_t) (params : betree_Params_t) - (node_id_cnt : betree_NodeIdCounter_t) (key : u64) - (new_msg : betree_Message_t) (st : state) : - result (betree_Node_t & betree_NodeIdCounter_t) - = - betree_Node_apply_messages_back self params node_id_cnt (Betree_List_Cons - (key, new_msg) Betree_List_Nil) st - -(** [betree_main::betree::{betree_main::betree::BeTree#6}::new]: forward function - Source: 'src/betree.rs', lines 849:4-849:60 *) -let betree_BeTree_new - (min_flush_size : u64) (split_size : u64) (st : state) : - result (state & betree_BeTree_t) - = - let* node_id_cnt = betree_NodeIdCounter_new in - let* id = betree_NodeIdCounter_fresh_id node_id_cnt in - let* (st1, _) = betree_store_leaf_node id Betree_List_Nil st in - let* node_id_cnt1 = betree_NodeIdCounter_fresh_id_back node_id_cnt in - Return (st1, - { - params = { min_flush_size = min_flush_size; split_size = split_size }; - node_id_cnt = node_id_cnt1; - root = (Betree_Node_Leaf { id = id; size = 0 }) - }) - -(** [betree_main::betree::{betree_main::betree::BeTree#6}::apply]: forward function - Source: 'src/betree.rs', lines 868:4-868:47 *) -let betree_BeTree_apply - (self : betree_BeTree_t) (key : u64) (msg : betree_Message_t) (st : state) : - result (state & unit) - = - let* (st1, _) = - betree_Node_apply self.root self.params self.node_id_cnt key msg st in - let* _ = - betree_Node_apply_back self.root self.params self.node_id_cnt key msg st in - Return (st1, ()) - -(** [betree_main::betree::{betree_main::betree::BeTree#6}::apply]: backward function 0 - Source: 'src/betree.rs', lines 868:4-868:47 *) -let betree_BeTree_apply_back - (self : betree_BeTree_t) (key : u64) (msg : betree_Message_t) (st : state) : - result betree_BeTree_t - = - let* (n, nic) = - betree_Node_apply_back self.root self.params self.node_id_cnt key msg st in - Return { self with node_id_cnt = nic; root = n } - -(** [betree_main::betree::{betree_main::betree::BeTree#6}::insert]: forward function - Source: 'src/betree.rs', lines 874:4-874:52 *) -let betree_BeTree_insert - (self : betree_BeTree_t) (key : u64) (value : u64) (st : state) : - result (state & unit) - = - let* (st1, _) = betree_BeTree_apply self key (Betree_Message_Insert value) st - in - let* _ = betree_BeTree_apply_back self key (Betree_Message_Insert value) st - in - Return (st1, ()) - -(** [betree_main::betree::{betree_main::betree::BeTree#6}::insert]: backward function 0 - Source: 'src/betree.rs', lines 874:4-874:52 *) -let betree_BeTree_insert_back - (self : betree_BeTree_t) (key : u64) (value : u64) (st : state) : - result betree_BeTree_t - = - betree_BeTree_apply_back self key (Betree_Message_Insert value) st - -(** [betree_main::betree::{betree_main::betree::BeTree#6}::delete]: forward function - Source: 'src/betree.rs', lines 880:4-880:38 *) -let betree_BeTree_delete - (self : betree_BeTree_t) (key : u64) (st : state) : result (state & unit) = - let* (st1, _) = betree_BeTree_apply self key Betree_Message_Delete st in - let* _ = betree_BeTree_apply_back self key Betree_Message_Delete st in - Return (st1, ()) - -(** [betree_main::betree::{betree_main::betree::BeTree#6}::delete]: backward function 0 - Source: 'src/betree.rs', lines 880:4-880:38 *) -let betree_BeTree_delete_back - (self : betree_BeTree_t) (key : u64) (st : state) : result betree_BeTree_t = - betree_BeTree_apply_back self key Betree_Message_Delete st - -(** [betree_main::betree::{betree_main::betree::BeTree#6}::upsert]: forward function - Source: 'src/betree.rs', lines 886:4-886:59 *) -let betree_BeTree_upsert - (self : betree_BeTree_t) (key : u64) (upd : betree_UpsertFunState_t) - (st : state) : - result (state & unit) - = - let* (st1, _) = betree_BeTree_apply self key (Betree_Message_Upsert upd) st - in - let* _ = betree_BeTree_apply_back self key (Betree_Message_Upsert upd) st in - Return (st1, ()) - -(** [betree_main::betree::{betree_main::betree::BeTree#6}::upsert]: backward function 0 - Source: 'src/betree.rs', lines 886:4-886:59 *) -let betree_BeTree_upsert_back - (self : betree_BeTree_t) (key : u64) (upd : betree_UpsertFunState_t) - (st : state) : - result betree_BeTree_t - = - betree_BeTree_apply_back self key (Betree_Message_Upsert upd) st - -(** [betree_main::betree::{betree_main::betree::BeTree#6}::lookup]: forward function - Source: 'src/betree.rs', lines 895:4-895:62 *) -let betree_BeTree_lookup - (self : betree_BeTree_t) (key : u64) (st : state) : - result (state & (option u64)) - = - betree_Node_lookup self.root key st - -(** [betree_main::betree::{betree_main::betree::BeTree#6}::lookup]: backward function 0 - Source: 'src/betree.rs', lines 895:4-895:62 *) -let betree_BeTree_lookup_back - (self : betree_BeTree_t) (key : u64) (st : state) : result betree_BeTree_t = - let* n = betree_Node_lookup_back self.root key st in - Return { self with root = n } - -(** [betree_main::main]: forward function - Source: 'src/betree_main.rs', lines 5:0-5:9 *) -let main : result unit = - Return () - -(** Unit test for [betree_main::main] *) -let _ = assert_norm (main = Return ()) - diff --git a/tests/fstar-split/betree/BetreeMain.FunsExternal.fsti b/tests/fstar-split/betree/BetreeMain.FunsExternal.fsti deleted file mode 100644 index cd2f956f..00000000 --- a/tests/fstar-split/betree/BetreeMain.FunsExternal.fsti +++ /dev/null @@ -1,35 +0,0 @@ -(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *) -(** [betree_main]: external function declarations *) -module BetreeMain.FunsExternal -open Primitives -include BetreeMain.Types - -#set-options "--z3rlimit 50 --fuel 1 --ifuel 1" - -(** [betree_main::betree_utils::load_internal_node]: forward function - Source: 'src/betree_utils.rs', lines 98:0-98:63 *) -val betree_utils_load_internal_node - : u64 -> state -> result (state & (betree_List_t (u64 & betree_Message_t))) - -(** [betree_main::betree_utils::store_internal_node]: forward function - Source: 'src/betree_utils.rs', lines 115:0-115:71 *) -val betree_utils_store_internal_node - : - u64 -> betree_List_t (u64 & betree_Message_t) -> state -> result (state & - unit) - -(** [betree_main::betree_utils::load_leaf_node]: forward function - Source: 'src/betree_utils.rs', lines 132:0-132:55 *) -val betree_utils_load_leaf_node - : u64 -> state -> result (state & (betree_List_t (u64 & u64))) - -(** [betree_main::betree_utils::store_leaf_node]: forward function - Source: 'src/betree_utils.rs', lines 145:0-145:63 *) -val betree_utils_store_leaf_node - : u64 -> betree_List_t (u64 & u64) -> state -> result (state & unit) - -(** [core::option::{core::option::Option}::unwrap]: forward function - Source: '/rustc/d59363ad0b6391b7fc5bbb02c9ccf9300eef3753/library/core/src/option.rs', lines 932:4-932:34 *) -val core_option_Option_unwrap - (t : Type0) : option t -> state -> result (state & t) - diff --git a/tests/fstar-split/betree/BetreeMain.Types.fst b/tests/fstar-split/betree/BetreeMain.Types.fst deleted file mode 100644 index b87219b2..00000000 --- a/tests/fstar-split/betree/BetreeMain.Types.fst +++ /dev/null @@ -1,61 +0,0 @@ -(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *) -(** [betree_main]: type definitions *) -module BetreeMain.Types -open Primitives -include BetreeMain.TypesExternal - -#set-options "--z3rlimit 50 --fuel 1 --ifuel 1" - -(** [betree_main::betree::List] - Source: 'src/betree.rs', lines 17:0-17:23 *) -type betree_List_t (t : Type0) = -| Betree_List_Cons : t -> betree_List_t t -> betree_List_t t -| Betree_List_Nil : betree_List_t t - -(** [betree_main::betree::UpsertFunState] - Source: 'src/betree.rs', lines 63:0-63:23 *) -type betree_UpsertFunState_t = -| Betree_UpsertFunState_Add : u64 -> betree_UpsertFunState_t -| Betree_UpsertFunState_Sub : u64 -> betree_UpsertFunState_t - -(** [betree_main::betree::Message] - Source: 'src/betree.rs', lines 69:0-69:23 *) -type betree_Message_t = -| Betree_Message_Insert : u64 -> betree_Message_t -| Betree_Message_Delete : betree_Message_t -| Betree_Message_Upsert : betree_UpsertFunState_t -> betree_Message_t - -(** [betree_main::betree::Leaf] - Source: 'src/betree.rs', lines 167:0-167:11 *) -type betree_Leaf_t = { id : u64; size : u64; } - -(** [betree_main::betree::Internal] - Source: 'src/betree.rs', lines 156:0-156:15 *) -type betree_Internal_t = -{ - id : u64; pivot : u64; left : betree_Node_t; right : betree_Node_t; -} - -(** [betree_main::betree::Node] - Source: 'src/betree.rs', lines 179:0-179:9 *) -and betree_Node_t = -| Betree_Node_Internal : betree_Internal_t -> betree_Node_t -| Betree_Node_Leaf : betree_Leaf_t -> betree_Node_t - -(** [betree_main::betree::Params] - Source: 'src/betree.rs', lines 187:0-187:13 *) -type betree_Params_t = { min_flush_size : u64; split_size : u64; } - -(** [betree_main::betree::NodeIdCounter] - Source: 'src/betree.rs', lines 201:0-201:20 *) -type betree_NodeIdCounter_t = { next_node_id : u64; } - -(** [betree_main::betree::BeTree] - Source: 'src/betree.rs', lines 218:0-218:17 *) -type betree_BeTree_t = -{ - params : betree_Params_t; - node_id_cnt : betree_NodeIdCounter_t; - root : betree_Node_t; -} - diff --git a/tests/fstar-split/betree/BetreeMain.TypesExternal.fsti b/tests/fstar-split/betree/BetreeMain.TypesExternal.fsti deleted file mode 100644 index 1b2c53a6..00000000 --- a/tests/fstar-split/betree/BetreeMain.TypesExternal.fsti +++ /dev/null @@ -1,10 +0,0 @@ -(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *) -(** [betree_main]: external type declarations *) -module BetreeMain.TypesExternal -open Primitives - -#set-options "--z3rlimit 50 --fuel 1 --ifuel 1" - -(** The state type used in the state-error monad *) -val state : Type0 - diff --git a/tests/fstar-split/betree/Makefile b/tests/fstar-split/betree/Makefile deleted file mode 100644 index fa7d1f36..00000000 --- a/tests/fstar-split/betree/Makefile +++ /dev/null @@ -1,49 +0,0 @@ -# This file was automatically generated - modify ../Makefile.template instead -INCLUDE_DIRS = . - -FSTAR_INCLUDES = $(addprefix --include ,$(INCLUDE_DIRS)) - -FSTAR_HINTS ?= --use_hints --use_hint_hashes --record_hints - -FSTAR_OPTIONS = $(FSTAR_HINTS) \ - --cache_checked_modules $(FSTAR_INCLUDES) --cmi \ - --warn_error '+241@247+285-274' \ - -FSTAR_EXE ?= fstar.exe -FSTAR_NO_FLAGS = $(FSTAR_EXE) --already_cached 'Prims FStar LowStar Steel' --odir obj --cache_dir obj - -FSTAR = $(FSTAR_NO_FLAGS) $(FSTAR_OPTIONS) - -# The F* roots are used to compute the dependency graph, and generate the .depend file -FSTAR_ROOTS ?= $(wildcard *.fst *.fsti) - -# Build all the files -all: $(addprefix obj/,$(addsuffix .checked,$(FSTAR_ROOTS))) - -# This is the right way to ensure the .depend file always gets re-built. -ifeq (,$(filter %-in,$(MAKECMDGOALS))) -ifndef NODEPEND -ifndef MAKE_RESTARTS -.depend: .FORCE - $(FSTAR_NO_FLAGS) --dep full $(notdir $(FSTAR_ROOTS)) > $@ - -.PHONY: .FORCE -.FORCE: -endif -endif - -include .depend -endif - -# For the interactive mode -%.fst-in %.fsti-in: - @echo $(FSTAR_OPTIONS) - -# Generete the .checked files in batch mode -%.checked: - $(FSTAR) $(FSTAR_OPTIONS) $< && \ - touch -c $@ - -.PHONY: clean -clean: - rm -f obj/* diff --git a/tests/fstar-split/betree/Primitives.fst b/tests/fstar-split/betree/Primitives.fst deleted file mode 100644 index a3ffbde4..00000000 --- a/tests/fstar-split/betree/Primitives.fst +++ /dev/null @@ -1,884 +0,0 @@ -/// This file lists primitive and assumed functions and types -module Primitives -open FStar.Mul -open FStar.List.Tot - -#set-options "--z3rlimit 15 --fuel 0 --ifuel 1" - -(*** Utilities *) -val list_update (#a : Type0) (ls : list a) (i : nat{i < length ls}) (x : a) : - ls':list a{ - length ls' = length ls /\ - index ls' i == x - } -#push-options "--fuel 1" -let rec list_update #a ls i x = - match ls with - | x' :: ls -> if i = 0 then x :: ls else x' :: list_update ls (i-1) x -#pop-options - -(*** Result *) -type error : Type0 = -| Failure -| OutOfFuel - -type result (a : Type0) : Type0 = -| Return : v:a -> result a -| Fail : e:error -> result a - -// Monadic return operator -unfold let return (#a : Type0) (x : a) : result a = Return x - -// Monadic bind operator. -// Allows to use the notation: -// ``` -// let* x = y in -// ... -// ``` -unfold let (let*) (#a #b : Type0) (m: result a) - (f: (x:a) -> Pure (result b) (requires (m == Return x)) (ensures fun _ -> True)) : - result b = - match m with - | Return x -> f x - | Fail e -> Fail e - -// Monadic assert(...) -let massert (b:bool) : result unit = if b then Return () else Fail Failure - -// Normalize and unwrap a successful result (used for globals). -let eval_global (#a : Type0) (x : result a{Return? (normalize_term x)}) : a = Return?.v x - -(*** Misc *) -type char = FStar.Char.char -type string = string - -let is_zero (n: nat) : bool = n = 0 -let decrease (n: nat{n > 0}) : nat = n - 1 - -let core_mem_replace (a : Type0) (x : a) (y : a) : a = x -let core_mem_replace_back (a : Type0) (x : a) (y : a) : a = y - -// We don't really use raw pointers for now -type mut_raw_ptr (t : Type0) = { v : t } -type const_raw_ptr (t : Type0) = { v : t } - -(*** Scalars *) -/// Rem.: most of the following code was partially generated - -assume val size_numbits : pos - -// TODO: we could use FStar.Int.int_t and FStar.UInt.int_t - -let isize_min : int = -9223372036854775808 // TODO: should be opaque -let isize_max : int = 9223372036854775807 // TODO: should be opaque -let i8_min : int = -128 -let i8_max : int = 127 -let i16_min : int = -32768 -let i16_max : int = 32767 -let i32_min : int = -2147483648 -let i32_max : int = 2147483647 -let i64_min : int = -9223372036854775808 -let i64_max : int = 9223372036854775807 -let i128_min : int = -170141183460469231731687303715884105728 -let i128_max : int = 170141183460469231731687303715884105727 -let usize_min : int = 0 -let usize_max : int = 4294967295 // TODO: should be opaque -let u8_min : int = 0 -let u8_max : int = 255 -let u16_min : int = 0 -let u16_max : int = 65535 -let u32_min : int = 0 -let u32_max : int = 4294967295 -let u64_min : int = 0 -let u64_max : int = 18446744073709551615 -let u128_min : int = 0 -let u128_max : int = 340282366920938463463374607431768211455 - -type scalar_ty = -| Isize -| I8 -| I16 -| I32 -| I64 -| I128 -| Usize -| U8 -| U16 -| U32 -| U64 -| U128 - -let is_unsigned = function - | Isize | I8 | I16 | I32 | I64 | I128 -> false - | Usize | U8 | U16 | U32 | U64 | U128 -> true - -let scalar_min (ty : scalar_ty) : int = - match ty with - | Isize -> isize_min - | I8 -> i8_min - | I16 -> i16_min - | I32 -> i32_min - | I64 -> i64_min - | I128 -> i128_min - | Usize -> usize_min - | U8 -> u8_min - | U16 -> u16_min - | U32 -> u32_min - | U64 -> u64_min - | U128 -> u128_min - -let scalar_max (ty : scalar_ty) : int = - match ty with - | Isize -> isize_max - | I8 -> i8_max - | I16 -> i16_max - | I32 -> i32_max - | I64 -> i64_max - | I128 -> i128_max - | Usize -> usize_max - | U8 -> u8_max - | U16 -> u16_max - | U32 -> u32_max - | U64 -> u64_max - | U128 -> u128_max - -type scalar (ty : scalar_ty) : eqtype = x:int{scalar_min ty <= x && x <= scalar_max ty} - -let mk_scalar (ty : scalar_ty) (x : int) : result (scalar ty) = - if scalar_min ty <= x && scalar_max ty >= x then Return x else Fail Failure - -let scalar_neg (#ty : scalar_ty) (x : scalar ty) : result (scalar ty) = mk_scalar ty (-x) - -let scalar_div (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - if y <> 0 then mk_scalar ty (x / y) else Fail Failure - -/// The remainder operation -let int_rem (x : int) (y : int{y <> 0}) : int = - if x >= 0 then (x % y) else -(x % y) - -(* Checking consistency with Rust *) -let _ = assert_norm(int_rem 1 2 = 1) -let _ = assert_norm(int_rem (-1) 2 = -1) -let _ = assert_norm(int_rem 1 (-2) = 1) -let _ = assert_norm(int_rem (-1) (-2) = -1) - -let scalar_rem (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - if y <> 0 then mk_scalar ty (int_rem x y) else Fail Failure - -let scalar_add (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - mk_scalar ty (x + y) - -let scalar_sub (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - mk_scalar ty (x - y) - -let scalar_mul (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - mk_scalar ty (x * y) - -let scalar_xor (#ty : scalar_ty) - (x : scalar ty) (y : scalar ty) : scalar ty = - match ty with - | U8 -> FStar.UInt.logxor #8 x y - | U16 -> FStar.UInt.logxor #16 x y - | U32 -> FStar.UInt.logxor #32 x y - | U64 -> FStar.UInt.logxor #64 x y - | U128 -> FStar.UInt.logxor #128 x y - | Usize -> admit() // TODO - | I8 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 8); - normalize_spec (scalar I8); - FStar.Int.logxor #8 x y - | I16 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 16); - normalize_spec (scalar I16); - FStar.Int.logxor #16 x y - | I32 -> FStar.Int.logxor #32 x y - | I64 -> FStar.Int.logxor #64 x y - | I128 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 128); - normalize_spec (scalar I128); - FStar.Int.logxor #128 x y - | Isize -> admit() // TODO - -let scalar_or (#ty : scalar_ty) - (x : scalar ty) (y : scalar ty) : scalar ty = - match ty with - | U8 -> FStar.UInt.logor #8 x y - | U16 -> FStar.UInt.logor #16 x y - | U32 -> FStar.UInt.logor #32 x y - | U64 -> FStar.UInt.logor #64 x y - | U128 -> FStar.UInt.logor #128 x y - | Usize -> admit() // TODO - | I8 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 8); - normalize_spec (scalar I8); - FStar.Int.logor #8 x y - | I16 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 16); - normalize_spec (scalar I16); - FStar.Int.logor #16 x y - | I32 -> FStar.Int.logor #32 x y - | I64 -> FStar.Int.logor #64 x y - | I128 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 128); - normalize_spec (scalar I128); - FStar.Int.logor #128 x y - | Isize -> admit() // TODO - -let scalar_and (#ty : scalar_ty) - (x : scalar ty) (y : scalar ty) : scalar ty = - match ty with - | U8 -> FStar.UInt.logand #8 x y - | U16 -> FStar.UInt.logand #16 x y - | U32 -> FStar.UInt.logand #32 x y - | U64 -> FStar.UInt.logand #64 x y - | U128 -> FStar.UInt.logand #128 x y - | Usize -> admit() // TODO - | I8 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 8); - normalize_spec (scalar I8); - FStar.Int.logand #8 x y - | I16 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 16); - normalize_spec (scalar I16); - FStar.Int.logand #16 x y - | I32 -> FStar.Int.logand #32 x y - | I64 -> FStar.Int.logand #64 x y - | I128 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 128); - normalize_spec (scalar I128); - FStar.Int.logand #128 x y - | Isize -> admit() // TODO - -// Shift left -let scalar_shl (#ty0 #ty1 : scalar_ty) - (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) = - admit() - -// Shift right -let scalar_shr (#ty0 #ty1 : scalar_ty) - (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) = - admit() - -(** Cast an integer from a [src_ty] to a [tgt_ty] *) -// TODO: check the semantics of casts in Rust -let scalar_cast (src_ty : scalar_ty) (tgt_ty : scalar_ty) (x : scalar src_ty) : result (scalar tgt_ty) = - mk_scalar tgt_ty x - -// This can't fail, but for now we make all casts faillible (easier for the translation) -let scalar_cast_bool (tgt_ty : scalar_ty) (x : bool) : result (scalar tgt_ty) = - mk_scalar tgt_ty (if x then 1 else 0) - -/// The scalar types -type isize : eqtype = scalar Isize -type i8 : eqtype = scalar I8 -type i16 : eqtype = scalar I16 -type i32 : eqtype = scalar I32 -type i64 : eqtype = scalar I64 -type i128 : eqtype = scalar I128 -type usize : eqtype = scalar Usize -type u8 : eqtype = scalar U8 -type u16 : eqtype = scalar U16 -type u32 : eqtype = scalar U32 -type u64 : eqtype = scalar U64 -type u128 : eqtype = scalar U128 - - -let core_isize_min : isize = isize_min -let core_isize_max : isize = isize_max -let core_i8_min : i8 = i8_min -let core_i8_max : i8 = i8_max -let core_i16_min : i16 = i16_min -let core_i16_max : i16 = i16_max -let core_i32_min : i32 = i32_min -let core_i32_max : i32 = i32_max -let core_i64_min : i64 = i64_min -let core_i64_max : i64 = i64_max -let core_i128_min : i128 = i128_min -let core_i128_max : i128 = i128_max - -let core_usize_min : usize = usize_min -let core_usize_max : usize = usize_max -let core_u8_min : u8 = u8_min -let core_u8_max : u8 = u8_max -let core_u16_min : u16 = u16_min -let core_u16_max : u16 = u16_max -let core_u32_min : u32 = u32_min -let core_u32_max : u32 = u32_max -let core_u64_min : u64 = u64_min -let core_u64_max : u64 = u64_max -let core_u128_min : u128 = u128_min -let core_u128_max : u128 = u128_max - -/// Negation -let isize_neg = scalar_neg #Isize -let i8_neg = scalar_neg #I8 -let i16_neg = scalar_neg #I16 -let i32_neg = scalar_neg #I32 -let i64_neg = scalar_neg #I64 -let i128_neg = scalar_neg #I128 - -/// Division -let isize_div = scalar_div #Isize -let i8_div = scalar_div #I8 -let i16_div = scalar_div #I16 -let i32_div = scalar_div #I32 -let i64_div = scalar_div #I64 -let i128_div = scalar_div #I128 -let usize_div = scalar_div #Usize -let u8_div = scalar_div #U8 -let u16_div = scalar_div #U16 -let u32_div = scalar_div #U32 -let u64_div = scalar_div #U64 -let u128_div = scalar_div #U128 - -/// Remainder -let isize_rem = scalar_rem #Isize -let i8_rem = scalar_rem #I8 -let i16_rem = scalar_rem #I16 -let i32_rem = scalar_rem #I32 -let i64_rem = scalar_rem #I64 -let i128_rem = scalar_rem #I128 -let usize_rem = scalar_rem #Usize -let u8_rem = scalar_rem #U8 -let u16_rem = scalar_rem #U16 -let u32_rem = scalar_rem #U32 -let u64_rem = scalar_rem #U64 -let u128_rem = scalar_rem #U128 - -/// Addition -let isize_add = scalar_add #Isize -let i8_add = scalar_add #I8 -let i16_add = scalar_add #I16 -let i32_add = scalar_add #I32 -let i64_add = scalar_add #I64 -let i128_add = scalar_add #I128 -let usize_add = scalar_add #Usize -let u8_add = scalar_add #U8 -let u16_add = scalar_add #U16 -let u32_add = scalar_add #U32 -let u64_add = scalar_add #U64 -let u128_add = scalar_add #U128 - -/// Subtraction -let isize_sub = scalar_sub #Isize -let i8_sub = scalar_sub #I8 -let i16_sub = scalar_sub #I16 -let i32_sub = scalar_sub #I32 -let i64_sub = scalar_sub #I64 -let i128_sub = scalar_sub #I128 -let usize_sub = scalar_sub #Usize -let u8_sub = scalar_sub #U8 -let u16_sub = scalar_sub #U16 -let u32_sub = scalar_sub #U32 -let u64_sub = scalar_sub #U64 -let u128_sub = scalar_sub #U128 - -/// Multiplication -let isize_mul = scalar_mul #Isize -let i8_mul = scalar_mul #I8 -let i16_mul = scalar_mul #I16 -let i32_mul = scalar_mul #I32 -let i64_mul = scalar_mul #I64 -let i128_mul = scalar_mul #I128 -let usize_mul = scalar_mul #Usize -let u8_mul = scalar_mul #U8 -let u16_mul = scalar_mul #U16 -let u32_mul = scalar_mul #U32 -let u64_mul = scalar_mul #U64 -let u128_mul = scalar_mul #U128 - -/// Xor -let u8_xor = scalar_xor #U8 -let u16_xor = scalar_xor #U16 -let u32_xor = scalar_xor #U32 -let u64_xor = scalar_xor #U64 -let u128_xor = scalar_xor #U128 -let usize_xor = scalar_xor #Usize -let i8_xor = scalar_xor #I8 -let i16_xor = scalar_xor #I16 -let i32_xor = scalar_xor #I32 -let i64_xor = scalar_xor #I64 -let i128_xor = scalar_xor #I128 -let isize_xor = scalar_xor #Isize - -/// Or -let u8_or = scalar_or #U8 -let u16_or = scalar_or #U16 -let u32_or = scalar_or #U32 -let u64_or = scalar_or #U64 -let u128_or = scalar_or #U128 -let usize_or = scalar_or #Usize -let i8_or = scalar_or #I8 -let i16_or = scalar_or #I16 -let i32_or = scalar_or #I32 -let i64_or = scalar_or #I64 -let i128_or = scalar_or #I128 -let isize_or = scalar_or #Isize - -/// And -let u8_and = scalar_and #U8 -let u16_and = scalar_and #U16 -let u32_and = scalar_and #U32 -let u64_and = scalar_and #U64 -let u128_and = scalar_and #U128 -let usize_and = scalar_and #Usize -let i8_and = scalar_and #I8 -let i16_and = scalar_and #I16 -let i32_and = scalar_and #I32 -let i64_and = scalar_and #I64 -let i128_and = scalar_and #I128 -let isize_and = scalar_and #Isize - -/// Shift left -let u8_shl #ty = scalar_shl #U8 #ty -let u16_shl #ty = scalar_shl #U16 #ty -let u32_shl #ty = scalar_shl #U32 #ty -let u64_shl #ty = scalar_shl #U64 #ty -let u128_shl #ty = scalar_shl #U128 #ty -let usize_shl #ty = scalar_shl #Usize #ty -let i8_shl #ty = scalar_shl #I8 #ty -let i16_shl #ty = scalar_shl #I16 #ty -let i32_shl #ty = scalar_shl #I32 #ty -let i64_shl #ty = scalar_shl #I64 #ty -let i128_shl #ty = scalar_shl #I128 #ty -let isize_shl #ty = scalar_shl #Isize #ty - -/// Shift right -let u8_shr #ty = scalar_shr #U8 #ty -let u16_shr #ty = scalar_shr #U16 #ty -let u32_shr #ty = scalar_shr #U32 #ty -let u64_shr #ty = scalar_shr #U64 #ty -let u128_shr #ty = scalar_shr #U128 #ty -let usize_shr #ty = scalar_shr #Usize #ty -let i8_shr #ty = scalar_shr #I8 #ty -let i16_shr #ty = scalar_shr #I16 #ty -let i32_shr #ty = scalar_shr #I32 #ty -let i64_shr #ty = scalar_shr #I64 #ty -let i128_shr #ty = scalar_shr #I128 #ty -let isize_shr #ty = scalar_shr #Isize #ty - -(*** core::ops *) - -// Trait declaration: [core::ops::index::Index] -noeq type core_ops_index_Index (self idx : Type0) = { - output : Type0; - index : self → idx → result output -} - -// Trait declaration: [core::ops::index::IndexMut] -noeq type core_ops_index_IndexMut (self idx : Type0) = { - indexInst : core_ops_index_Index self idx; - index_mut : self → idx → result indexInst.output; - index_mut_back : self → idx → indexInst.output → result self; -} - -// Trait declaration [core::ops::deref::Deref] -noeq type core_ops_deref_Deref (self : Type0) = { - target : Type0; - deref : self → result target; -} - -// Trait declaration [core::ops::deref::DerefMut] -noeq type core_ops_deref_DerefMut (self : Type0) = { - derefInst : core_ops_deref_Deref self; - deref_mut : self → result derefInst.target; - deref_mut_back : self → derefInst.target → result self; -} - -type core_ops_range_Range (a : Type0) = { - start : a; - end_ : a; -} - -(*** [alloc] *) - -let alloc_boxed_Box_deref (t : Type0) (x : t) : result t = Return x -let alloc_boxed_Box_deref_mut (t : Type0) (x : t) : result t = Return x -let alloc_boxed_Box_deref_mut_back (t : Type) (_ : t) (x : t) : result t = Return x - -// Trait instance -let alloc_boxed_Box_coreopsDerefInst (self : Type0) : core_ops_deref_Deref self = { - target = self; - deref = alloc_boxed_Box_deref self; -} - -// Trait instance -let alloc_boxed_Box_coreopsDerefMutInst (self : Type0) : core_ops_deref_DerefMut self = { - derefInst = alloc_boxed_Box_coreopsDerefInst self; - deref_mut = alloc_boxed_Box_deref_mut self; - deref_mut_back = alloc_boxed_Box_deref_mut_back self; -} - -(*** Array *) -type array (a : Type0) (n : usize) = s:list a{length s = n} - -// We tried putting the normalize_term condition as a refinement on the list -// but it didn't work. It works with the requires clause. -let mk_array (a : Type0) (n : usize) - (l : list a) : - Pure (array a n) - (requires (normalize_term(FStar.List.Tot.length l) = n)) - (ensures (fun _ -> True)) = - normalize_term_spec (FStar.List.Tot.length l); - l - -let array_index_usize (a : Type0) (n : usize) (x : array a n) (i : usize) : result a = - if i < length x then Return (index x i) - else Fail Failure - -let array_update_usize (a : Type0) (n : usize) (x : array a n) (i : usize) (nx : a) : result (array a n) = - if i < length x then Return (list_update x i nx) - else Fail Failure - -(*** Slice *) -type slice (a : Type0) = s:list a{length s <= usize_max} - -let slice_len (a : Type0) (s : slice a) : usize = length s - -let slice_index_usize (a : Type0) (x : slice a) (i : usize) : result a = - if i < length x then Return (index x i) - else Fail Failure - -let slice_update_usize (a : Type0) (x : slice a) (i : usize) (nx : a) : result (slice a) = - if i < length x then Return (list_update x i nx) - else Fail Failure - -(*** Subslices *) - -let array_to_slice (a : Type0) (n : usize) (x : array a n) : result (slice a) = Return x -let array_from_slice (a : Type0) (n : usize) (x : array a n) (s : slice a) : result (array a n) = - if length s = n then Return s - else Fail Failure - -// TODO: finish the definitions below (there lacks [List.drop] and [List.take] in the standard library *) -let array_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) : result (slice a) = - admit() - -let array_update_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) (ns : slice a) : result (array a n) = - admit() - -let array_repeat (a : Type0) (n : usize) (x : a) : array a n = - admit() - -let slice_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) : result (slice a) = - admit() - -let slice_update_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) (ns : slice a) : result (slice a) = - admit() - -(*** Vector *) -type alloc_vec_Vec (a : Type0) = v:list a{length v <= usize_max} - -let alloc_vec_Vec_new (a : Type0) : alloc_vec_Vec a = assert_norm(length #a [] == 0); [] -let alloc_vec_Vec_len (a : Type0) (v : alloc_vec_Vec a) : usize = length v - -// Helper -let alloc_vec_Vec_index_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : result a = - if i < length v then Return (index v i) else Fail Failure -// Helper -let alloc_vec_Vec_update_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) = - if i < length v then Return (list_update v i x) else Fail Failure - -// The **forward** function shouldn't be used -let alloc_vec_Vec_push_fwd (a : Type0) (v : alloc_vec_Vec a) (x : a) : unit = () -let alloc_vec_Vec_push (a : Type0) (v : alloc_vec_Vec a) (x : a) : - Pure (result (alloc_vec_Vec a)) - (requires True) - (ensures (fun res -> - match res with - | Fail e -> e == Failure - | Return v' -> length v' = length v + 1)) = - if length v < usize_max then begin - (**) assert_norm(length [x] == 1); - (**) append_length v [x]; - (**) assert(length (append v [x]) = length v + 1); - Return (append v [x]) - end - else Fail Failure - -// The **forward** function shouldn't be used -let alloc_vec_Vec_insert_fwd (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result unit = - if i < length v then Return () else Fail Failure -let alloc_vec_Vec_insert (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) = - if i < length v then Return (list_update v i x) else Fail Failure - -// Trait declaration: [core::slice::index::private_slice_index::Sealed] -type core_slice_index_private_slice_index_Sealed (self : Type0) = unit - -// Trait declaration: [core::slice::index::SliceIndex] -noeq type core_slice_index_SliceIndex (self t : Type0) = { - sealedInst : core_slice_index_private_slice_index_Sealed self; - output : Type0; - get : self → t → result (option output); - get_mut : self → t → result (option output); - get_mut_back : self → t → option output → result t; - get_unchecked : self → const_raw_ptr t → result (const_raw_ptr output); - get_unchecked_mut : self → mut_raw_ptr t → result (mut_raw_ptr output); - index : self → t → result output; - index_mut : self → t → result output; - index_mut_back : self → t → output → result t; -} - -// [core::slice::index::[T]::index]: forward function -let core_slice_index_Slice_index - (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (s : slice t) (i : idx) : result inst.output = - let* x = inst.get i s in - match x with - | None -> Fail Failure - | Some x -> Return x - -// [core::slice::index::Range:::get]: forward function -let core_slice_index_RangeUsize_get (t : Type0) (i : core_ops_range_Range usize) (s : slice t) : - result (option (slice t)) = - admit () // TODO - -// [core::slice::index::Range::get_mut]: forward function -let core_slice_index_RangeUsize_get_mut - (t : Type0) : core_ops_range_Range usize → slice t → result (option (slice t)) = - admit () // TODO - -// [core::slice::index::Range::get_mut]: backward function 0 -let core_slice_index_RangeUsize_get_mut_back - (t : Type0) : - core_ops_range_Range usize → slice t → option (slice t) → result (slice t) = - admit () // TODO - -// [core::slice::index::Range::get_unchecked]: forward function -let core_slice_index_RangeUsize_get_unchecked - (t : Type0) : - core_ops_range_Range usize → const_raw_ptr (slice t) → result (const_raw_ptr (slice t)) = - // Don't know what the model should be - for now we always fail to make - // sure code which uses it fails - fun _ _ -> Fail Failure - -// [core::slice::index::Range::get_unchecked_mut]: forward function -let core_slice_index_RangeUsize_get_unchecked_mut - (t : Type0) : - core_ops_range_Range usize → mut_raw_ptr (slice t) → result (mut_raw_ptr (slice t)) = - // Don't know what the model should be - for now we always fail to make - // sure code which uses it fails - fun _ _ -> Fail Failure - -// [core::slice::index::Range::index]: forward function -let core_slice_index_RangeUsize_index - (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) = - admit () // TODO - -// [core::slice::index::Range::index_mut]: forward function -let core_slice_index_RangeUsize_index_mut - (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) = - admit () // TODO - -// [core::slice::index::Range::index_mut]: backward function 0 -let core_slice_index_RangeUsize_index_mut_back - (t : Type0) : core_ops_range_Range usize → slice t → slice t → result (slice t) = - admit () // TODO - -// [core::slice::index::[T]::index_mut]: forward function -let core_slice_index_Slice_index_mut - (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) : - slice t → idx → result inst.output = - admit () // - -// [core::slice::index::[T]::index_mut]: backward function 0 -let core_slice_index_Slice_index_mut_back - (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) : - slice t → idx → inst.output → result (slice t) = - admit () // TODO - -// [core::array::[T; N]::index]: forward function -let core_array_Array_index - (t idx : Type0) (n : usize) (inst : core_ops_index_Index (slice t) idx) - (a : array t n) (i : idx) : result inst.output = - admit () // TODO - -// [core::array::[T; N]::index_mut]: forward function -let core_array_Array_index_mut - (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx) - (a : array t n) (i : idx) : result inst.indexInst.output = - admit () // TODO - -// [core::array::[T; N]::index_mut]: backward function 0 -let core_array_Array_index_mut_back - (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx) - (a : array t n) (i : idx) (x : inst.indexInst.output) : result (array t n) = - admit () // TODO - -// Trait implementation: [core::slice::index::private_slice_index::Range] -let core_slice_index_private_slice_index_SealedRangeUsizeInst - : core_slice_index_private_slice_index_Sealed (core_ops_range_Range usize) = () - -// Trait implementation: [core::slice::index::Range] -let core_slice_index_SliceIndexRangeUsizeSliceTInst (t : Type0) : - core_slice_index_SliceIndex (core_ops_range_Range usize) (slice t) = { - sealedInst = core_slice_index_private_slice_index_SealedRangeUsizeInst; - output = slice t; - get = core_slice_index_RangeUsize_get t; - get_mut = core_slice_index_RangeUsize_get_mut t; - get_mut_back = core_slice_index_RangeUsize_get_mut_back t; - get_unchecked = core_slice_index_RangeUsize_get_unchecked t; - get_unchecked_mut = core_slice_index_RangeUsize_get_unchecked_mut t; - index = core_slice_index_RangeUsize_index t; - index_mut = core_slice_index_RangeUsize_index_mut t; - index_mut_back = core_slice_index_RangeUsize_index_mut_back t; -} - -// Trait implementation: [core::slice::index::[T]] -let core_ops_index_IndexSliceTIInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_Index (slice t) idx = { - output = inst.output; - index = core_slice_index_Slice_index t idx inst; -} - -// Trait implementation: [core::slice::index::[T]] -let core_ops_index_IndexMutSliceTIInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_IndexMut (slice t) idx = { - indexInst = core_ops_index_IndexSliceTIInst t idx inst; - index_mut = core_slice_index_Slice_index_mut t idx inst; - index_mut_back = core_slice_index_Slice_index_mut_back t idx inst; -} - -// Trait implementation: [core::array::[T; N]] -let core_ops_index_IndexArrayInst (t idx : Type0) (n : usize) - (inst : core_ops_index_Index (slice t) idx) : - core_ops_index_Index (array t n) idx = { - output = inst.output; - index = core_array_Array_index t idx n inst; -} - -// Trait implementation: [core::array::[T; N]] -let core_ops_index_IndexMutArrayIInst (t idx : Type0) (n : usize) - (inst : core_ops_index_IndexMut (slice t) idx) : - core_ops_index_IndexMut (array t n) idx = { - indexInst = core_ops_index_IndexArrayInst t idx n inst.indexInst; - index_mut = core_array_Array_index_mut t idx n inst; - index_mut_back = core_array_Array_index_mut_back t idx n inst; -} - -// [core::slice::index::usize::get]: forward function -let core_slice_index_usize_get - (t : Type0) : usize → slice t → result (option t) = - admit () // TODO - -// [core::slice::index::usize::get_mut]: forward function -let core_slice_index_usize_get_mut - (t : Type0) : usize → slice t → result (option t) = - admit () // TODO - -// [core::slice::index::usize::get_mut]: backward function 0 -let core_slice_index_usize_get_mut_back - (t : Type0) : usize → slice t → option t → result (slice t) = - admit () // TODO - -// [core::slice::index::usize::get_unchecked]: forward function -let core_slice_index_usize_get_unchecked - (t : Type0) : usize → const_raw_ptr (slice t) → result (const_raw_ptr t) = - admit () // TODO - -// [core::slice::index::usize::get_unchecked_mut]: forward function -let core_slice_index_usize_get_unchecked_mut - (t : Type0) : usize → mut_raw_ptr (slice t) → result (mut_raw_ptr t) = - admit () // TODO - -// [core::slice::index::usize::index]: forward function -let core_slice_index_usize_index (t : Type0) : usize → slice t → result t = - admit () // TODO - -// [core::slice::index::usize::index_mut]: forward function -let core_slice_index_usize_index_mut (t : Type0) : usize → slice t → result t = - admit () // TODO - -// [core::slice::index::usize::index_mut]: backward function 0 -let core_slice_index_usize_index_mut_back - (t : Type0) : usize → slice t → t → result (slice t) = - admit () // TODO - -// Trait implementation: [core::slice::index::private_slice_index::usize] -let core_slice_index_private_slice_index_SealedUsizeInst - : core_slice_index_private_slice_index_Sealed usize = () - -// Trait implementation: [core::slice::index::usize] -let core_slice_index_SliceIndexUsizeSliceTInst (t : Type0) : - core_slice_index_SliceIndex usize (slice t) = { - sealedInst = core_slice_index_private_slice_index_SealedUsizeInst; - output = t; - get = core_slice_index_usize_get t; - get_mut = core_slice_index_usize_get_mut t; - get_mut_back = core_slice_index_usize_get_mut_back t; - get_unchecked = core_slice_index_usize_get_unchecked t; - get_unchecked_mut = core_slice_index_usize_get_unchecked_mut t; - index = core_slice_index_usize_index t; - index_mut = core_slice_index_usize_index_mut t; - index_mut_back = core_slice_index_usize_index_mut_back t; -} - -// [alloc::vec::Vec::index]: forward function -let alloc_vec_Vec_index (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (self : alloc_vec_Vec t) (i : idx) : result inst.output = - admit () // TODO - -// [alloc::vec::Vec::index_mut]: forward function -let alloc_vec_Vec_index_mut (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (self : alloc_vec_Vec t) (i : idx) : result inst.output = - admit () // TODO - -// [alloc::vec::Vec::index_mut]: backward function 0 -let alloc_vec_Vec_index_mut_back - (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (self : alloc_vec_Vec t) (i : idx) (x : inst.output) : result (alloc_vec_Vec t) = - admit () // TODO - -// Trait implementation: [alloc::vec::Vec] -let alloc_vec_Vec_coreopsindexIndexInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_Index (alloc_vec_Vec t) idx = { - output = inst.output; - index = alloc_vec_Vec_index t idx inst; -} - -// Trait implementation: [alloc::vec::Vec] -let alloc_vec_Vec_coreopsindexIndexMutInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_IndexMut (alloc_vec_Vec t) idx = { - indexInst = alloc_vec_Vec_coreopsindexIndexInst t idx inst; - index_mut = alloc_vec_Vec_index_mut t idx inst; - index_mut_back = alloc_vec_Vec_index_mut_back t idx inst; -} - -(*** Theorems *) - -let alloc_vec_Vec_index_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : - Lemma ( - alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i == - alloc_vec_Vec_index_usize v i) - [SMTPat (alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)] - = - admit() - -let alloc_vec_Vec_index_mut_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : - Lemma ( - alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i == - alloc_vec_Vec_index_usize v i) - [SMTPat (alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)] - = - admit() - -let alloc_vec_Vec_index_mut_back_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : - Lemma ( - alloc_vec_Vec_index_mut_back a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i x == - alloc_vec_Vec_update_usize v i x) - [SMTPat (alloc_vec_Vec_index_mut_back a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i x)] - = - admit() diff --git a/tests/fstar-split/demo/Demo.fst b/tests/fstar-split/demo/Demo.fst deleted file mode 100644 index ab746157..00000000 --- a/tests/fstar-split/demo/Demo.fst +++ /dev/null @@ -1,187 +0,0 @@ -(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *) -(** [demo] *) -module Demo -open Primitives - -#set-options "--z3rlimit 50 --fuel 1 --ifuel 1" - -(** [demo::choose]: forward function - Source: 'src/demo.rs', lines 5:0-5:70 *) -let choose (t : Type0) (b : bool) (x : t) (y : t) : result t = - if b then Return x else Return y - -(** [demo::choose]: backward function 0 - Source: 'src/demo.rs', lines 5:0-5:70 *) -let choose_back - (t : Type0) (b : bool) (x : t) (y : t) (ret : t) : result (t & t) = - if b then Return (ret, y) else Return (x, ret) - -(** [demo::mul2_add1]: forward function - Source: 'src/demo.rs', lines 13:0-13:31 *) -let mul2_add1 (x : u32) : result u32 = - let* i = u32_add x x in u32_add i 1 - -(** [demo::use_mul2_add1]: forward function - Source: 'src/demo.rs', lines 17:0-17:43 *) -let use_mul2_add1 (x : u32) (y : u32) : result u32 = - let* i = mul2_add1 x in u32_add i y - -(** [demo::incr]: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/demo.rs', lines 21:0-21:31 *) -let incr (x : u32) : result u32 = - u32_add x 1 - -(** [demo::CList] - Source: 'src/demo.rs', lines 27:0-27:17 *) -type cList_t (t : Type0) = -| CList_CCons : t -> cList_t t -> cList_t t -| CList_CNil : cList_t t - -(** [demo::list_nth]: forward function - Source: 'src/demo.rs', lines 32:0-32:56 *) -let rec list_nth (t : Type0) (n : nat) (l : cList_t t) (i : u32) : result t = - if is_zero n - then Fail OutOfFuel - else - let n1 = decrease n in - begin match l with - | CList_CCons x tl -> - if i = 0 then Return x else let* i1 = u32_sub i 1 in list_nth t n1 tl i1 - | CList_CNil -> Fail Failure - end - -(** [demo::list_nth_mut]: forward function - Source: 'src/demo.rs', lines 47:0-47:68 *) -let rec list_nth_mut - (t : Type0) (n : nat) (l : cList_t t) (i : u32) : result t = - if is_zero n - then Fail OutOfFuel - else - let n1 = decrease n in - begin match l with - | CList_CCons x tl -> - if i = 0 - then Return x - else let* i1 = u32_sub i 1 in list_nth_mut t n1 tl i1 - | CList_CNil -> Fail Failure - end - -(** [demo::list_nth_mut]: backward function 0 - Source: 'src/demo.rs', lines 47:0-47:68 *) -let rec list_nth_mut_back - (t : Type0) (n : nat) (l : cList_t t) (i : u32) (ret : t) : - result (cList_t t) - = - if is_zero n - then Fail OutOfFuel - else - let n1 = decrease n in - begin match l with - | CList_CCons x tl -> - if i = 0 - then Return (CList_CCons ret tl) - else - let* i1 = u32_sub i 1 in - let* tl1 = list_nth_mut_back t n1 tl i1 ret in - Return (CList_CCons x tl1) - | CList_CNil -> Fail Failure - end - -(** [demo::list_nth_mut1]: loop 0: forward function - Source: 'src/demo.rs', lines 62:0-71:1 *) -let rec list_nth_mut1_loop - (t : Type0) (n : nat) (l : cList_t t) (i : u32) : result t = - if is_zero n - then Fail OutOfFuel - else - let n1 = decrease n in - begin match l with - | CList_CCons x tl -> - if i = 0 - then Return x - else let* i1 = u32_sub i 1 in list_nth_mut1_loop t n1 tl i1 - | CList_CNil -> Fail Failure - end - -(** [demo::list_nth_mut1]: forward function - Source: 'src/demo.rs', lines 62:0-62:77 *) -let list_nth_mut1 (t : Type0) (n : nat) (l : cList_t t) (i : u32) : result t = - list_nth_mut1_loop t n l i - -(** [demo::list_nth_mut1]: loop 0: backward function 0 - Source: 'src/demo.rs', lines 62:0-71:1 *) -let rec list_nth_mut1_loop_back - (t : Type0) (n : nat) (l : cList_t t) (i : u32) (ret : t) : - result (cList_t t) - = - if is_zero n - then Fail OutOfFuel - else - let n1 = decrease n in - begin match l with - | CList_CCons x tl -> - if i = 0 - then Return (CList_CCons ret tl) - else - let* i1 = u32_sub i 1 in - let* tl1 = list_nth_mut1_loop_back t n1 tl i1 ret in - Return (CList_CCons x tl1) - | CList_CNil -> Fail Failure - end - -(** [demo::list_nth_mut1]: backward function 0 - Source: 'src/demo.rs', lines 62:0-62:77 *) -let list_nth_mut1_back - (t : Type0) (n : nat) (l : cList_t t) (i : u32) (ret : t) : - result (cList_t t) - = - list_nth_mut1_loop_back t n l i ret - -(** [demo::i32_id]: forward function - Source: 'src/demo.rs', lines 73:0-73:28 *) -let rec i32_id (n : nat) (i : i32) : result i32 = - if is_zero n - then Fail OutOfFuel - else - let n1 = decrease n in - if i = 0 - then Return 0 - else let* i1 = i32_sub i 1 in let* i2 = i32_id n1 i1 in i32_add i2 1 - -(** Trait declaration: [demo::Counter] - Source: 'src/demo.rs', lines 83:0-83:17 *) -noeq type counter_t (self : Type0) = { - incr : self -> result usize; - incr_back : self -> result self; -} - -(** [demo::{usize}::incr]: forward function - Source: 'src/demo.rs', lines 88:4-88:31 *) -let usize_incr (self : usize) : result usize = - let* _ = usize_add self 1 in Return self - -(** [demo::{usize}::incr]: backward function 0 - Source: 'src/demo.rs', lines 88:4-88:31 *) -let usize_incr_back (self : usize) : result usize = - usize_add self 1 - -(** Trait implementation: [demo::{usize}] - Source: 'src/demo.rs', lines 87:0-87:22 *) -let demo_CounterUsizeInst : counter_t usize = { - incr = usize_incr; - incr_back = usize_incr_back; -} - -(** [demo::use_counter]: forward function - Source: 'src/demo.rs', lines 95:0-95:59 *) -let use_counter - (t : Type0) (counterTInst : counter_t t) (cnt : t) : result usize = - counterTInst.incr cnt - -(** [demo::use_counter]: backward function 0 - Source: 'src/demo.rs', lines 95:0-95:59 *) -let use_counter_back - (t : Type0) (counterTInst : counter_t t) (cnt : t) : result t = - counterTInst.incr_back cnt - diff --git a/tests/fstar-split/demo/Makefile b/tests/fstar-split/demo/Makefile deleted file mode 100644 index fa7d1f36..00000000 --- a/tests/fstar-split/demo/Makefile +++ /dev/null @@ -1,49 +0,0 @@ -# This file was automatically generated - modify ../Makefile.template instead -INCLUDE_DIRS = . - -FSTAR_INCLUDES = $(addprefix --include ,$(INCLUDE_DIRS)) - -FSTAR_HINTS ?= --use_hints --use_hint_hashes --record_hints - -FSTAR_OPTIONS = $(FSTAR_HINTS) \ - --cache_checked_modules $(FSTAR_INCLUDES) --cmi \ - --warn_error '+241@247+285-274' \ - -FSTAR_EXE ?= fstar.exe -FSTAR_NO_FLAGS = $(FSTAR_EXE) --already_cached 'Prims FStar LowStar Steel' --odir obj --cache_dir obj - -FSTAR = $(FSTAR_NO_FLAGS) $(FSTAR_OPTIONS) - -# The F* roots are used to compute the dependency graph, and generate the .depend file -FSTAR_ROOTS ?= $(wildcard *.fst *.fsti) - -# Build all the files -all: $(addprefix obj/,$(addsuffix .checked,$(FSTAR_ROOTS))) - -# This is the right way to ensure the .depend file always gets re-built. -ifeq (,$(filter %-in,$(MAKECMDGOALS))) -ifndef NODEPEND -ifndef MAKE_RESTARTS -.depend: .FORCE - $(FSTAR_NO_FLAGS) --dep full $(notdir $(FSTAR_ROOTS)) > $@ - -.PHONY: .FORCE -.FORCE: -endif -endif - -include .depend -endif - -# For the interactive mode -%.fst-in %.fsti-in: - @echo $(FSTAR_OPTIONS) - -# Generete the .checked files in batch mode -%.checked: - $(FSTAR) $(FSTAR_OPTIONS) $< && \ - touch -c $@ - -.PHONY: clean -clean: - rm -f obj/* diff --git a/tests/fstar-split/demo/Primitives.fst b/tests/fstar-split/demo/Primitives.fst deleted file mode 100644 index a3ffbde4..00000000 --- a/tests/fstar-split/demo/Primitives.fst +++ /dev/null @@ -1,884 +0,0 @@ -/// This file lists primitive and assumed functions and types -module Primitives -open FStar.Mul -open FStar.List.Tot - -#set-options "--z3rlimit 15 --fuel 0 --ifuel 1" - -(*** Utilities *) -val list_update (#a : Type0) (ls : list a) (i : nat{i < length ls}) (x : a) : - ls':list a{ - length ls' = length ls /\ - index ls' i == x - } -#push-options "--fuel 1" -let rec list_update #a ls i x = - match ls with - | x' :: ls -> if i = 0 then x :: ls else x' :: list_update ls (i-1) x -#pop-options - -(*** Result *) -type error : Type0 = -| Failure -| OutOfFuel - -type result (a : Type0) : Type0 = -| Return : v:a -> result a -| Fail : e:error -> result a - -// Monadic return operator -unfold let return (#a : Type0) (x : a) : result a = Return x - -// Monadic bind operator. -// Allows to use the notation: -// ``` -// let* x = y in -// ... -// ``` -unfold let (let*) (#a #b : Type0) (m: result a) - (f: (x:a) -> Pure (result b) (requires (m == Return x)) (ensures fun _ -> True)) : - result b = - match m with - | Return x -> f x - | Fail e -> Fail e - -// Monadic assert(...) -let massert (b:bool) : result unit = if b then Return () else Fail Failure - -// Normalize and unwrap a successful result (used for globals). -let eval_global (#a : Type0) (x : result a{Return? (normalize_term x)}) : a = Return?.v x - -(*** Misc *) -type char = FStar.Char.char -type string = string - -let is_zero (n: nat) : bool = n = 0 -let decrease (n: nat{n > 0}) : nat = n - 1 - -let core_mem_replace (a : Type0) (x : a) (y : a) : a = x -let core_mem_replace_back (a : Type0) (x : a) (y : a) : a = y - -// We don't really use raw pointers for now -type mut_raw_ptr (t : Type0) = { v : t } -type const_raw_ptr (t : Type0) = { v : t } - -(*** Scalars *) -/// Rem.: most of the following code was partially generated - -assume val size_numbits : pos - -// TODO: we could use FStar.Int.int_t and FStar.UInt.int_t - -let isize_min : int = -9223372036854775808 // TODO: should be opaque -let isize_max : int = 9223372036854775807 // TODO: should be opaque -let i8_min : int = -128 -let i8_max : int = 127 -let i16_min : int = -32768 -let i16_max : int = 32767 -let i32_min : int = -2147483648 -let i32_max : int = 2147483647 -let i64_min : int = -9223372036854775808 -let i64_max : int = 9223372036854775807 -let i128_min : int = -170141183460469231731687303715884105728 -let i128_max : int = 170141183460469231731687303715884105727 -let usize_min : int = 0 -let usize_max : int = 4294967295 // TODO: should be opaque -let u8_min : int = 0 -let u8_max : int = 255 -let u16_min : int = 0 -let u16_max : int = 65535 -let u32_min : int = 0 -let u32_max : int = 4294967295 -let u64_min : int = 0 -let u64_max : int = 18446744073709551615 -let u128_min : int = 0 -let u128_max : int = 340282366920938463463374607431768211455 - -type scalar_ty = -| Isize -| I8 -| I16 -| I32 -| I64 -| I128 -| Usize -| U8 -| U16 -| U32 -| U64 -| U128 - -let is_unsigned = function - | Isize | I8 | I16 | I32 | I64 | I128 -> false - | Usize | U8 | U16 | U32 | U64 | U128 -> true - -let scalar_min (ty : scalar_ty) : int = - match ty with - | Isize -> isize_min - | I8 -> i8_min - | I16 -> i16_min - | I32 -> i32_min - | I64 -> i64_min - | I128 -> i128_min - | Usize -> usize_min - | U8 -> u8_min - | U16 -> u16_min - | U32 -> u32_min - | U64 -> u64_min - | U128 -> u128_min - -let scalar_max (ty : scalar_ty) : int = - match ty with - | Isize -> isize_max - | I8 -> i8_max - | I16 -> i16_max - | I32 -> i32_max - | I64 -> i64_max - | I128 -> i128_max - | Usize -> usize_max - | U8 -> u8_max - | U16 -> u16_max - | U32 -> u32_max - | U64 -> u64_max - | U128 -> u128_max - -type scalar (ty : scalar_ty) : eqtype = x:int{scalar_min ty <= x && x <= scalar_max ty} - -let mk_scalar (ty : scalar_ty) (x : int) : result (scalar ty) = - if scalar_min ty <= x && scalar_max ty >= x then Return x else Fail Failure - -let scalar_neg (#ty : scalar_ty) (x : scalar ty) : result (scalar ty) = mk_scalar ty (-x) - -let scalar_div (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - if y <> 0 then mk_scalar ty (x / y) else Fail Failure - -/// The remainder operation -let int_rem (x : int) (y : int{y <> 0}) : int = - if x >= 0 then (x % y) else -(x % y) - -(* Checking consistency with Rust *) -let _ = assert_norm(int_rem 1 2 = 1) -let _ = assert_norm(int_rem (-1) 2 = -1) -let _ = assert_norm(int_rem 1 (-2) = 1) -let _ = assert_norm(int_rem (-1) (-2) = -1) - -let scalar_rem (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - if y <> 0 then mk_scalar ty (int_rem x y) else Fail Failure - -let scalar_add (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - mk_scalar ty (x + y) - -let scalar_sub (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - mk_scalar ty (x - y) - -let scalar_mul (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - mk_scalar ty (x * y) - -let scalar_xor (#ty : scalar_ty) - (x : scalar ty) (y : scalar ty) : scalar ty = - match ty with - | U8 -> FStar.UInt.logxor #8 x y - | U16 -> FStar.UInt.logxor #16 x y - | U32 -> FStar.UInt.logxor #32 x y - | U64 -> FStar.UInt.logxor #64 x y - | U128 -> FStar.UInt.logxor #128 x y - | Usize -> admit() // TODO - | I8 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 8); - normalize_spec (scalar I8); - FStar.Int.logxor #8 x y - | I16 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 16); - normalize_spec (scalar I16); - FStar.Int.logxor #16 x y - | I32 -> FStar.Int.logxor #32 x y - | I64 -> FStar.Int.logxor #64 x y - | I128 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 128); - normalize_spec (scalar I128); - FStar.Int.logxor #128 x y - | Isize -> admit() // TODO - -let scalar_or (#ty : scalar_ty) - (x : scalar ty) (y : scalar ty) : scalar ty = - match ty with - | U8 -> FStar.UInt.logor #8 x y - | U16 -> FStar.UInt.logor #16 x y - | U32 -> FStar.UInt.logor #32 x y - | U64 -> FStar.UInt.logor #64 x y - | U128 -> FStar.UInt.logor #128 x y - | Usize -> admit() // TODO - | I8 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 8); - normalize_spec (scalar I8); - FStar.Int.logor #8 x y - | I16 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 16); - normalize_spec (scalar I16); - FStar.Int.logor #16 x y - | I32 -> FStar.Int.logor #32 x y - | I64 -> FStar.Int.logor #64 x y - | I128 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 128); - normalize_spec (scalar I128); - FStar.Int.logor #128 x y - | Isize -> admit() // TODO - -let scalar_and (#ty : scalar_ty) - (x : scalar ty) (y : scalar ty) : scalar ty = - match ty with - | U8 -> FStar.UInt.logand #8 x y - | U16 -> FStar.UInt.logand #16 x y - | U32 -> FStar.UInt.logand #32 x y - | U64 -> FStar.UInt.logand #64 x y - | U128 -> FStar.UInt.logand #128 x y - | Usize -> admit() // TODO - | I8 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 8); - normalize_spec (scalar I8); - FStar.Int.logand #8 x y - | I16 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 16); - normalize_spec (scalar I16); - FStar.Int.logand #16 x y - | I32 -> FStar.Int.logand #32 x y - | I64 -> FStar.Int.logand #64 x y - | I128 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 128); - normalize_spec (scalar I128); - FStar.Int.logand #128 x y - | Isize -> admit() // TODO - -// Shift left -let scalar_shl (#ty0 #ty1 : scalar_ty) - (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) = - admit() - -// Shift right -let scalar_shr (#ty0 #ty1 : scalar_ty) - (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) = - admit() - -(** Cast an integer from a [src_ty] to a [tgt_ty] *) -// TODO: check the semantics of casts in Rust -let scalar_cast (src_ty : scalar_ty) (tgt_ty : scalar_ty) (x : scalar src_ty) : result (scalar tgt_ty) = - mk_scalar tgt_ty x - -// This can't fail, but for now we make all casts faillible (easier for the translation) -let scalar_cast_bool (tgt_ty : scalar_ty) (x : bool) : result (scalar tgt_ty) = - mk_scalar tgt_ty (if x then 1 else 0) - -/// The scalar types -type isize : eqtype = scalar Isize -type i8 : eqtype = scalar I8 -type i16 : eqtype = scalar I16 -type i32 : eqtype = scalar I32 -type i64 : eqtype = scalar I64 -type i128 : eqtype = scalar I128 -type usize : eqtype = scalar Usize -type u8 : eqtype = scalar U8 -type u16 : eqtype = scalar U16 -type u32 : eqtype = scalar U32 -type u64 : eqtype = scalar U64 -type u128 : eqtype = scalar U128 - - -let core_isize_min : isize = isize_min -let core_isize_max : isize = isize_max -let core_i8_min : i8 = i8_min -let core_i8_max : i8 = i8_max -let core_i16_min : i16 = i16_min -let core_i16_max : i16 = i16_max -let core_i32_min : i32 = i32_min -let core_i32_max : i32 = i32_max -let core_i64_min : i64 = i64_min -let core_i64_max : i64 = i64_max -let core_i128_min : i128 = i128_min -let core_i128_max : i128 = i128_max - -let core_usize_min : usize = usize_min -let core_usize_max : usize = usize_max -let core_u8_min : u8 = u8_min -let core_u8_max : u8 = u8_max -let core_u16_min : u16 = u16_min -let core_u16_max : u16 = u16_max -let core_u32_min : u32 = u32_min -let core_u32_max : u32 = u32_max -let core_u64_min : u64 = u64_min -let core_u64_max : u64 = u64_max -let core_u128_min : u128 = u128_min -let core_u128_max : u128 = u128_max - -/// Negation -let isize_neg = scalar_neg #Isize -let i8_neg = scalar_neg #I8 -let i16_neg = scalar_neg #I16 -let i32_neg = scalar_neg #I32 -let i64_neg = scalar_neg #I64 -let i128_neg = scalar_neg #I128 - -/// Division -let isize_div = scalar_div #Isize -let i8_div = scalar_div #I8 -let i16_div = scalar_div #I16 -let i32_div = scalar_div #I32 -let i64_div = scalar_div #I64 -let i128_div = scalar_div #I128 -let usize_div = scalar_div #Usize -let u8_div = scalar_div #U8 -let u16_div = scalar_div #U16 -let u32_div = scalar_div #U32 -let u64_div = scalar_div #U64 -let u128_div = scalar_div #U128 - -/// Remainder -let isize_rem = scalar_rem #Isize -let i8_rem = scalar_rem #I8 -let i16_rem = scalar_rem #I16 -let i32_rem = scalar_rem #I32 -let i64_rem = scalar_rem #I64 -let i128_rem = scalar_rem #I128 -let usize_rem = scalar_rem #Usize -let u8_rem = scalar_rem #U8 -let u16_rem = scalar_rem #U16 -let u32_rem = scalar_rem #U32 -let u64_rem = scalar_rem #U64 -let u128_rem = scalar_rem #U128 - -/// Addition -let isize_add = scalar_add #Isize -let i8_add = scalar_add #I8 -let i16_add = scalar_add #I16 -let i32_add = scalar_add #I32 -let i64_add = scalar_add #I64 -let i128_add = scalar_add #I128 -let usize_add = scalar_add #Usize -let u8_add = scalar_add #U8 -let u16_add = scalar_add #U16 -let u32_add = scalar_add #U32 -let u64_add = scalar_add #U64 -let u128_add = scalar_add #U128 - -/// Subtraction -let isize_sub = scalar_sub #Isize -let i8_sub = scalar_sub #I8 -let i16_sub = scalar_sub #I16 -let i32_sub = scalar_sub #I32 -let i64_sub = scalar_sub #I64 -let i128_sub = scalar_sub #I128 -let usize_sub = scalar_sub #Usize -let u8_sub = scalar_sub #U8 -let u16_sub = scalar_sub #U16 -let u32_sub = scalar_sub #U32 -let u64_sub = scalar_sub #U64 -let u128_sub = scalar_sub #U128 - -/// Multiplication -let isize_mul = scalar_mul #Isize -let i8_mul = scalar_mul #I8 -let i16_mul = scalar_mul #I16 -let i32_mul = scalar_mul #I32 -let i64_mul = scalar_mul #I64 -let i128_mul = scalar_mul #I128 -let usize_mul = scalar_mul #Usize -let u8_mul = scalar_mul #U8 -let u16_mul = scalar_mul #U16 -let u32_mul = scalar_mul #U32 -let u64_mul = scalar_mul #U64 -let u128_mul = scalar_mul #U128 - -/// Xor -let u8_xor = scalar_xor #U8 -let u16_xor = scalar_xor #U16 -let u32_xor = scalar_xor #U32 -let u64_xor = scalar_xor #U64 -let u128_xor = scalar_xor #U128 -let usize_xor = scalar_xor #Usize -let i8_xor = scalar_xor #I8 -let i16_xor = scalar_xor #I16 -let i32_xor = scalar_xor #I32 -let i64_xor = scalar_xor #I64 -let i128_xor = scalar_xor #I128 -let isize_xor = scalar_xor #Isize - -/// Or -let u8_or = scalar_or #U8 -let u16_or = scalar_or #U16 -let u32_or = scalar_or #U32 -let u64_or = scalar_or #U64 -let u128_or = scalar_or #U128 -let usize_or = scalar_or #Usize -let i8_or = scalar_or #I8 -let i16_or = scalar_or #I16 -let i32_or = scalar_or #I32 -let i64_or = scalar_or #I64 -let i128_or = scalar_or #I128 -let isize_or = scalar_or #Isize - -/// And -let u8_and = scalar_and #U8 -let u16_and = scalar_and #U16 -let u32_and = scalar_and #U32 -let u64_and = scalar_and #U64 -let u128_and = scalar_and #U128 -let usize_and = scalar_and #Usize -let i8_and = scalar_and #I8 -let i16_and = scalar_and #I16 -let i32_and = scalar_and #I32 -let i64_and = scalar_and #I64 -let i128_and = scalar_and #I128 -let isize_and = scalar_and #Isize - -/// Shift left -let u8_shl #ty = scalar_shl #U8 #ty -let u16_shl #ty = scalar_shl #U16 #ty -let u32_shl #ty = scalar_shl #U32 #ty -let u64_shl #ty = scalar_shl #U64 #ty -let u128_shl #ty = scalar_shl #U128 #ty -let usize_shl #ty = scalar_shl #Usize #ty -let i8_shl #ty = scalar_shl #I8 #ty -let i16_shl #ty = scalar_shl #I16 #ty -let i32_shl #ty = scalar_shl #I32 #ty -let i64_shl #ty = scalar_shl #I64 #ty -let i128_shl #ty = scalar_shl #I128 #ty -let isize_shl #ty = scalar_shl #Isize #ty - -/// Shift right -let u8_shr #ty = scalar_shr #U8 #ty -let u16_shr #ty = scalar_shr #U16 #ty -let u32_shr #ty = scalar_shr #U32 #ty -let u64_shr #ty = scalar_shr #U64 #ty -let u128_shr #ty = scalar_shr #U128 #ty -let usize_shr #ty = scalar_shr #Usize #ty -let i8_shr #ty = scalar_shr #I8 #ty -let i16_shr #ty = scalar_shr #I16 #ty -let i32_shr #ty = scalar_shr #I32 #ty -let i64_shr #ty = scalar_shr #I64 #ty -let i128_shr #ty = scalar_shr #I128 #ty -let isize_shr #ty = scalar_shr #Isize #ty - -(*** core::ops *) - -// Trait declaration: [core::ops::index::Index] -noeq type core_ops_index_Index (self idx : Type0) = { - output : Type0; - index : self → idx → result output -} - -// Trait declaration: [core::ops::index::IndexMut] -noeq type core_ops_index_IndexMut (self idx : Type0) = { - indexInst : core_ops_index_Index self idx; - index_mut : self → idx → result indexInst.output; - index_mut_back : self → idx → indexInst.output → result self; -} - -// Trait declaration [core::ops::deref::Deref] -noeq type core_ops_deref_Deref (self : Type0) = { - target : Type0; - deref : self → result target; -} - -// Trait declaration [core::ops::deref::DerefMut] -noeq type core_ops_deref_DerefMut (self : Type0) = { - derefInst : core_ops_deref_Deref self; - deref_mut : self → result derefInst.target; - deref_mut_back : self → derefInst.target → result self; -} - -type core_ops_range_Range (a : Type0) = { - start : a; - end_ : a; -} - -(*** [alloc] *) - -let alloc_boxed_Box_deref (t : Type0) (x : t) : result t = Return x -let alloc_boxed_Box_deref_mut (t : Type0) (x : t) : result t = Return x -let alloc_boxed_Box_deref_mut_back (t : Type) (_ : t) (x : t) : result t = Return x - -// Trait instance -let alloc_boxed_Box_coreopsDerefInst (self : Type0) : core_ops_deref_Deref self = { - target = self; - deref = alloc_boxed_Box_deref self; -} - -// Trait instance -let alloc_boxed_Box_coreopsDerefMutInst (self : Type0) : core_ops_deref_DerefMut self = { - derefInst = alloc_boxed_Box_coreopsDerefInst self; - deref_mut = alloc_boxed_Box_deref_mut self; - deref_mut_back = alloc_boxed_Box_deref_mut_back self; -} - -(*** Array *) -type array (a : Type0) (n : usize) = s:list a{length s = n} - -// We tried putting the normalize_term condition as a refinement on the list -// but it didn't work. It works with the requires clause. -let mk_array (a : Type0) (n : usize) - (l : list a) : - Pure (array a n) - (requires (normalize_term(FStar.List.Tot.length l) = n)) - (ensures (fun _ -> True)) = - normalize_term_spec (FStar.List.Tot.length l); - l - -let array_index_usize (a : Type0) (n : usize) (x : array a n) (i : usize) : result a = - if i < length x then Return (index x i) - else Fail Failure - -let array_update_usize (a : Type0) (n : usize) (x : array a n) (i : usize) (nx : a) : result (array a n) = - if i < length x then Return (list_update x i nx) - else Fail Failure - -(*** Slice *) -type slice (a : Type0) = s:list a{length s <= usize_max} - -let slice_len (a : Type0) (s : slice a) : usize = length s - -let slice_index_usize (a : Type0) (x : slice a) (i : usize) : result a = - if i < length x then Return (index x i) - else Fail Failure - -let slice_update_usize (a : Type0) (x : slice a) (i : usize) (nx : a) : result (slice a) = - if i < length x then Return (list_update x i nx) - else Fail Failure - -(*** Subslices *) - -let array_to_slice (a : Type0) (n : usize) (x : array a n) : result (slice a) = Return x -let array_from_slice (a : Type0) (n : usize) (x : array a n) (s : slice a) : result (array a n) = - if length s = n then Return s - else Fail Failure - -// TODO: finish the definitions below (there lacks [List.drop] and [List.take] in the standard library *) -let array_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) : result (slice a) = - admit() - -let array_update_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) (ns : slice a) : result (array a n) = - admit() - -let array_repeat (a : Type0) (n : usize) (x : a) : array a n = - admit() - -let slice_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) : result (slice a) = - admit() - -let slice_update_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) (ns : slice a) : result (slice a) = - admit() - -(*** Vector *) -type alloc_vec_Vec (a : Type0) = v:list a{length v <= usize_max} - -let alloc_vec_Vec_new (a : Type0) : alloc_vec_Vec a = assert_norm(length #a [] == 0); [] -let alloc_vec_Vec_len (a : Type0) (v : alloc_vec_Vec a) : usize = length v - -// Helper -let alloc_vec_Vec_index_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : result a = - if i < length v then Return (index v i) else Fail Failure -// Helper -let alloc_vec_Vec_update_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) = - if i < length v then Return (list_update v i x) else Fail Failure - -// The **forward** function shouldn't be used -let alloc_vec_Vec_push_fwd (a : Type0) (v : alloc_vec_Vec a) (x : a) : unit = () -let alloc_vec_Vec_push (a : Type0) (v : alloc_vec_Vec a) (x : a) : - Pure (result (alloc_vec_Vec a)) - (requires True) - (ensures (fun res -> - match res with - | Fail e -> e == Failure - | Return v' -> length v' = length v + 1)) = - if length v < usize_max then begin - (**) assert_norm(length [x] == 1); - (**) append_length v [x]; - (**) assert(length (append v [x]) = length v + 1); - Return (append v [x]) - end - else Fail Failure - -// The **forward** function shouldn't be used -let alloc_vec_Vec_insert_fwd (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result unit = - if i < length v then Return () else Fail Failure -let alloc_vec_Vec_insert (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) = - if i < length v then Return (list_update v i x) else Fail Failure - -// Trait declaration: [core::slice::index::private_slice_index::Sealed] -type core_slice_index_private_slice_index_Sealed (self : Type0) = unit - -// Trait declaration: [core::slice::index::SliceIndex] -noeq type core_slice_index_SliceIndex (self t : Type0) = { - sealedInst : core_slice_index_private_slice_index_Sealed self; - output : Type0; - get : self → t → result (option output); - get_mut : self → t → result (option output); - get_mut_back : self → t → option output → result t; - get_unchecked : self → const_raw_ptr t → result (const_raw_ptr output); - get_unchecked_mut : self → mut_raw_ptr t → result (mut_raw_ptr output); - index : self → t → result output; - index_mut : self → t → result output; - index_mut_back : self → t → output → result t; -} - -// [core::slice::index::[T]::index]: forward function -let core_slice_index_Slice_index - (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (s : slice t) (i : idx) : result inst.output = - let* x = inst.get i s in - match x with - | None -> Fail Failure - | Some x -> Return x - -// [core::slice::index::Range:::get]: forward function -let core_slice_index_RangeUsize_get (t : Type0) (i : core_ops_range_Range usize) (s : slice t) : - result (option (slice t)) = - admit () // TODO - -// [core::slice::index::Range::get_mut]: forward function -let core_slice_index_RangeUsize_get_mut - (t : Type0) : core_ops_range_Range usize → slice t → result (option (slice t)) = - admit () // TODO - -// [core::slice::index::Range::get_mut]: backward function 0 -let core_slice_index_RangeUsize_get_mut_back - (t : Type0) : - core_ops_range_Range usize → slice t → option (slice t) → result (slice t) = - admit () // TODO - -// [core::slice::index::Range::get_unchecked]: forward function -let core_slice_index_RangeUsize_get_unchecked - (t : Type0) : - core_ops_range_Range usize → const_raw_ptr (slice t) → result (const_raw_ptr (slice t)) = - // Don't know what the model should be - for now we always fail to make - // sure code which uses it fails - fun _ _ -> Fail Failure - -// [core::slice::index::Range::get_unchecked_mut]: forward function -let core_slice_index_RangeUsize_get_unchecked_mut - (t : Type0) : - core_ops_range_Range usize → mut_raw_ptr (slice t) → result (mut_raw_ptr (slice t)) = - // Don't know what the model should be - for now we always fail to make - // sure code which uses it fails - fun _ _ -> Fail Failure - -// [core::slice::index::Range::index]: forward function -let core_slice_index_RangeUsize_index - (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) = - admit () // TODO - -// [core::slice::index::Range::index_mut]: forward function -let core_slice_index_RangeUsize_index_mut - (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) = - admit () // TODO - -// [core::slice::index::Range::index_mut]: backward function 0 -let core_slice_index_RangeUsize_index_mut_back - (t : Type0) : core_ops_range_Range usize → slice t → slice t → result (slice t) = - admit () // TODO - -// [core::slice::index::[T]::index_mut]: forward function -let core_slice_index_Slice_index_mut - (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) : - slice t → idx → result inst.output = - admit () // - -// [core::slice::index::[T]::index_mut]: backward function 0 -let core_slice_index_Slice_index_mut_back - (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) : - slice t → idx → inst.output → result (slice t) = - admit () // TODO - -// [core::array::[T; N]::index]: forward function -let core_array_Array_index - (t idx : Type0) (n : usize) (inst : core_ops_index_Index (slice t) idx) - (a : array t n) (i : idx) : result inst.output = - admit () // TODO - -// [core::array::[T; N]::index_mut]: forward function -let core_array_Array_index_mut - (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx) - (a : array t n) (i : idx) : result inst.indexInst.output = - admit () // TODO - -// [core::array::[T; N]::index_mut]: backward function 0 -let core_array_Array_index_mut_back - (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx) - (a : array t n) (i : idx) (x : inst.indexInst.output) : result (array t n) = - admit () // TODO - -// Trait implementation: [core::slice::index::private_slice_index::Range] -let core_slice_index_private_slice_index_SealedRangeUsizeInst - : core_slice_index_private_slice_index_Sealed (core_ops_range_Range usize) = () - -// Trait implementation: [core::slice::index::Range] -let core_slice_index_SliceIndexRangeUsizeSliceTInst (t : Type0) : - core_slice_index_SliceIndex (core_ops_range_Range usize) (slice t) = { - sealedInst = core_slice_index_private_slice_index_SealedRangeUsizeInst; - output = slice t; - get = core_slice_index_RangeUsize_get t; - get_mut = core_slice_index_RangeUsize_get_mut t; - get_mut_back = core_slice_index_RangeUsize_get_mut_back t; - get_unchecked = core_slice_index_RangeUsize_get_unchecked t; - get_unchecked_mut = core_slice_index_RangeUsize_get_unchecked_mut t; - index = core_slice_index_RangeUsize_index t; - index_mut = core_slice_index_RangeUsize_index_mut t; - index_mut_back = core_slice_index_RangeUsize_index_mut_back t; -} - -// Trait implementation: [core::slice::index::[T]] -let core_ops_index_IndexSliceTIInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_Index (slice t) idx = { - output = inst.output; - index = core_slice_index_Slice_index t idx inst; -} - -// Trait implementation: [core::slice::index::[T]] -let core_ops_index_IndexMutSliceTIInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_IndexMut (slice t) idx = { - indexInst = core_ops_index_IndexSliceTIInst t idx inst; - index_mut = core_slice_index_Slice_index_mut t idx inst; - index_mut_back = core_slice_index_Slice_index_mut_back t idx inst; -} - -// Trait implementation: [core::array::[T; N]] -let core_ops_index_IndexArrayInst (t idx : Type0) (n : usize) - (inst : core_ops_index_Index (slice t) idx) : - core_ops_index_Index (array t n) idx = { - output = inst.output; - index = core_array_Array_index t idx n inst; -} - -// Trait implementation: [core::array::[T; N]] -let core_ops_index_IndexMutArrayIInst (t idx : Type0) (n : usize) - (inst : core_ops_index_IndexMut (slice t) idx) : - core_ops_index_IndexMut (array t n) idx = { - indexInst = core_ops_index_IndexArrayInst t idx n inst.indexInst; - index_mut = core_array_Array_index_mut t idx n inst; - index_mut_back = core_array_Array_index_mut_back t idx n inst; -} - -// [core::slice::index::usize::get]: forward function -let core_slice_index_usize_get - (t : Type0) : usize → slice t → result (option t) = - admit () // TODO - -// [core::slice::index::usize::get_mut]: forward function -let core_slice_index_usize_get_mut - (t : Type0) : usize → slice t → result (option t) = - admit () // TODO - -// [core::slice::index::usize::get_mut]: backward function 0 -let core_slice_index_usize_get_mut_back - (t : Type0) : usize → slice t → option t → result (slice t) = - admit () // TODO - -// [core::slice::index::usize::get_unchecked]: forward function -let core_slice_index_usize_get_unchecked - (t : Type0) : usize → const_raw_ptr (slice t) → result (const_raw_ptr t) = - admit () // TODO - -// [core::slice::index::usize::get_unchecked_mut]: forward function -let core_slice_index_usize_get_unchecked_mut - (t : Type0) : usize → mut_raw_ptr (slice t) → result (mut_raw_ptr t) = - admit () // TODO - -// [core::slice::index::usize::index]: forward function -let core_slice_index_usize_index (t : Type0) : usize → slice t → result t = - admit () // TODO - -// [core::slice::index::usize::index_mut]: forward function -let core_slice_index_usize_index_mut (t : Type0) : usize → slice t → result t = - admit () // TODO - -// [core::slice::index::usize::index_mut]: backward function 0 -let core_slice_index_usize_index_mut_back - (t : Type0) : usize → slice t → t → result (slice t) = - admit () // TODO - -// Trait implementation: [core::slice::index::private_slice_index::usize] -let core_slice_index_private_slice_index_SealedUsizeInst - : core_slice_index_private_slice_index_Sealed usize = () - -// Trait implementation: [core::slice::index::usize] -let core_slice_index_SliceIndexUsizeSliceTInst (t : Type0) : - core_slice_index_SliceIndex usize (slice t) = { - sealedInst = core_slice_index_private_slice_index_SealedUsizeInst; - output = t; - get = core_slice_index_usize_get t; - get_mut = core_slice_index_usize_get_mut t; - get_mut_back = core_slice_index_usize_get_mut_back t; - get_unchecked = core_slice_index_usize_get_unchecked t; - get_unchecked_mut = core_slice_index_usize_get_unchecked_mut t; - index = core_slice_index_usize_index t; - index_mut = core_slice_index_usize_index_mut t; - index_mut_back = core_slice_index_usize_index_mut_back t; -} - -// [alloc::vec::Vec::index]: forward function -let alloc_vec_Vec_index (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (self : alloc_vec_Vec t) (i : idx) : result inst.output = - admit () // TODO - -// [alloc::vec::Vec::index_mut]: forward function -let alloc_vec_Vec_index_mut (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (self : alloc_vec_Vec t) (i : idx) : result inst.output = - admit () // TODO - -// [alloc::vec::Vec::index_mut]: backward function 0 -let alloc_vec_Vec_index_mut_back - (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (self : alloc_vec_Vec t) (i : idx) (x : inst.output) : result (alloc_vec_Vec t) = - admit () // TODO - -// Trait implementation: [alloc::vec::Vec] -let alloc_vec_Vec_coreopsindexIndexInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_Index (alloc_vec_Vec t) idx = { - output = inst.output; - index = alloc_vec_Vec_index t idx inst; -} - -// Trait implementation: [alloc::vec::Vec] -let alloc_vec_Vec_coreopsindexIndexMutInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_IndexMut (alloc_vec_Vec t) idx = { - indexInst = alloc_vec_Vec_coreopsindexIndexInst t idx inst; - index_mut = alloc_vec_Vec_index_mut t idx inst; - index_mut_back = alloc_vec_Vec_index_mut_back t idx inst; -} - -(*** Theorems *) - -let alloc_vec_Vec_index_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : - Lemma ( - alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i == - alloc_vec_Vec_index_usize v i) - [SMTPat (alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)] - = - admit() - -let alloc_vec_Vec_index_mut_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : - Lemma ( - alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i == - alloc_vec_Vec_index_usize v i) - [SMTPat (alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)] - = - admit() - -let alloc_vec_Vec_index_mut_back_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : - Lemma ( - alloc_vec_Vec_index_mut_back a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i x == - alloc_vec_Vec_update_usize v i x) - [SMTPat (alloc_vec_Vec_index_mut_back a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i x)] - = - admit() diff --git a/tests/fstar-split/hashmap/Hashmap.Clauses.Template.fst b/tests/fstar-split/hashmap/Hashmap.Clauses.Template.fst deleted file mode 100644 index 2733b371..00000000 --- a/tests/fstar-split/hashmap/Hashmap.Clauses.Template.fst +++ /dev/null @@ -1,71 +0,0 @@ -(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *) -(** [hashmap]: templates for the decreases clauses *) -module Hashmap.Clauses.Template -open Primitives -open Hashmap.Types - -#set-options "--z3rlimit 50 --fuel 1 --ifuel 1" - -(** [hashmap::{hashmap::HashMap}::allocate_slots]: decreases clause - Source: 'src/hashmap.rs', lines 50:4-56:5 *) -unfold -let hashMap_allocate_slots_loop_decreases (t : Type0) - (slots : alloc_vec_Vec (list_t t)) (n : usize) : nat = - admit () - -(** [hashmap::{hashmap::HashMap}::clear]: decreases clause - Source: 'src/hashmap.rs', lines 80:4-88:5 *) -unfold -let hashMap_clear_loop_decreases (t : Type0) (slots : alloc_vec_Vec (list_t t)) - (i : usize) : nat = - admit () - -(** [hashmap::{hashmap::HashMap}::insert_in_list]: decreases clause - Source: 'src/hashmap.rs', lines 97:4-114:5 *) -unfold -let hashMap_insert_in_list_loop_decreases (t : Type0) (key : usize) (value : t) - (ls : list_t t) : nat = - admit () - -(** [hashmap::{hashmap::HashMap}::move_elements_from_list]: decreases clause - Source: 'src/hashmap.rs', lines 183:4-196:5 *) -unfold -let hashMap_move_elements_from_list_loop_decreases (t : Type0) - (ntable : hashMap_t t) (ls : list_t t) : nat = - admit () - -(** [hashmap::{hashmap::HashMap}::move_elements]: decreases clause - Source: 'src/hashmap.rs', lines 171:4-180:5 *) -unfold -let hashMap_move_elements_loop_decreases (t : Type0) (ntable : hashMap_t t) - (slots : alloc_vec_Vec (list_t t)) (i : usize) : nat = - admit () - -(** [hashmap::{hashmap::HashMap}::contains_key_in_list]: decreases clause - Source: 'src/hashmap.rs', lines 206:4-219:5 *) -unfold -let hashMap_contains_key_in_list_loop_decreases (t : Type0) (key : usize) - (ls : list_t t) : nat = - admit () - -(** [hashmap::{hashmap::HashMap}::get_in_list]: decreases clause - Source: 'src/hashmap.rs', lines 224:4-237:5 *) -unfold -let hashMap_get_in_list_loop_decreases (t : Type0) (key : usize) - (ls : list_t t) : nat = - admit () - -(** [hashmap::{hashmap::HashMap}::get_mut_in_list]: decreases clause - Source: 'src/hashmap.rs', lines 245:4-254:5 *) -unfold -let hashMap_get_mut_in_list_loop_decreases (t : Type0) (ls : list_t t) - (key : usize) : nat = - admit () - -(** [hashmap::{hashmap::HashMap}::remove_from_list]: decreases clause - Source: 'src/hashmap.rs', lines 265:4-291:5 *) -unfold -let hashMap_remove_from_list_loop_decreases (t : Type0) (key : usize) - (ls : list_t t) : nat = - admit () - diff --git a/tests/fstar-split/hashmap/Hashmap.Clauses.fst b/tests/fstar-split/hashmap/Hashmap.Clauses.fst deleted file mode 100644 index 6c699d05..00000000 --- a/tests/fstar-split/hashmap/Hashmap.Clauses.fst +++ /dev/null @@ -1,61 +0,0 @@ -(** [hashmap]: the decreases clauses *) -module Hashmap.Clauses -open Primitives -open FStar.List.Tot -open Hashmap.Types - -#set-options "--z3rlimit 50 --fuel 0 --ifuel 1" - -(** [hashmap::HashMap::allocate_slots]: decreases clause *) -unfold -let hashMap_allocate_slots_loop_decreases (t : Type0) - (slots : alloc_vec_Vec (list_t t)) (n : usize) : nat = n - -(** [hashmap::HashMap::clear]: decreases clause *) -unfold -let hashMap_clear_loop_decreases (t : Type0) (slots : alloc_vec_Vec (list_t t)) - (i : usize) : nat = - if i < length slots then length slots - i else 0 - -(** [hashmap::HashMap::insert_in_list]: decreases clause *) -unfold -let hashMap_insert_in_list_loop_decreases (t : Type0) (key : usize) (value : t) - (ls : list_t t) : list_t t = - ls - -(** [hashmap::HashMap::move_elements_from_list]: decreases clause *) -unfold -let hashMap_move_elements_from_list_loop_decreases (t : Type0) - (ntable : hashMap_t t) (ls : list_t t) : list_t t = - ls - -(** [hashmap::HashMap::move_elements]: decreases clause *) -unfold -let hashMap_move_elements_loop_decreases (t : Type0) (ntable : hashMap_t t) - (slots : alloc_vec_Vec (list_t t)) (i : usize) : nat = - if i < length slots then length slots - i else 0 - -(** [hashmap::HashMap::contains_key_in_list]: decreases clause *) -unfold -let hashMap_contains_key_in_list_loop_decreases (t : Type0) (key : usize) - (ls : list_t t) : list_t t = - ls - -(** [hashmap::HashMap::get_in_list]: decreases clause *) -unfold -let hashMap_get_in_list_loop_decreases (t : Type0) (key : usize) (ls : list_t t) : - list_t t = - ls - -(** [hashmap::HashMap::get_mut_in_list]: decreases clause *) -unfold -let hashMap_get_mut_in_list_loop_decreases (t : Type0) (ls : list_t t) - (key : usize) : list_t t = - ls - -(** [hashmap::HashMap::remove_from_list]: decreases clause *) -unfold -let hashMap_remove_from_list_loop_decreases (t : Type0) (key : usize) - (ls : list_t t) : list_t t = - ls - diff --git a/tests/fstar-split/hashmap/Hashmap.Funs.fst b/tests/fstar-split/hashmap/Hashmap.Funs.fst deleted file mode 100644 index 290d49ee..00000000 --- a/tests/fstar-split/hashmap/Hashmap.Funs.fst +++ /dev/null @@ -1,529 +0,0 @@ -(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *) -(** [hashmap]: function definitions *) -module Hashmap.Funs -open Primitives -include Hashmap.Types -include Hashmap.Clauses - -#set-options "--z3rlimit 50 --fuel 1 --ifuel 1" - -(** [hashmap::hash_key]: forward function - Source: 'src/hashmap.rs', lines 27:0-27:32 *) -let hash_key (k : usize) : result usize = - Return k - -(** [hashmap::{hashmap::HashMap}::allocate_slots]: loop 0: forward function - Source: 'src/hashmap.rs', lines 50:4-56:5 *) -let rec hashMap_allocate_slots_loop - (t : Type0) (slots : alloc_vec_Vec (list_t t)) (n : usize) : - Tot (result (alloc_vec_Vec (list_t t))) - (decreases (hashMap_allocate_slots_loop_decreases t slots n)) - = - if n > 0 - then - let* slots1 = alloc_vec_Vec_push (list_t t) slots List_Nil in - let* n1 = usize_sub n 1 in - hashMap_allocate_slots_loop t slots1 n1 - else Return slots - -(** [hashmap::{hashmap::HashMap}::allocate_slots]: forward function - Source: 'src/hashmap.rs', lines 50:4-50:76 *) -let hashMap_allocate_slots - (t : Type0) (slots : alloc_vec_Vec (list_t t)) (n : usize) : - result (alloc_vec_Vec (list_t t)) - = - hashMap_allocate_slots_loop t slots n - -(** [hashmap::{hashmap::HashMap}::new_with_capacity]: forward function - Source: 'src/hashmap.rs', lines 59:4-63:13 *) -let hashMap_new_with_capacity - (t : Type0) (capacity : usize) (max_load_dividend : usize) - (max_load_divisor : usize) : - result (hashMap_t t) - = - let* slots = hashMap_allocate_slots t (alloc_vec_Vec_new (list_t t)) capacity - in - let* i = usize_mul capacity max_load_dividend in - let* i1 = usize_div i max_load_divisor in - Return - { - num_entries = 0; - max_load_factor = (max_load_dividend, max_load_divisor); - max_load = i1; - slots = slots - } - -(** [hashmap::{hashmap::HashMap}::new]: forward function - Source: 'src/hashmap.rs', lines 75:4-75:24 *) -let hashMap_new (t : Type0) : result (hashMap_t t) = - hashMap_new_with_capacity t 32 4 5 - -(** [hashmap::{hashmap::HashMap}::clear]: loop 0: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/hashmap.rs', lines 80:4-88:5 *) -let rec hashMap_clear_loop - (t : Type0) (slots : alloc_vec_Vec (list_t t)) (i : usize) : - Tot (result (alloc_vec_Vec (list_t t))) - (decreases (hashMap_clear_loop_decreases t slots i)) - = - let i1 = alloc_vec_Vec_len (list_t t) slots in - if i < i1 - then - let* i2 = usize_add i 1 in - let* slots1 = - alloc_vec_Vec_index_mut_back (list_t t) usize - (core_slice_index_SliceIndexUsizeSliceTInst (list_t t)) slots i - List_Nil in - hashMap_clear_loop t slots1 i2 - else Return slots - -(** [hashmap::{hashmap::HashMap}::clear]: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/hashmap.rs', lines 80:4-80:27 *) -let hashMap_clear (t : Type0) (self : hashMap_t t) : result (hashMap_t t) = - let* v = hashMap_clear_loop t self.slots 0 in - Return { self with num_entries = 0; slots = v } - -(** [hashmap::{hashmap::HashMap}::len]: forward function - Source: 'src/hashmap.rs', lines 90:4-90:30 *) -let hashMap_len (t : Type0) (self : hashMap_t t) : result usize = - Return self.num_entries - -(** [hashmap::{hashmap::HashMap}::insert_in_list]: loop 0: forward function - Source: 'src/hashmap.rs', lines 97:4-114:5 *) -let rec hashMap_insert_in_list_loop - (t : Type0) (key : usize) (value : t) (ls : list_t t) : - Tot (result bool) - (decreases (hashMap_insert_in_list_loop_decreases t key value ls)) - = - begin match ls with - | List_Cons ckey _ tl -> - if ckey = key - then Return false - else hashMap_insert_in_list_loop t key value tl - | List_Nil -> Return true - end - -(** [hashmap::{hashmap::HashMap}::insert_in_list]: forward function - Source: 'src/hashmap.rs', lines 97:4-97:71 *) -let hashMap_insert_in_list - (t : Type0) (key : usize) (value : t) (ls : list_t t) : result bool = - hashMap_insert_in_list_loop t key value ls - -(** [hashmap::{hashmap::HashMap}::insert_in_list]: loop 0: backward function 0 - Source: 'src/hashmap.rs', lines 97:4-114:5 *) -let rec hashMap_insert_in_list_loop_back - (t : Type0) (key : usize) (value : t) (ls : list_t t) : - Tot (result (list_t t)) - (decreases (hashMap_insert_in_list_loop_decreases t key value ls)) - = - begin match ls with - | List_Cons ckey cvalue tl -> - if ckey = key - then Return (List_Cons ckey value tl) - else - let* tl1 = hashMap_insert_in_list_loop_back t key value tl in - Return (List_Cons ckey cvalue tl1) - | List_Nil -> Return (List_Cons key value List_Nil) - end - -(** [hashmap::{hashmap::HashMap}::insert_in_list]: backward function 0 - Source: 'src/hashmap.rs', lines 97:4-97:71 *) -let hashMap_insert_in_list_back - (t : Type0) (key : usize) (value : t) (ls : list_t t) : result (list_t t) = - hashMap_insert_in_list_loop_back t key value ls - -(** [hashmap::{hashmap::HashMap}::insert_no_resize]: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/hashmap.rs', lines 117:4-117:54 *) -let hashMap_insert_no_resize - (t : Type0) (self : hashMap_t t) (key : usize) (value : t) : - result (hashMap_t t) - = - let* hash = hash_key key in - let i = alloc_vec_Vec_len (list_t t) self.slots in - let* hash_mod = usize_rem hash i in - let* l = - alloc_vec_Vec_index_mut (list_t t) usize - (core_slice_index_SliceIndexUsizeSliceTInst (list_t t)) self.slots - hash_mod in - let* inserted = hashMap_insert_in_list t key value l in - if inserted - then - let* i1 = usize_add self.num_entries 1 in - let* l1 = hashMap_insert_in_list_back t key value l in - let* v = - alloc_vec_Vec_index_mut_back (list_t t) usize - (core_slice_index_SliceIndexUsizeSliceTInst (list_t t)) self.slots - hash_mod l1 in - Return { self with num_entries = i1; slots = v } - else - let* l1 = hashMap_insert_in_list_back t key value l in - let* v = - alloc_vec_Vec_index_mut_back (list_t t) usize - (core_slice_index_SliceIndexUsizeSliceTInst (list_t t)) self.slots - hash_mod l1 in - Return { self with slots = v } - -(** [hashmap::{hashmap::HashMap}::move_elements_from_list]: loop 0: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/hashmap.rs', lines 183:4-196:5 *) -let rec hashMap_move_elements_from_list_loop - (t : Type0) (ntable : hashMap_t t) (ls : list_t t) : - Tot (result (hashMap_t t)) - (decreases (hashMap_move_elements_from_list_loop_decreases t ntable ls)) - = - begin match ls with - | List_Cons k v tl -> - let* ntable1 = hashMap_insert_no_resize t ntable k v in - hashMap_move_elements_from_list_loop t ntable1 tl - | List_Nil -> Return ntable - end - -(** [hashmap::{hashmap::HashMap}::move_elements_from_list]: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/hashmap.rs', lines 183:4-183:72 *) -let hashMap_move_elements_from_list - (t : Type0) (ntable : hashMap_t t) (ls : list_t t) : result (hashMap_t t) = - hashMap_move_elements_from_list_loop t ntable ls - -(** [hashmap::{hashmap::HashMap}::move_elements]: loop 0: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/hashmap.rs', lines 171:4-180:5 *) -let rec hashMap_move_elements_loop - (t : Type0) (ntable : hashMap_t t) (slots : alloc_vec_Vec (list_t t)) - (i : usize) : - Tot (result ((hashMap_t t) & (alloc_vec_Vec (list_t t)))) - (decreases (hashMap_move_elements_loop_decreases t ntable slots i)) - = - let i1 = alloc_vec_Vec_len (list_t t) slots in - if i < i1 - then - let* l = - alloc_vec_Vec_index_mut (list_t t) usize - (core_slice_index_SliceIndexUsizeSliceTInst (list_t t)) slots i in - let ls = core_mem_replace (list_t t) l List_Nil in - let* ntable1 = hashMap_move_elements_from_list t ntable ls in - let* i2 = usize_add i 1 in - let l1 = core_mem_replace_back (list_t t) l List_Nil in - let* slots1 = - alloc_vec_Vec_index_mut_back (list_t t) usize - (core_slice_index_SliceIndexUsizeSliceTInst (list_t t)) slots i l1 in - hashMap_move_elements_loop t ntable1 slots1 i2 - else Return (ntable, slots) - -(** [hashmap::{hashmap::HashMap}::move_elements]: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/hashmap.rs', lines 171:4-171:95 *) -let hashMap_move_elements - (t : Type0) (ntable : hashMap_t t) (slots : alloc_vec_Vec (list_t t)) - (i : usize) : - result ((hashMap_t t) & (alloc_vec_Vec (list_t t))) - = - hashMap_move_elements_loop t ntable slots i - -(** [hashmap::{hashmap::HashMap}::try_resize]: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/hashmap.rs', lines 140:4-140:28 *) -let hashMap_try_resize - (t : Type0) (self : hashMap_t t) : result (hashMap_t t) = - let* max_usize = scalar_cast U32 Usize core_u32_max in - let capacity = alloc_vec_Vec_len (list_t t) self.slots in - let* n1 = usize_div max_usize 2 in - let (i, i1) = self.max_load_factor in - let* i2 = usize_div n1 i in - if capacity <= i2 - then - let* i3 = usize_mul capacity 2 in - let* ntable = hashMap_new_with_capacity t i3 i i1 in - let* (ntable1, _) = hashMap_move_elements t ntable self.slots 0 in - Return - { ntable1 with num_entries = self.num_entries; max_load_factor = (i, i1) - } - else Return { self with max_load_factor = (i, i1) } - -(** [hashmap::{hashmap::HashMap}::insert]: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/hashmap.rs', lines 129:4-129:48 *) -let hashMap_insert - (t : Type0) (self : hashMap_t t) (key : usize) (value : t) : - result (hashMap_t t) - = - let* self1 = hashMap_insert_no_resize t self key value in - let* i = hashMap_len t self1 in - if i > self1.max_load then hashMap_try_resize t self1 else Return self1 - -(** [hashmap::{hashmap::HashMap}::contains_key_in_list]: loop 0: forward function - Source: 'src/hashmap.rs', lines 206:4-219:5 *) -let rec hashMap_contains_key_in_list_loop - (t : Type0) (key : usize) (ls : list_t t) : - Tot (result bool) - (decreases (hashMap_contains_key_in_list_loop_decreases t key ls)) - = - begin match ls with - | List_Cons ckey _ tl -> - if ckey = key - then Return true - else hashMap_contains_key_in_list_loop t key tl - | List_Nil -> Return false - end - -(** [hashmap::{hashmap::HashMap}::contains_key_in_list]: forward function - Source: 'src/hashmap.rs', lines 206:4-206:68 *) -let hashMap_contains_key_in_list - (t : Type0) (key : usize) (ls : list_t t) : result bool = - hashMap_contains_key_in_list_loop t key ls - -(** [hashmap::{hashmap::HashMap}::contains_key]: forward function - Source: 'src/hashmap.rs', lines 199:4-199:49 *) -let hashMap_contains_key - (t : Type0) (self : hashMap_t t) (key : usize) : result bool = - let* hash = hash_key key in - let i = alloc_vec_Vec_len (list_t t) self.slots in - let* hash_mod = usize_rem hash i in - let* l = - alloc_vec_Vec_index (list_t t) usize - (core_slice_index_SliceIndexUsizeSliceTInst (list_t t)) self.slots - hash_mod in - hashMap_contains_key_in_list t key l - -(** [hashmap::{hashmap::HashMap}::get_in_list]: loop 0: forward function - Source: 'src/hashmap.rs', lines 224:4-237:5 *) -let rec hashMap_get_in_list_loop - (t : Type0) (key : usize) (ls : list_t t) : - Tot (result t) (decreases (hashMap_get_in_list_loop_decreases t key ls)) - = - begin match ls with - | List_Cons ckey cvalue tl -> - if ckey = key then Return cvalue else hashMap_get_in_list_loop t key tl - | List_Nil -> Fail Failure - end - -(** [hashmap::{hashmap::HashMap}::get_in_list]: forward function - Source: 'src/hashmap.rs', lines 224:4-224:70 *) -let hashMap_get_in_list (t : Type0) (key : usize) (ls : list_t t) : result t = - hashMap_get_in_list_loop t key ls - -(** [hashmap::{hashmap::HashMap}::get]: forward function - Source: 'src/hashmap.rs', lines 239:4-239:55 *) -let hashMap_get (t : Type0) (self : hashMap_t t) (key : usize) : result t = - let* hash = hash_key key in - let i = alloc_vec_Vec_len (list_t t) self.slots in - let* hash_mod = usize_rem hash i in - let* l = - alloc_vec_Vec_index (list_t t) usize - (core_slice_index_SliceIndexUsizeSliceTInst (list_t t)) self.slots - hash_mod in - hashMap_get_in_list t key l - -(** [hashmap::{hashmap::HashMap}::get_mut_in_list]: loop 0: forward function - Source: 'src/hashmap.rs', lines 245:4-254:5 *) -let rec hashMap_get_mut_in_list_loop - (t : Type0) (ls : list_t t) (key : usize) : - Tot (result t) (decreases (hashMap_get_mut_in_list_loop_decreases t ls key)) - = - begin match ls with - | List_Cons ckey cvalue tl -> - if ckey = key then Return cvalue else hashMap_get_mut_in_list_loop t tl key - | List_Nil -> Fail Failure - end - -(** [hashmap::{hashmap::HashMap}::get_mut_in_list]: forward function - Source: 'src/hashmap.rs', lines 245:4-245:86 *) -let hashMap_get_mut_in_list - (t : Type0) (ls : list_t t) (key : usize) : result t = - hashMap_get_mut_in_list_loop t ls key - -(** [hashmap::{hashmap::HashMap}::get_mut_in_list]: loop 0: backward function 0 - Source: 'src/hashmap.rs', lines 245:4-254:5 *) -let rec hashMap_get_mut_in_list_loop_back - (t : Type0) (ls : list_t t) (key : usize) (ret : t) : - Tot (result (list_t t)) - (decreases (hashMap_get_mut_in_list_loop_decreases t ls key)) - = - begin match ls with - | List_Cons ckey cvalue tl -> - if ckey = key - then Return (List_Cons ckey ret tl) - else - let* tl1 = hashMap_get_mut_in_list_loop_back t tl key ret in - Return (List_Cons ckey cvalue tl1) - | List_Nil -> Fail Failure - end - -(** [hashmap::{hashmap::HashMap}::get_mut_in_list]: backward function 0 - Source: 'src/hashmap.rs', lines 245:4-245:86 *) -let hashMap_get_mut_in_list_back - (t : Type0) (ls : list_t t) (key : usize) (ret : t) : result (list_t t) = - hashMap_get_mut_in_list_loop_back t ls key ret - -(** [hashmap::{hashmap::HashMap}::get_mut]: forward function - Source: 'src/hashmap.rs', lines 257:4-257:67 *) -let hashMap_get_mut (t : Type0) (self : hashMap_t t) (key : usize) : result t = - let* hash = hash_key key in - let i = alloc_vec_Vec_len (list_t t) self.slots in - let* hash_mod = usize_rem hash i in - let* l = - alloc_vec_Vec_index_mut (list_t t) usize - (core_slice_index_SliceIndexUsizeSliceTInst (list_t t)) self.slots - hash_mod in - hashMap_get_mut_in_list t l key - -(** [hashmap::{hashmap::HashMap}::get_mut]: backward function 0 - Source: 'src/hashmap.rs', lines 257:4-257:67 *) -let hashMap_get_mut_back - (t : Type0) (self : hashMap_t t) (key : usize) (ret : t) : - result (hashMap_t t) - = - let* hash = hash_key key in - let i = alloc_vec_Vec_len (list_t t) self.slots in - let* hash_mod = usize_rem hash i in - let* l = - alloc_vec_Vec_index_mut (list_t t) usize - (core_slice_index_SliceIndexUsizeSliceTInst (list_t t)) self.slots - hash_mod in - let* l1 = hashMap_get_mut_in_list_back t l key ret in - let* v = - alloc_vec_Vec_index_mut_back (list_t t) usize - (core_slice_index_SliceIndexUsizeSliceTInst (list_t t)) self.slots - hash_mod l1 in - Return { self with slots = v } - -(** [hashmap::{hashmap::HashMap}::remove_from_list]: loop 0: forward function - Source: 'src/hashmap.rs', lines 265:4-291:5 *) -let rec hashMap_remove_from_list_loop - (t : Type0) (key : usize) (ls : list_t t) : - Tot (result (option t)) - (decreases (hashMap_remove_from_list_loop_decreases t key ls)) - = - begin match ls with - | List_Cons ckey x tl -> - if ckey = key - then - let mv_ls = core_mem_replace (list_t t) (List_Cons ckey x tl) List_Nil in - begin match mv_ls with - | List_Cons _ cvalue _ -> Return (Some cvalue) - | List_Nil -> Fail Failure - end - else hashMap_remove_from_list_loop t key tl - | List_Nil -> Return None - end - -(** [hashmap::{hashmap::HashMap}::remove_from_list]: forward function - Source: 'src/hashmap.rs', lines 265:4-265:69 *) -let hashMap_remove_from_list - (t : Type0) (key : usize) (ls : list_t t) : result (option t) = - hashMap_remove_from_list_loop t key ls - -(** [hashmap::{hashmap::HashMap}::remove_from_list]: loop 0: backward function 1 - Source: 'src/hashmap.rs', lines 265:4-291:5 *) -let rec hashMap_remove_from_list_loop_back - (t : Type0) (key : usize) (ls : list_t t) : - Tot (result (list_t t)) - (decreases (hashMap_remove_from_list_loop_decreases t key ls)) - = - begin match ls with - | List_Cons ckey x tl -> - if ckey = key - then - let mv_ls = core_mem_replace (list_t t) (List_Cons ckey x tl) List_Nil in - begin match mv_ls with - | List_Cons _ _ tl1 -> Return tl1 - | List_Nil -> Fail Failure - end - else - let* tl1 = hashMap_remove_from_list_loop_back t key tl in - Return (List_Cons ckey x tl1) - | List_Nil -> Return List_Nil - end - -(** [hashmap::{hashmap::HashMap}::remove_from_list]: backward function 1 - Source: 'src/hashmap.rs', lines 265:4-265:69 *) -let hashMap_remove_from_list_back - (t : Type0) (key : usize) (ls : list_t t) : result (list_t t) = - hashMap_remove_from_list_loop_back t key ls - -(** [hashmap::{hashmap::HashMap}::remove]: forward function - Source: 'src/hashmap.rs', lines 294:4-294:52 *) -let hashMap_remove - (t : Type0) (self : hashMap_t t) (key : usize) : result (option t) = - let* hash = hash_key key in - let i = alloc_vec_Vec_len (list_t t) self.slots in - let* hash_mod = usize_rem hash i in - let* l = - alloc_vec_Vec_index_mut (list_t t) usize - (core_slice_index_SliceIndexUsizeSliceTInst (list_t t)) self.slots - hash_mod in - let* x = hashMap_remove_from_list t key l in - begin match x with - | None -> Return None - | Some x1 -> let* _ = usize_sub self.num_entries 1 in Return (Some x1) - end - -(** [hashmap::{hashmap::HashMap}::remove]: backward function 0 - Source: 'src/hashmap.rs', lines 294:4-294:52 *) -let hashMap_remove_back - (t : Type0) (self : hashMap_t t) (key : usize) : result (hashMap_t t) = - let* hash = hash_key key in - let i = alloc_vec_Vec_len (list_t t) self.slots in - let* hash_mod = usize_rem hash i in - let* l = - alloc_vec_Vec_index_mut (list_t t) usize - (core_slice_index_SliceIndexUsizeSliceTInst (list_t t)) self.slots - hash_mod in - let* x = hashMap_remove_from_list t key l in - begin match x with - | None -> - let* l1 = hashMap_remove_from_list_back t key l in - let* v = - alloc_vec_Vec_index_mut_back (list_t t) usize - (core_slice_index_SliceIndexUsizeSliceTInst (list_t t)) self.slots - hash_mod l1 in - Return { self with slots = v } - | Some _ -> - let* i1 = usize_sub self.num_entries 1 in - let* l1 = hashMap_remove_from_list_back t key l in - let* v = - alloc_vec_Vec_index_mut_back (list_t t) usize - (core_slice_index_SliceIndexUsizeSliceTInst (list_t t)) self.slots - hash_mod l1 in - Return { self with num_entries = i1; slots = v } - end - -(** [hashmap::test1]: forward function - Source: 'src/hashmap.rs', lines 315:0-315:10 *) -let test1 : result unit = - let* hm = hashMap_new u64 in - let* hm1 = hashMap_insert u64 hm 0 42 in - let* hm2 = hashMap_insert u64 hm1 128 18 in - let* hm3 = hashMap_insert u64 hm2 1024 138 in - let* hm4 = hashMap_insert u64 hm3 1056 256 in - let* i = hashMap_get u64 hm4 128 in - if not (i = 18) - then Fail Failure - else - let* hm5 = hashMap_get_mut_back u64 hm4 1024 56 in - let* i1 = hashMap_get u64 hm5 1024 in - if not (i1 = 56) - then Fail Failure - else - let* x = hashMap_remove u64 hm5 1024 in - begin match x with - | None -> Fail Failure - | Some x1 -> - if not (x1 = 56) - then Fail Failure - else - let* hm6 = hashMap_remove_back u64 hm5 1024 in - let* i2 = hashMap_get u64 hm6 0 in - if not (i2 = 42) - then Fail Failure - else - let* i3 = hashMap_get u64 hm6 128 in - if not (i3 = 18) - then Fail Failure - else - let* i4 = hashMap_get u64 hm6 1056 in - if not (i4 = 256) then Fail Failure else Return () - end - diff --git a/tests/fstar-split/hashmap/Hashmap.Properties.fst b/tests/fstar-split/hashmap/Hashmap.Properties.fst deleted file mode 100644 index def520f0..00000000 --- a/tests/fstar-split/hashmap/Hashmap.Properties.fst +++ /dev/null @@ -1,3186 +0,0 @@ -(** Properties about the hashmap *) -module Hashmap.Properties -open Primitives -open FStar.List.Tot -open FStar.Mul -open Hashmap.Types -open Hashmap.Clauses -open Hashmap.Funs - -#set-options "--z3rlimit 50 --fuel 0 --ifuel 1" - -let _align_fsti = () - -/// The proofs: -/// =========== -/// -/// The proof strategy is to do exactly as with Low* proofs (we initially tried to -/// prove more properties in one go, but it was a mistake): -/// - prove that, under some preconditions, the low-level functions translated -/// from Rust refine some higher-level functions -/// - do functional proofs about those high-level functions to prove interesting -/// properties about the hash map operations, and invariant preservation -/// - combine everything -/// -/// The fact that we work in a pure setting allows us to be more modular than when -/// working with effects. For instance we can do a case disjunction (see the proofs -/// for insert, which study the cases where the key is already/not in the hash map -/// in separate proofs - we had initially tried to do them in one step: it is doable -/// but requires some work, and the F* response time quickly becomes annoying while -/// making progress, so we split them). We can also easily prove a refinement lemma, -/// study the model, *then* combine those to also prove that the low-level function -/// preserves the invariants, rather than do everything at once as is usually the -/// case when doing intrinsic proofs with effects (I remember that having to prove -/// invariants in one go *and* a refinement step, even small, can be extremely -/// difficult in Low*). - - -(*** Utilities *) - -/// We need many small helpers and lemmas, mostly about lists (and the ones we list -/// here are not in the standard F* library). - -val index_append_lem (#a : Type0) (ls0 ls1 : list a) (i : nat{i < length ls0 + length ls1}) : - Lemma ( - (i < length ls0 ==> index (ls0 @ ls1) i == index ls0 i) /\ - (i >= length ls0 ==> index (ls0 @ ls1) i == index ls1 (i - length ls0))) - [SMTPat (index (ls0 @ ls1) i)] - -#push-options "--fuel 1" -let rec index_append_lem #a ls0 ls1 i = - match ls0 with - | [] -> () - | x :: ls0' -> - if i = 0 then () - else index_append_lem ls0' ls1 (i-1) -#pop-options - -val index_map_lem (#a #b: Type0) (f : a -> Tot b) (ls : list a) - (i : nat{i < length ls}) : - Lemma ( - index (map f ls) i == f (index ls i)) - [SMTPat (index (map f ls) i)] - -#push-options "--fuel 1" -let rec index_map_lem #a #b f ls i = - match ls with - | [] -> () - | x :: ls' -> - if i = 0 then () - else index_map_lem f ls' (i-1) -#pop-options - -val for_all_append (#a : Type0) (f : a -> Tot bool) (ls0 ls1 : list a) : - Lemma (for_all f (ls0 @ ls1) = (for_all f ls0 && for_all f ls1)) - -#push-options "--fuel 1" -let rec for_all_append #a f ls0 ls1 = - match ls0 with - | [] -> () - | x :: ls0' -> - for_all_append f ls0' ls1 -#pop-options - -/// Filter a list, stopping after we removed one element -val filter_one (#a : Type) (f : a -> bool) (ls : list a) : list a - -let rec filter_one #a f ls = - match ls with - | [] -> [] - | x :: ls' -> if f x then x :: filter_one f ls' else ls' - -val find_append (#a : Type) (f : a -> bool) (ls0 ls1 : list a) : - Lemma ( - find f (ls0 @ ls1) == - begin match find f ls0 with - | Some x -> Some x - | None -> find f ls1 - end) - -#push-options "--fuel 1" -let rec find_append #a f ls0 ls1 = - match ls0 with - | [] -> () - | x :: ls0' -> - if f x then - begin - assert(ls0 @ ls1 == x :: (ls0' @ ls1)); - assert(find f (ls0 @ ls1) == find f (x :: (ls0' @ ls1))); - // Why do I have to do this?! Is it because of subtyping?? - assert( - match find f (ls0 @ ls1) with - | Some x' -> x' == x - | None -> False) - end - else find_append f ls0' ls1 -#pop-options - -val length_flatten_update : - #a:Type - -> ls:list (list a) - -> i:nat{i < length ls} - -> x:list a -> - Lemma ( - // We want this property: - // ``` - // length (flatten (list_update ls i x)) = - // length (flatten ls) - length (index ls i) + length x - // ``` - length (flatten (list_update ls i x)) + length (index ls i) = - length (flatten ls) + length x) - -#push-options "--fuel 1" -let rec length_flatten_update #a ls i x = - match ls with - | x' :: ls' -> - assert(flatten ls == x' @ flatten ls'); // Triggers patterns - assert(length (flatten ls) == length x' + length (flatten ls')); - if i = 0 then - begin - let ls1 = x :: ls' in - assert(list_update ls i x == ls1); - assert(flatten ls1 == x @ flatten ls'); // Triggers patterns - assert(length (flatten ls1) == length x + length (flatten ls')); - () - end - else - begin - length_flatten_update ls' (i-1) x; - let ls1 = x' :: list_update ls' (i-1) x in - assert(flatten ls1 == x' @ flatten (list_update ls' (i-1) x)) // Triggers patterns - end -#pop-options - -val length_flatten_index : - #a:Type - -> ls:list (list a) - -> i:nat{i < length ls} -> - Lemma ( - length (flatten ls) >= length (index ls i)) - -#push-options "--fuel 1" -let rec length_flatten_index #a ls i = - match ls with - | x' :: ls' -> - assert(flatten ls == x' @ flatten ls'); // Triggers patterns - assert(length (flatten ls) == length x' + length (flatten ls')); - if i = 0 then () - else length_flatten_index ls' (i-1) -#pop-options - -val forall_index_equiv_list_for_all - (#a : Type) (pred : a -> Tot bool) (ls : list a) : - Lemma ((forall (i:nat{i < length ls}). pred (index ls i)) <==> for_all pred ls) - -#push-options "--fuel 1" -let rec forall_index_equiv_list_for_all pred ls = - match ls with - | [] -> () - | x :: ls' -> - assert(forall (i:nat{i < length ls'}). index ls' i == index ls (i+1)); - assert(forall (i:nat{0 < i /\ i < length ls}). index ls i == index ls' (i-1)); - assert(index ls 0 == x); - forall_index_equiv_list_for_all pred ls' -#pop-options - -val find_update: - #a:Type - -> f:(a -> Tot bool) - -> ls:list a - -> x:a - -> ls':list a{length ls' == length ls} -#push-options "--fuel 1" -let rec find_update #a f ls x = - match ls with - | [] -> [] - | hd::tl -> - if f hd then x :: tl else hd :: find_update f tl x -#pop-options - -val pairwise_distinct : #a:eqtype -> ls:list a -> Tot bool -let rec pairwise_distinct (#a : eqtype) (ls : list a) : Tot bool = - match ls with - | [] -> true - | x :: ls' -> List.Tot.for_all (fun y -> x <> y) ls' && pairwise_distinct ls' - -val pairwise_rel : #a:Type -> pred:(a -> a -> Tot bool) -> ls:list a -> Tot bool -let rec pairwise_rel #a pred ls = - match ls with - | [] -> true - | x :: ls' -> - for_all (pred x) ls' && pairwise_rel pred ls' - -#push-options "--fuel 1" -let rec flatten_append (#a : Type) (l1 l2: list (list a)) : - Lemma (flatten (l1 @ l2) == flatten l1 @ flatten l2) = - match l1 with - | [] -> () - | x :: l1' -> - flatten_append l1' l2; - append_assoc x (flatten l1') (flatten l2) -#pop-options - -/// We don't use anonymous functions as parameters to other functions, but rather -/// introduce auxiliary functions instead: otherwise we can't reason (because -/// F*'s encoding to the SMT is imprecise for functions) -let fst_is_disctinct (#a : eqtype) (#b : Type0) (p0 : a & b) (p1 : a & b) : Type0 = - fst p0 <> fst p1 - -(*** Lemmas about Primitives *) -/// TODO: move those lemmas - -// TODO: rename to 'insert'? -val list_update_index_dif_lem - (#a : Type0) (ls : list a) (i : nat{i < length ls}) (x : a) - (j : nat{j < length ls}) : - Lemma (requires (j <> i)) - (ensures (index (list_update ls i x) j == index ls j)) - [SMTPat (index (list_update ls i x) j)] - -#push-options "--fuel 1" -let rec list_update_index_dif_lem #a ls i x j = - match ls with - | x' :: ls -> - if i = 0 then () - else if j = 0 then () - else - list_update_index_dif_lem ls (i-1) x (j-1) -#pop-options - -val map_list_update_lem - (#a #b: Type0) (f : a -> Tot b) - (ls : list a) (i : nat{i < length ls}) (x : a) : - Lemma (list_update (map f ls) i (f x) == map f (list_update ls i x)) - [SMTPat (list_update (map f ls) i (f x))] - -#push-options "--fuel 1" -let rec map_list_update_lem #a #b f ls i x = - match ls with - | x' :: ls' -> - if i = 0 then () - else map_list_update_lem f ls' (i-1) x -#pop-options - -(*** Invariants, models *) - -(**** Internals *) -/// The following invariants, models, representation functions... are mostly -/// for the purpose of the proofs. - -let is_pos_usize (n : nat) : Type0 = 0 < n /\ n <= usize_max -type pos_usize = x:usize{x > 0} - -type binding (t : Type0) = key & t - -type slots_t (t : Type0) = alloc_vec_Vec (list_t t) - -/// We represent hash maps as associative lists -type assoc_list (t : Type0) = list (binding t) - -/// Representation function for [list_t] -let rec list_t_v (#t : Type0) (ls : list_t t) : assoc_list t = - match ls with - | List_Nil -> [] - | List_Cons k v tl -> (k,v) :: list_t_v tl - -let list_t_len (#t : Type0) (ls : list_t t) : nat = length (list_t_v ls) -let list_t_index (#t : Type0) (ls : list_t t) (i : nat{i < list_t_len ls}) : binding t = - index (list_t_v ls) i - -type slot_s (t : Type0) = list (binding t) -type slots_s (t : Type0) = list (slot_s t) - -type slot_t (t : Type0) = list_t t -let slot_t_v #t = list_t_v #t - -/// Representation function for the slots. -let slots_t_v (#t : Type0) (slots : slots_t t) : slots_s t = - map slot_t_v slots - -/// Representation function for the slots, seen as an associative list. -let slots_t_al_v (#t : Type0) (slots : slots_t t) : assoc_list t = - flatten (map list_t_v slots) - -/// High-level type for the hash-map, seen as a list of associative lists (one -/// list per slot). This is the representation we use most, internally. Note that -/// we later introduce a [map_s] representation, which is the one used in the -/// lemmas shown to the user. -type hashMap_s t = list (slot_s t) - -// TODO: why not always have the condition on the length? -// 'nes': "non-empty slots" -type hashMap_s_nes (t : Type0) : Type0 = - hm:hashMap_s t{is_pos_usize (length hm)} - -/// Representation function for [hashMap_t] as a list of slots -let hashMap_t_v (#t : Type0) (hm : hashMap_t t) : hashMap_s t = - map list_t_v hm.slots - -/// Representation function for [hashMap_t] as an associative list -let hashMap_t_al_v (#t : Type0) (hm : hashMap_t t) : assoc_list t = - flatten (hashMap_t_v hm) - -// 'nes': "non-empty slots" -type hashMap_t_nes (t : Type0) : Type0 = - hm:hashMap_t t{is_pos_usize (length hm.slots)} - -let hash_key_s (k : key) : hash = - Return?.v (hash_key k) - -let hash_mod_key (k : key) (len : usize{len > 0}) : hash = - (hash_key_s k) % len - -let not_same_key (#t : Type0) (k : key) (b : binding t) : bool = fst b <> k -let same_key (#t : Type0) (k : key) (b : binding t) : bool = fst b = k - -// We take a [nat] instead of a [hash] on purpose -let same_hash_mod_key (#t : Type0) (len : usize{len > 0}) (h : nat) (b : binding t) : bool = - hash_mod_key (fst b) len = h - -let binding_neq (#t : Type0) (b0 b1 : binding t) : bool = fst b0 <> fst b1 - -let hashMap_t_len_s (#t : Type0) (hm : hashMap_t t) : nat = - hm.num_entries - -let assoc_list_find (#t : Type0) (k : key) (slot : assoc_list t) : option t = - match find (same_key k) slot with - | None -> None - | Some (_, v) -> Some v - -let slot_s_find (#t : Type0) (k : key) (slot : list (binding t)) : option t = - assoc_list_find k slot - -let slot_t_find_s (#t : Type0) (k : key) (slot : list_t t) : option t = - slot_s_find k (slot_t_v slot) - -// This is a simpler version of the "find" function, which captures the essence -// of what happens and operates on [hashMap_s]. -let hashMap_s_find - (#t : Type0) (hm : hashMap_s_nes t) - (k : key) : option t = - let i = hash_mod_key k (length hm) in - let slot = index hm i in - slot_s_find k slot - -let hashMap_s_len - (#t : Type0) (hm : hashMap_s t) : - nat = - length (flatten hm) - -// Same as above, but operates on [hashMap_t] -// Note that we don't reuse the above function on purpose: converting to a -// [hashMap_s] then looking up an element is not the same as what we -// wrote below. -let hashMap_t_find_s - (#t : Type0) (hm : hashMap_t t{length hm.slots > 0}) (k : key) : option t = - let slots = hm.slots in - let i = hash_mod_key k (length slots) in - let slot = index slots i in - slot_t_find_s k slot - -/// Invariants for the slots - -let slot_s_inv - (#t : Type0) (len : usize{len > 0}) (i : usize) (slot : list (binding t)) : bool = - // All the bindings are in the proper slot - for_all (same_hash_mod_key len i) slot && - // All the keys are pairwise distinct - pairwise_rel binding_neq slot - -let slot_t_inv (#t : Type0) (len : usize{len > 0}) (i : usize) (slot : list_t t) : bool = - slot_s_inv len i (slot_t_v slot) - -let slots_s_inv (#t : Type0) (slots : slots_s t{length slots <= usize_max}) : Type0 = - forall(i:nat{i < length slots}). - {:pattern index slots i} - slot_s_inv (length slots) i (index slots i) - -// At some point we tried to rewrite this in terms of [slots_s_inv]. However it -// made a lot of proofs fail because those proofs relied on the [index_map_lem] -// pattern. We tried writing others lemmas with patterns (like [slots_s_inv] -// implies [slots_t_inv]) but it didn't succeed, so we keep things as they are. -let slots_t_inv (#t : Type0) (slots : slots_t t{length slots <= usize_max}) : Type0 = - forall(i:nat{i < length slots}). - {:pattern index slots i} - slot_t_inv (length slots) i (index slots i) - -let hashMap_s_inv (#t : Type0) (hm : hashMap_s t) : Type0 = - length hm <= usize_max /\ - length hm > 0 /\ - slots_s_inv hm - -/// Base invariant for the hashmap (the complete invariant can be temporarily -/// broken between the moment we inserted an element and the moment we resize) -let hashMap_t_base_inv (#t : Type0) (hm : hashMap_t t) : Type0 = - let al = hashMap_t_al_v hm in - // [num_entries] correctly tracks the number of entries in the table - // Note that it gives us that the length of the slots array is <= usize_max: - // [> length <= usize_max - // (because hashMap_num_entries has type `usize`) - hm.num_entries = length al /\ - // Slots invariant - slots_t_inv hm.slots /\ - // The capacity must be > 0 (otherwise we can't resize, because we - // multiply the capacity by two!) - length hm.slots > 0 /\ - // Load computation - begin - let capacity = length hm.slots in - let (dividend, divisor) = hm.max_load_factor in - 0 < dividend /\ dividend < divisor /\ - capacity * dividend >= divisor /\ - hm.max_load = (capacity * dividend) / divisor - end - -/// We often need to frame some values -let hashMap_t_same_params (#t : Type0) (hm0 hm1 : hashMap_t t) : Type0 = - length hm0.slots = length hm1.slots /\ - hm0.max_load = hm1.max_load /\ - hm0.max_load_factor = hm1.max_load_factor - -/// The following invariants, etc. are meant to be revealed to the user through -/// the .fsti. - -/// Invariant for the hashmap -let hashMap_t_inv (#t : Type0) (hm : hashMap_t t) : Type0 = - // Base invariant - hashMap_t_base_inv hm /\ - // The hash map is either: not overloaded, or we can't resize it - begin - let (dividend, divisor) = hm.max_load_factor in - hm.num_entries <= hm.max_load - || length hm.slots * 2 * dividend > usize_max - end - -(*** .fsti *) -/// We reveal slightly different version of the above functions to the user - -let len_s (#t : Type0) (hm : hashMap_t t) : nat = hashMap_t_len_s hm - -/// This version doesn't take any precondition (contrary to [hashMap_t_find_s]) -let find_s (#t : Type0) (hm : hashMap_t t) (k : key) : option t = - if length hm.slots = 0 then None - else hashMap_t_find_s hm k - -(*** Overloading *) - -let hashMap_not_overloaded_lem #t hm = () - -(*** allocate_slots *) - -/// Auxiliary lemma -val slots_t_all_nil_inv_lem - (#t : Type0) (slots : alloc_vec_Vec (list_t t){length slots <= usize_max}) : - Lemma (requires (forall (i:nat{i < length slots}). index slots i == List_Nil)) - (ensures (slots_t_inv slots)) - -#push-options "--fuel 1" -let slots_t_all_nil_inv_lem #t slots = () -#pop-options - -val slots_t_al_v_all_nil_is_empty_lem - (#t : Type0) (slots : alloc_vec_Vec (list_t t)) : - Lemma (requires (forall (i:nat{i < length slots}). index slots i == List_Nil)) - (ensures (slots_t_al_v slots == [])) - -#push-options "--fuel 1" -let rec slots_t_al_v_all_nil_is_empty_lem #t slots = - match slots with - | [] -> () - | s :: slots' -> - assert(forall (i:nat{i < length slots'}). index slots' i == index slots (i+1)); - slots_t_al_v_all_nil_is_empty_lem #t slots'; - assert(slots_t_al_v slots == list_t_v s @ slots_t_al_v slots'); - assert(slots_t_al_v slots == list_t_v s); - assert(index slots 0 == List_Nil) -#pop-options - -/// [allocate_slots] -val hashMap_allocate_slots_lem - (t : Type0) (slots : alloc_vec_Vec (list_t t)) (n : usize) : - Lemma - (requires (length slots + n <= usize_max)) - (ensures ( - match hashMap_allocate_slots t slots n with - | Fail _ -> False - | Return slots' -> - length slots' = length slots + n /\ - // We leave the already allocated slots unchanged - (forall (i:nat{i < length slots}). index slots' i == index slots i) /\ - // We allocate n additional empty slots - (forall (i:nat{length slots <= i /\ i < length slots'}). index slots' i == List_Nil))) - (decreases (hashMap_allocate_slots_loop_decreases t slots n)) - -#push-options "--fuel 1" -let rec hashMap_allocate_slots_lem t slots n = - begin match n with - | 0 -> () - | _ -> - begin match alloc_vec_Vec_push (list_t t) slots List_Nil with - | Fail _ -> () - | Return slots1 -> - begin match usize_sub n 1 with - | Fail _ -> () - | Return i -> - hashMap_allocate_slots_lem t slots1 i; - begin match hashMap_allocate_slots t slots1 i with - | Fail _ -> () - | Return slots2 -> - assert(length slots1 = length slots + 1); - assert(slots1 == slots @ [List_Nil]); // Triggers patterns - assert(index slots1 (length slots) == index [List_Nil] 0); // Triggers patterns - assert(index slots1 (length slots) == List_Nil) - end - end - end - end -#pop-options - -(*** new_with_capacity *) -/// Under proper conditions, [new_with_capacity] doesn't fail and returns an empty hash map. -val hashMap_new_with_capacity_lem - (t : Type0) (capacity : usize) - (max_load_dividend : usize) (max_load_divisor : usize) : - Lemma - (requires ( - 0 < max_load_dividend /\ - max_load_dividend < max_load_divisor /\ - 0 < capacity /\ - capacity * max_load_dividend >= max_load_divisor /\ - capacity * max_load_dividend <= usize_max)) - (ensures ( - match hashMap_new_with_capacity t capacity max_load_dividend max_load_divisor with - | Fail _ -> False - | Return hm -> - // The hash map invariant is satisfied - hashMap_t_inv hm /\ - // The parameters are correct - hm.max_load_factor = (max_load_dividend, max_load_divisor) /\ - hm.max_load = (capacity * max_load_dividend) / max_load_divisor /\ - // The hash map has the specified capacity - we need to reveal this - // otherwise the pre of [hashMap_t_find_s] is not satisfied. - length hm.slots = capacity /\ - // The hash map has 0 values - hashMap_t_len_s hm = 0 /\ - // It contains no bindings - (forall k. hashMap_t_find_s hm k == None) /\ - // We need this low-level property for the invariant - (forall(i:nat{i < length hm.slots}). index hm.slots i == List_Nil))) - -#push-options "--z3rlimit 50 --fuel 1" -let hashMap_new_with_capacity_lem (t : Type0) (capacity : usize) - (max_load_dividend : usize) (max_load_divisor : usize) = - let v = alloc_vec_Vec_new (list_t t) in - assert(length v = 0); - hashMap_allocate_slots_lem t v capacity; - begin match hashMap_allocate_slots t v capacity with - | Fail _ -> assert(False) - | Return v0 -> - begin match usize_mul capacity max_load_dividend with - | Fail _ -> assert(False) - | Return i -> - begin match usize_div i max_load_divisor with - | Fail _ -> assert(False) - | Return i0 -> - let hm = MkhashMap_t 0 (max_load_dividend, max_load_divisor) i0 v0 in - slots_t_all_nil_inv_lem v0; - slots_t_al_v_all_nil_is_empty_lem hm.slots - end - end - end -#pop-options - -(*** new *) - -/// [new] doesn't fail and returns an empty hash map -val hashMap_new_lem_aux (t : Type0) : - Lemma - (ensures ( - match hashMap_new t with - | Fail _ -> False - | Return hm -> - // The hash map invariant is satisfied - hashMap_t_inv hm /\ - // The hash map has 0 values - hashMap_t_len_s hm = 0 /\ - // It contains no bindings - (forall k. hashMap_t_find_s hm k == None))) - -#push-options "--fuel 1" -let hashMap_new_lem_aux t = - hashMap_new_with_capacity_lem t 32 4 5; - match hashMap_new_with_capacity t 32 4 5 with - | Fail _ -> () - | Return hm -> () -#pop-options - -/// The lemma we reveal in the .fsti -let hashMap_new_lem t = hashMap_new_lem_aux t - -(*** clear *) -/// [clear]: the loop doesn't fail and simply clears the slots starting at index i -#push-options "--fuel 1" -let rec hashMap_clear_loop_lem - (t : Type0) (slots : alloc_vec_Vec (list_t t)) (i : usize) : - Lemma - (ensures ( - match hashMap_clear_loop t slots i with - | Fail _ -> False - | Return slots' -> - // The length is preserved - length slots' == length slots /\ - // The slots before i are left unchanged - (forall (j:nat{j < i /\ j < length slots}). index slots' j == index slots j) /\ - // The slots after i are set to List_Nil - (forall (j:nat{i <= j /\ j < length slots}). index slots' j == List_Nil))) - (decreases (hashMap_clear_loop_decreases t slots i)) - = - let i0 = alloc_vec_Vec_len (list_t t) slots in - let b = i < i0 in - if b - then - begin match alloc_vec_Vec_update_usize slots i List_Nil with - | Fail _ -> () - | Return v -> - begin match usize_add i 1 with - | Fail _ -> () - | Return i1 -> - hashMap_clear_loop_lem t v i1; - begin match hashMap_clear_loop t v i1 with - | Fail _ -> () - | Return slots1 -> - assert(length slots1 == length slots); - assert(forall (j:nat{i+1 <= j /\ j < length slots}). index slots1 j == List_Nil); - assert(index slots1 i == List_Nil) - end - end - end - else () -#pop-options - -/// [clear] doesn't fail and turns the hash map into an empty map -val hashMap_clear_lem_aux - (#t : Type0) (self : hashMap_t t) : - Lemma - (requires (hashMap_t_base_inv self)) - (ensures ( - match hashMap_clear t self with - | Fail _ -> False - | Return hm -> - // The hash map invariant is satisfied - hashMap_t_base_inv hm /\ - // We preserved the parameters - hashMap_t_same_params hm self /\ - // The hash map has 0 values - hashMap_t_len_s hm = 0 /\ - // It contains no bindings - (forall k. hashMap_t_find_s hm k == None))) - -// Being lazy: fuel 1 helps a lot... -#push-options "--fuel 1" -let hashMap_clear_lem_aux #t self = - let p = self.max_load_factor in - let i = self.max_load in - let v = self.slots in - hashMap_clear_loop_lem t v 0; - begin match hashMap_clear_loop t v 0 with - | Fail _ -> () - | Return slots1 -> - slots_t_al_v_all_nil_is_empty_lem slots1; - let hm1 = MkhashMap_t 0 p i slots1 in - assert(hashMap_t_base_inv hm1); - assert(hashMap_t_inv hm1) - end -#pop-options - -let hashMap_clear_lem #t self = hashMap_clear_lem_aux #t self - -(*** len *) - -/// [len]: we link it to a non-failing function. -/// Rk.: we might want to make an analysis to not use an error monad to translate -/// functions which statically can't fail. -let hashMap_len_lem #t self = () - - -(*** insert_in_list *) - -(**** insert_in_list'fwd *) - -/// [insert_in_list]: returns true iff the key is not in the list (functional version) -val hashMap_insert_in_list_lem - (t : Type0) (key : usize) (value : t) (ls : list_t t) : - Lemma - (ensures ( - match hashMap_insert_in_list t key value ls with - | Fail _ -> False - | Return b -> - b <==> (slot_t_find_s key ls == None))) - (decreases (hashMap_insert_in_list_loop_decreases t key value ls)) - -#push-options "--fuel 1" -let rec hashMap_insert_in_list_lem t key value ls = - begin match ls with - | List_Cons ckey cvalue ls0 -> - let b = ckey = key in - if b - then () - else - begin - hashMap_insert_in_list_lem t key value ls0; - match hashMap_insert_in_list t key value ls0 with - | Fail _ -> () - | Return b0 -> () - end - | List_Nil -> - assert(list_t_v ls == []); - assert_norm(find (same_key #t key) [] == None) - end -#pop-options - -(**** insert_in_list'back *) - -/// The proofs about [insert_in_list] backward are easier to do in several steps: -/// extrinsic proofs to the rescue! -/// We first prove that [insert_in_list] refines the function we wrote above, then -/// use this function to prove the invariants, etc. - -/// We write a helper which "captures" what [insert_in_list] does. -/// We then reason about this helper to prove the high-level properties we want -/// (functional properties, preservation of invariants, etc.). -let hashMap_insert_in_list_s - (#t : Type0) (key : usize) (value : t) (ls : list (binding t)) : - list (binding t) = - // Check if there is already a binding for the key - match find (same_key key) ls with - | None -> - // No binding: append the binding to the end - ls @ [(key,value)] - | Some _ -> - // There is already a binding: update it - find_update (same_key key) ls (key,value) - -/// [insert_in_list]: if the key is not in the map, appends a new bindings (functional version) -val hashMap_insert_in_list_back_lem_append_s - (t : Type0) (key : usize) (value : t) (ls : list_t t) : - Lemma - (requires ( - slot_t_find_s key ls == None)) - (ensures ( - match hashMap_insert_in_list_back t key value ls with - | Fail _ -> False - | Return ls' -> - list_t_v ls' == list_t_v ls @ [(key,value)])) - (decreases (hashMap_insert_in_list_loop_decreases t key value ls)) - -#push-options "--fuel 1" -let rec hashMap_insert_in_list_back_lem_append_s t key value ls = - begin match ls with - | List_Cons ckey cvalue ls0 -> - let b = ckey = key in - if b - then () - else - begin - hashMap_insert_in_list_back_lem_append_s t key value ls0; - match hashMap_insert_in_list_back t key value ls0 with - | Fail _ -> () - | Return l -> () - end - | List_Nil -> () - end -#pop-options - -/// [insert_in_list]: if the key is in the map, we update the binding (functional version) -val hashMap_insert_in_list_back_lem_update_s - (t : Type0) (key : usize) (value : t) (ls : list_t t) : - Lemma - (requires ( - Some? (find (same_key key) (list_t_v ls)))) - (ensures ( - match hashMap_insert_in_list_back t key value ls with - | Fail _ -> False - | Return ls' -> - list_t_v ls' == find_update (same_key key) (list_t_v ls) (key,value))) - (decreases (hashMap_insert_in_list_loop_decreases t key value ls)) - -#push-options "--fuel 1" -let rec hashMap_insert_in_list_back_lem_update_s t key value ls = - begin match ls with - | List_Cons ckey cvalue ls0 -> - let b = ckey = key in - if b - then () - else - begin - hashMap_insert_in_list_back_lem_update_s t key value ls0; - match hashMap_insert_in_list_back t key value ls0 with - | Fail _ -> () - | Return l -> () - end - | List_Nil -> () - end -#pop-options - -/// Put everything together -val hashMap_insert_in_list_back_lem_s - (t : Type0) (key : usize) (value : t) (ls : list_t t) : - Lemma - (ensures ( - match hashMap_insert_in_list_back t key value ls with - | Fail _ -> False - | Return ls' -> - list_t_v ls' == hashMap_insert_in_list_s key value (list_t_v ls))) - -let hashMap_insert_in_list_back_lem_s t key value ls = - match find (same_key key) (list_t_v ls) with - | None -> hashMap_insert_in_list_back_lem_append_s t key value ls - | Some _ -> hashMap_insert_in_list_back_lem_update_s t key value ls - -(**** Invariants of insert_in_list_s *) - -/// Auxiliary lemmas -/// We work on [hashMap_insert_in_list_s], the "high-level" version of [insert_in_list'back]. -/// -/// Note that in F* we can't have recursive proofs inside of other proofs, contrary -/// to Coq, which makes it a bit cumbersome to prove auxiliary results like the -/// following ones... - -(** Auxiliary lemmas: append case *) - -val slot_t_v_for_all_binding_neq_append_lem - (t : Type0) (key : usize) (value : t) (ls : list (binding t)) (b : binding t) : - Lemma - (requires ( - fst b <> key /\ - for_all (binding_neq b) ls /\ - slot_s_find key ls == None)) - (ensures ( - for_all (binding_neq b) (ls @ [(key,value)]))) - -#push-options "--fuel 1" -let rec slot_t_v_for_all_binding_neq_append_lem t key value ls b = - match ls with - | [] -> () - | (ck, cv) :: cls -> - slot_t_v_for_all_binding_neq_append_lem t key value cls b -#pop-options - -val slot_s_inv_not_find_append_end_inv_lem - (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list (binding t)) : - Lemma - (requires ( - slot_s_inv len (hash_mod_key key len) ls /\ - slot_s_find key ls == None)) - (ensures ( - let ls' = ls @ [(key,value)] in - slot_s_inv len (hash_mod_key key len) ls' /\ - (slot_s_find key ls' == Some value) /\ - (forall k'. k' <> key ==> slot_s_find k' ls' == slot_s_find k' ls))) - -#push-options "--fuel 1" -let rec slot_s_inv_not_find_append_end_inv_lem t len key value ls = - match ls with - | [] -> () - | (ck, cv) :: cls -> - slot_s_inv_not_find_append_end_inv_lem t len key value cls; - let h = hash_mod_key key len in - let ls' = ls @ [(key,value)] in - assert(for_all (same_hash_mod_key len h) ls'); - slot_t_v_for_all_binding_neq_append_lem t key value cls (ck, cv); - assert(pairwise_rel binding_neq ls'); - assert(slot_s_inv len h ls') -#pop-options - -/// [insert_in_list]: if the key is not in the map, appends a new bindings -val hashMap_insert_in_list_s_lem_append - (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list (binding t)) : - Lemma - (requires ( - slot_s_inv len (hash_mod_key key len) ls /\ - slot_s_find key ls == None)) - (ensures ( - let ls' = hashMap_insert_in_list_s key value ls in - ls' == ls @ [(key,value)] /\ - // The invariant is preserved - slot_s_inv len (hash_mod_key key len) ls' /\ - // [key] maps to [value] - slot_s_find key ls' == Some value /\ - // The other bindings are preserved - (forall k'. k' <> key ==> slot_s_find k' ls' == slot_s_find k' ls))) - -let hashMap_insert_in_list_s_lem_append t len key value ls = - slot_s_inv_not_find_append_end_inv_lem t len key value ls - -/// [insert_in_list]: if the key is not in the map, appends a new bindings (quantifiers) -/// Rk.: we don't use this lemma. -/// TODO: remove? -val hashMap_insert_in_list_back_lem_append - (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list_t t) : - Lemma - (requires ( - slot_t_inv len (hash_mod_key key len) ls /\ - slot_t_find_s key ls == None)) - (ensures ( - match hashMap_insert_in_list_back t key value ls with - | Fail _ -> False - | Return ls' -> - list_t_v ls' == list_t_v ls @ [(key,value)] /\ - // The invariant is preserved - slot_t_inv len (hash_mod_key key len) ls' /\ - // [key] maps to [value] - slot_t_find_s key ls' == Some value /\ - // The other bindings are preserved - (forall k'. k' <> key ==> slot_t_find_s k' ls' == slot_t_find_s k' ls))) - -let hashMap_insert_in_list_back_lem_append t len key value ls = - hashMap_insert_in_list_back_lem_s t key value ls; - hashMap_insert_in_list_s_lem_append t len key value (list_t_v ls) - -(** Auxiliary lemmas: update case *) - -val slot_s_find_update_for_all_binding_neq_append_lem - (t : Type0) (key : usize) (value : t) (ls : list (binding t)) (b : binding t) : - Lemma - (requires ( - fst b <> key /\ - for_all (binding_neq b) ls)) - (ensures ( - let ls' = find_update (same_key key) ls (key, value) in - for_all (binding_neq b) ls')) - -#push-options "--fuel 1" -let rec slot_s_find_update_for_all_binding_neq_append_lem t key value ls b = - match ls with - | [] -> () - | (ck, cv) :: cls -> - slot_s_find_update_for_all_binding_neq_append_lem t key value cls b -#pop-options - -/// Annoying auxiliary lemma we have to prove because there is no way to reason -/// properly about closures. -/// I'm really enjoying my time. -val for_all_binding_neq_value_indep - (#t : Type0) (key : key) (v0 v1 : t) (ls : list (binding t)) : - Lemma (for_all (binding_neq (key,v0)) ls = for_all (binding_neq (key,v1)) ls) - -#push-options "--fuel 1" -let rec for_all_binding_neq_value_indep #t key v0 v1 ls = - match ls with - | [] -> () - | _ :: ls' -> for_all_binding_neq_value_indep #t key v0 v1 ls' -#pop-options - -val slot_s_inv_find_append_end_inv_lem - (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list (binding t)) : - Lemma - (requires ( - slot_s_inv len (hash_mod_key key len) ls /\ - Some? (slot_s_find key ls))) - (ensures ( - let ls' = find_update (same_key key) ls (key, value) in - slot_s_inv len (hash_mod_key key len) ls' /\ - (slot_s_find key ls' == Some value) /\ - (forall k'. k' <> key ==> slot_s_find k' ls' == slot_s_find k' ls))) - -#push-options "--z3rlimit 50 --fuel 1" -let rec slot_s_inv_find_append_end_inv_lem t len key value ls = - match ls with - | [] -> () - | (ck, cv) :: cls -> - let h = hash_mod_key key len in - let ls' = find_update (same_key key) ls (key, value) in - if ck = key then - begin - assert(ls' == (ck,value) :: cls); - assert(for_all (same_hash_mod_key len h) ls'); - // For pairwise_rel: binding_neq (ck, value) is actually independent - // of `value`. Slightly annoying to prove in F*... - assert(for_all (binding_neq (ck,cv)) cls); - for_all_binding_neq_value_indep key cv value cls; - assert(for_all (binding_neq (ck,value)) cls); - assert(pairwise_rel binding_neq ls'); - assert(slot_s_inv len (hash_mod_key key len) ls') - end - else - begin - slot_s_inv_find_append_end_inv_lem t len key value cls; - assert(for_all (same_hash_mod_key len h) ls'); - slot_s_find_update_for_all_binding_neq_append_lem t key value cls (ck, cv); - assert(pairwise_rel binding_neq ls'); - assert(slot_s_inv len h ls') - end -#pop-options - -/// [insert_in_list]: if the key is in the map, update the bindings -val hashMap_insert_in_list_s_lem_update - (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list (binding t)) : - Lemma - (requires ( - slot_s_inv len (hash_mod_key key len) ls /\ - Some? (slot_s_find key ls))) - (ensures ( - let ls' = hashMap_insert_in_list_s key value ls in - ls' == find_update (same_key key) ls (key,value) /\ - // The invariant is preserved - slot_s_inv len (hash_mod_key key len) ls' /\ - // [key] maps to [value] - slot_s_find key ls' == Some value /\ - // The other bindings are preserved - (forall k'. k' <> key ==> slot_s_find k' ls' == slot_s_find k' ls))) - -let hashMap_insert_in_list_s_lem_update t len key value ls = - slot_s_inv_find_append_end_inv_lem t len key value ls - - -/// [insert_in_list]: if the key is in the map, update the bindings -/// TODO: not used: remove? -val hashMap_insert_in_list_back_lem_update - (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list_t t) : - Lemma - (requires ( - slot_t_inv len (hash_mod_key key len) ls /\ - Some? (slot_t_find_s key ls))) - (ensures ( - match hashMap_insert_in_list_back t key value ls with - | Fail _ -> False - | Return ls' -> - let als = list_t_v ls in - list_t_v ls' == find_update (same_key key) als (key,value) /\ - // The invariant is preserved - slot_t_inv len (hash_mod_key key len) ls' /\ - // [key] maps to [value] - slot_t_find_s key ls' == Some value /\ - // The other bindings are preserved - (forall k'. k' <> key ==> slot_t_find_s k' ls' == slot_t_find_s k' ls))) - -let hashMap_insert_in_list_back_lem_update t len key value ls = - hashMap_insert_in_list_back_lem_s t key value ls; - hashMap_insert_in_list_s_lem_update t len key value (list_t_v ls) - -(** Final lemmas about [insert_in_list] *) - -/// High-level version -val hashMap_insert_in_list_s_lem - (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list (binding t)) : - Lemma - (requires ( - slot_s_inv len (hash_mod_key key len) ls)) - (ensures ( - let ls' = hashMap_insert_in_list_s key value ls in - // The invariant is preserved - slot_s_inv len (hash_mod_key key len) ls' /\ - // [key] maps to [value] - slot_s_find key ls' == Some value /\ - // The other bindings are preserved - (forall k'. k' <> key ==> slot_s_find k' ls' == slot_s_find k' ls) /\ - // The length is incremented, iff we inserted a new key - (match slot_s_find key ls with - | None -> length ls' = length ls + 1 - | Some _ -> length ls' = length ls))) - -let hashMap_insert_in_list_s_lem t len key value ls = - match slot_s_find key ls with - | None -> - assert_norm(length [(key,value)] = 1); - hashMap_insert_in_list_s_lem_append t len key value ls - | Some _ -> - hashMap_insert_in_list_s_lem_update t len key value ls - -/// [insert_in_list] -/// TODO: not used: remove? -val hashMap_insert_in_list_back_lem - (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list_t t) : - Lemma - (requires (slot_t_inv len (hash_mod_key key len) ls)) - (ensures ( - match hashMap_insert_in_list_back t key value ls with - | Fail _ -> False - | Return ls' -> - // The invariant is preserved - slot_t_inv len (hash_mod_key key len) ls' /\ - // [key] maps to [value] - slot_t_find_s key ls' == Some value /\ - // The other bindings are preserved - (forall k'. k' <> key ==> slot_t_find_s k' ls' == slot_t_find_s k' ls) /\ - // The length is incremented, iff we inserted a new key - (match slot_t_find_s key ls with - | None -> - list_t_v ls' == list_t_v ls @ [(key,value)] /\ - list_t_len ls' = list_t_len ls + 1 - | Some _ -> - list_t_v ls' == find_update (same_key key) (list_t_v ls) (key,value) /\ - list_t_len ls' = list_t_len ls))) - (decreases (hashMap_insert_in_list_loop_decreases t key value ls)) - -let hashMap_insert_in_list_back_lem t len key value ls = - hashMap_insert_in_list_back_lem_s t key value ls; - hashMap_insert_in_list_s_lem t len key value (list_t_v ls) - -(*** insert_no_resize *) - -(**** Refinement proof *) -/// Same strategy as for [insert_in_list]: we introduce a high-level version of -/// the function, and reason about it. -/// We work on [hashMap_s] (we use a higher-level view of the hash-map, but -/// not too high). - -/// A high-level version of insert, which doesn't check if the table is saturated -let hashMap_insert_no_fail_s - (#t : Type0) (hm : hashMap_s_nes t) - (key : usize) (value : t) : - hashMap_s t = - let len = length hm in - let i = hash_mod_key key len in - let slot = index hm i in - let slot' = hashMap_insert_in_list_s key value slot in - let hm' = list_update hm i slot' in - hm' - -// TODO: at some point I used hashMap_s_nes and it broke proofs...x -let hashMap_insert_no_resize_s - (#t : Type0) (hm : hashMap_s_nes t) - (key : usize) (value : t) : - result (hashMap_s t) = - // Check if the table is saturated (too many entries, and we need to insert one) - let num_entries = length (flatten hm) in - if None? (hashMap_s_find hm key) && num_entries = usize_max then Fail Failure - else Return (hashMap_insert_no_fail_s hm key value) - -/// Prove that [hashMap_insert_no_resize_s] is refined by -/// [hashMap_insert_no_resize'fwd_back] -val hashMap_insert_no_resize_lem_s - (t : Type0) (self : hashMap_t t) (key : usize) (value : t) : - Lemma - (requires ( - hashMap_t_base_inv self /\ - hashMap_s_len (hashMap_t_v self) = hashMap_t_len_s self)) - (ensures ( - begin - match hashMap_insert_no_resize t self key value, - hashMap_insert_no_resize_s (hashMap_t_v self) key value - with - | Fail _, Fail _ -> True - | Return hm, Return hm_v -> - hashMap_t_base_inv hm /\ - hashMap_t_same_params hm self /\ - hashMap_t_v hm == hm_v /\ - hashMap_s_len hm_v == hashMap_t_len_s hm - | _ -> False - end)) - -let hashMap_insert_no_resize_lem_s t self key value = - begin match hash_key key with - | Fail _ -> () - | Return i -> - let i0 = self.num_entries in - let p = self.max_load_factor in - let i1 = self.max_load in - let v = self.slots in - let i2 = alloc_vec_Vec_len (list_t t) v in - let len = length v in - begin match usize_rem i i2 with - | Fail _ -> () - | Return hash_mod -> - begin match alloc_vec_Vec_index_usize v hash_mod with - | Fail _ -> () - | Return l -> - begin - // Checking that: list_t_v (index ...) == index (hashMap_t_v ...) ... - assert(list_t_v l == index (hashMap_t_v self) hash_mod); - hashMap_insert_in_list_lem t key value l; - match hashMap_insert_in_list t key value l with - | Fail _ -> () - | Return b -> - assert(b = None? (slot_s_find key (list_t_v l))); - hashMap_insert_in_list_back_lem t len key value l; - if b - then - begin match usize_add i0 1 with - | Fail _ -> () - | Return i3 -> - begin - match hashMap_insert_in_list_back t key value l with - | Fail _ -> () - | Return l0 -> - begin match alloc_vec_Vec_update_usize v hash_mod l0 with - | Fail _ -> () - | Return v0 -> - let self_v = hashMap_t_v self in - let hm = MkhashMap_t i3 p i1 v0 in - let hm_v = hashMap_t_v hm in - assert(hm_v == list_update self_v hash_mod (list_t_v l0)); - assert_norm(length [(key,value)] = 1); - assert(length (list_t_v l0) = length (list_t_v l) + 1); - length_flatten_update self_v hash_mod (list_t_v l0); - assert(hashMap_s_len hm_v = hashMap_t_len_s hm) - end - end - end - else - begin - match hashMap_insert_in_list_back t key value l with - | Fail _ -> () - | Return l0 -> - begin match alloc_vec_Vec_update_usize v hash_mod l0 with - | Fail _ -> () - | Return v0 -> - let self_v = hashMap_t_v self in - let hm = MkhashMap_t i0 p i1 v0 in - let hm_v = hashMap_t_v hm in - assert(hm_v == list_update self_v hash_mod (list_t_v l0)); - assert(length (list_t_v l0) = length (list_t_v l)); - length_flatten_update self_v hash_mod (list_t_v l0); - assert(hashMap_s_len hm_v = hashMap_t_len_s hm) - end - end - end - end - end - end - -(**** insert_{no_fail,no_resize}: invariants *) - -let hashMap_s_updated_binding - (#t : Type0) (hm : hashMap_s_nes t) - (key : usize) (opt_value : option t) (hm' : hashMap_s_nes t) : Type0 = - // [key] maps to [value] - hashMap_s_find hm' key == opt_value /\ - // The other bindings are preserved - (forall k'. k' <> key ==> hashMap_s_find hm' k' == hashMap_s_find hm k') - -let insert_post (#t : Type0) (hm : hashMap_s_nes t) - (key : usize) (value : t) (hm' : hashMap_s_nes t) : Type0 = - // The invariant is preserved - hashMap_s_inv hm' /\ - // [key] maps to [value] and the other bindings are preserved - hashMap_s_updated_binding hm key (Some value) hm' /\ - // The length is incremented, iff we inserted a new key - (match hashMap_s_find hm key with - | None -> hashMap_s_len hm' = hashMap_s_len hm + 1 - | Some _ -> hashMap_s_len hm' = hashMap_s_len hm) - -val hashMap_insert_no_fail_s_lem - (#t : Type0) (hm : hashMap_s_nes t) - (key : usize) (value : t) : - Lemma - (requires (hashMap_s_inv hm)) - (ensures ( - let hm' = hashMap_insert_no_fail_s hm key value in - insert_post hm key value hm')) - -let hashMap_insert_no_fail_s_lem #t hm key value = - let len = length hm in - let i = hash_mod_key key len in - let slot = index hm i in - hashMap_insert_in_list_s_lem t len key value slot; - let slot' = hashMap_insert_in_list_s key value slot in - length_flatten_update hm i slot' - -val hashMap_insert_no_resize_s_lem - (#t : Type0) (hm : hashMap_s_nes t) - (key : usize) (value : t) : - Lemma - (requires (hashMap_s_inv hm)) - (ensures ( - match hashMap_insert_no_resize_s hm key value with - | Fail _ -> - // Can fail only if we need to create a new binding in - // an already saturated map - hashMap_s_len hm = usize_max /\ - None? (hashMap_s_find hm key) - | Return hm' -> - insert_post hm key value hm')) - -let hashMap_insert_no_resize_s_lem #t hm key value = - let num_entries = length (flatten hm) in - if None? (hashMap_s_find hm key) && num_entries = usize_max then () - else hashMap_insert_no_fail_s_lem hm key value - - -(**** find after insert *) -/// Lemmas about what happens if we call [find] after an insertion - -val hashMap_insert_no_resize_s_get_same_lem - (#t : Type0) (hm : hashMap_s t) - (key : usize) (value : t) : - Lemma (requires (hashMap_s_inv hm)) - (ensures ( - match hashMap_insert_no_resize_s hm key value with - | Fail _ -> True - | Return hm' -> - hashMap_s_find hm' key == Some value)) - -let hashMap_insert_no_resize_s_get_same_lem #t hm key value = - let num_entries = length (flatten hm) in - if None? (hashMap_s_find hm key) && num_entries = usize_max then () - else - begin - let hm' = Return?.v (hashMap_insert_no_resize_s hm key value) in - let len = length hm in - let i = hash_mod_key key len in - let slot = index hm i in - hashMap_insert_in_list_s_lem t len key value slot - end - -val hashMap_insert_no_resize_s_get_diff_lem - (#t : Type0) (hm : hashMap_s t) - (key : usize) (value : t) (key' : usize{key' <> key}) : - Lemma (requires (hashMap_s_inv hm)) - (ensures ( - match hashMap_insert_no_resize_s hm key value with - | Fail _ -> True - | Return hm' -> - hashMap_s_find hm' key' == hashMap_s_find hm key')) - -let hashMap_insert_no_resize_s_get_diff_lem #t hm key value key' = - let num_entries = length (flatten hm) in - if None? (hashMap_s_find hm key) && num_entries = usize_max then () - else - begin - let hm' = Return?.v (hashMap_insert_no_resize_s hm key value) in - let len = length hm in - let i = hash_mod_key key len in - let slot = index hm i in - hashMap_insert_in_list_s_lem t len key value slot; - let i' = hash_mod_key key' len in - if i <> i' then () - else - begin - () - end - end - - -(*** move_elements_from_list *) - -/// Having a great time here: if we use `result (hashMap_s_res t)` as the -/// return type for [hashMap_move_elements_from_list_s] instead of having this -/// awkward match, the proof of [hashMap_move_elements_lem_refin] fails. -/// I guess it comes from F*'s poor subtyping. -/// Followingly, I'm not taking any chance and using [result_hashMap_s] -/// everywhere. -type result_hashMap_s_nes (t : Type0) : Type0 = - res:result (hashMap_s t) { - match res with - | Fail _ -> True - | Return hm -> is_pos_usize (length hm) - } - -let rec hashMap_move_elements_from_list_s - (#t : Type0) (hm : hashMap_s_nes t) - (ls : slot_s t) : - // Do *NOT* use `result (hashMap_s t)` - Tot (result_hashMap_s_nes t) - (decreases ls) = - match ls with - | [] -> Return hm - | (key, value) :: ls' -> - match hashMap_insert_no_resize_s hm key value with - | Fail e -> Fail e - | Return hm' -> - hashMap_move_elements_from_list_s hm' ls' - -/// Refinement lemma -val hashMap_move_elements_from_list_lem - (t : Type0) (ntable : hashMap_t_nes t) (ls : list_t t) : - Lemma (requires (hashMap_t_base_inv ntable)) - (ensures ( - match hashMap_move_elements_from_list t ntable ls, - hashMap_move_elements_from_list_s (hashMap_t_v ntable) (slot_t_v ls) - with - | Fail _, Fail _ -> True - | Return hm', Return hm_v -> - hashMap_t_base_inv hm' /\ - hashMap_t_v hm' == hm_v /\ - hashMap_t_same_params hm' ntable - | _ -> False)) - (decreases (hashMap_move_elements_from_list_loop_decreases t ntable ls)) - -#push-options "--fuel 1" -let rec hashMap_move_elements_from_list_lem t ntable ls = - begin match ls with - | List_Cons k v tl -> - assert(list_t_v ls == (k, v) :: list_t_v tl); - let ls_v = list_t_v ls in - let (_,_) :: tl_v = ls_v in - hashMap_insert_no_resize_lem_s t ntable k v; - begin match hashMap_insert_no_resize t ntable k v with - | Fail _ -> () - | Return h -> - let h_v = Return?.v (hashMap_insert_no_resize_s (hashMap_t_v ntable) k v) in - assert(hashMap_t_v h == h_v); - hashMap_move_elements_from_list_lem t h tl; - begin match hashMap_move_elements_from_list t h tl with - | Fail _ -> () - | Return h0 -> () - end - end - | List_Nil -> () - end -#pop-options - -(*** move_elements *) - -(**** move_elements: refinement 0 *) -/// The proof for [hashMap_move_elements_lem_refin] broke so many times -/// (while it is supposed to be super simple!) that we decided to add one refinement -/// level, to really do things step by step... -/// Doing this refinement layer made me notice that maybe the problem came from -/// the fact that at some point we have to prove `list_t_v List_Nil == []`: I -/// added the corresponding assert to help Z3 and everything became stable. -/// I finally didn't use this "simple" refinement lemma, but I still keep it here -/// because it allows for easy comparisons with [hashMap_move_elements_s]. - -/// [hashMap_move_elements] refines this function, which is actually almost -/// the same (just a little bit shorter and cleaner, and has a pre). -/// -/// The way I wrote the high-level model is the following: -/// - I copy-pasted the definition of [hashMap_move_elements], wrote the -/// signature which links this new definition to [hashMap_move_elements] and -/// checked that the proof passed -/// - I gradually simplified it, while making sure the proof still passes -#push-options "--fuel 1" -let rec hashMap_move_elements_s_simpl - (t : Type0) (ntable : hashMap_t t) - (slots : alloc_vec_Vec (list_t t)) - (i : usize{i <= length slots /\ length slots <= usize_max}) : - Pure (result ((hashMap_t t) & (alloc_vec_Vec (list_t t)))) - (requires (True)) - (ensures (fun res -> - match res, hashMap_move_elements t ntable slots i with - | Fail _, Fail _ -> True - | Return (ntable1, slots1), Return (ntable2, slots2) -> - ntable1 == ntable2 /\ - slots1 == slots2 - | _ -> False)) - (decreases (hashMap_move_elements_loop_decreases t ntable slots i)) - = - if i < length slots - then - let slot = index slots i in - begin match hashMap_move_elements_from_list t ntable slot with - | Fail e -> Fail e - | Return hm' -> - let slots' = list_update slots i List_Nil in - hashMap_move_elements_s_simpl t hm' slots' (i+1) - end - else Return (ntable, slots) -#pop-options - -(**** move_elements: refinement 1 *) -/// We prove a second refinement lemma: calling [move_elements] refines a function -/// which, for every slot, moves the element out of the slot. This first model is -/// almost exactly the translated function, it just uses `list` instead of `list_t`. - -// Note that we ignore the returned slots (we thus don't return a pair: -// only the new hash map in which we moved the elements from the slots): -// this returned value is not used. -let rec hashMap_move_elements_s - (#t : Type0) (hm : hashMap_s_nes t) - (slots : slots_s t) (i : usize{i <= length slots /\ length slots <= usize_max}) : - Tot (result_hashMap_s_nes t) - (decreases (length slots - i)) = - let len = length slots in - if i < len then - begin - let slot = index slots i in - match hashMap_move_elements_from_list_s hm slot with - | Fail e -> Fail e - | Return hm' -> - let slots' = list_update slots i [] in - hashMap_move_elements_s hm' slots' (i+1) - end - else Return hm - -val hashMap_move_elements_lem_refin - (t : Type0) (ntable : hashMap_t t) - (slots : alloc_vec_Vec (list_t t)) (i : usize{i <= length slots}) : - Lemma - (requires ( - hashMap_t_base_inv ntable)) - (ensures ( - match hashMap_move_elements t ntable slots i, - hashMap_move_elements_s (hashMap_t_v ntable) (slots_t_v slots) i - with - | Fail _, Fail _ -> True // We will prove later that this is not possible - | Return (ntable', _), Return ntable'_v -> - hashMap_t_base_inv ntable' /\ - hashMap_t_v ntable' == ntable'_v /\ - hashMap_t_same_params ntable' ntable - | _ -> False)) - (decreases (length slots - i)) - -#restart-solver -#push-options "--fuel 1" -let rec hashMap_move_elements_lem_refin t ntable slots i = - assert(hashMap_t_base_inv ntable); - let i0 = alloc_vec_Vec_len (list_t t) slots in - let b = i < i0 in - if b - then - begin match alloc_vec_Vec_index_usize slots i with - | Fail _ -> () - | Return l -> - let l0 = core_mem_replace (list_t t) l List_Nil in - assert(l0 == l); - hashMap_move_elements_from_list_lem t ntable l0; - begin match hashMap_move_elements_from_list t ntable l0 with - | Fail _ -> () - | Return h -> - let l1 = core_mem_replace_back (list_t t) l List_Nil in - assert(l1 == List_Nil); - assert(slot_t_v #t List_Nil == []); // THIS IS IMPORTANT - begin match alloc_vec_Vec_update_usize slots i l1 with - | Fail _ -> () - | Return v -> - begin match usize_add i 1 with - | Fail _ -> () - | Return i1 -> - hashMap_move_elements_lem_refin t h v i1; - begin match hashMap_move_elements t h v i1 with - | Fail _ -> - assert(Fail? (hashMap_move_elements t ntable slots i)); - () - | Return (ntable', v0) -> () - end - end - end - end - end - else () -#pop-options - - -(**** move_elements: refinement 2 *) -/// We prove a second refinement lemma: calling [move_elements] refines a function -/// which moves every binding of the hash map seen as *one* associative list -/// (and not a list of lists). - -/// [ntable] is the hash map to which we move the elements -/// [slots] is the current hash map, from which we remove the elements, and seen -/// as a "flat" associative list (and not a list of lists) -/// This is actually exactly [hashMap_move_elements_from_list_s]... -let rec hashMap_move_elements_s_flat - (#t : Type0) (ntable : hashMap_s_nes t) - (slots : assoc_list t) : - Tot (result_hashMap_s_nes t) - (decreases slots) = - match slots with - | [] -> Return ntable - | (k,v) :: slots' -> - match hashMap_insert_no_resize_s ntable k v with - | Fail e -> Fail e - | Return ntable' -> - hashMap_move_elements_s_flat ntable' slots' - -/// The refinment lemmas -/// First, auxiliary helpers. - -/// Flatten a list of lists, starting at index i -val flatten_i : - #a:Type - -> l:list (list a) - -> i:nat{i <= length l} - -> Tot (list a) (decreases (length l - i)) - -let rec flatten_i l i = - if i < length l then - index l i @ flatten_i l (i+1) - else [] - -let _ = assert(let l = [1;2] in l == hd l :: tl l) - -val flatten_i_incr : - #a:Type - -> l:list (list a) - -> i:nat{Cons? l /\ i+1 <= length l} -> - Lemma - (ensures ( - (**) assert_norm(length (hd l :: tl l) == 1 + length (tl l)); - flatten_i l (i+1) == flatten_i (tl l) i)) - (decreases (length l - (i+1))) - -#push-options "--fuel 1" -let rec flatten_i_incr l i = - let x :: tl = l in - if i + 1 < length l then - begin - assert(flatten_i l (i+1) == index l (i+1) @ flatten_i l (i+2)); - flatten_i_incr l (i+1); - assert(flatten_i l (i+2) == flatten_i tl (i+1)); - assert(index l (i+1) == index tl i) - end - else () -#pop-options - -val flatten_0_is_flatten : - #a:Type - -> l:list (list a) -> - Lemma - (ensures (flatten_i l 0 == flatten l)) - -#push-options "--fuel 1" -let rec flatten_0_is_flatten #a l = - match l with - | [] -> () - | x :: l' -> - flatten_i_incr l 0; - flatten_0_is_flatten l' -#pop-options - -/// Auxiliary lemma -val flatten_nil_prefix_as_flatten_i : - #a:Type - -> l:list (list a) - -> i:nat{i <= length l} -> - Lemma (requires (forall (j:nat{j < i}). index l j == [])) - (ensures (flatten l == flatten_i l i)) - -#push-options "--fuel 1" -let rec flatten_nil_prefix_as_flatten_i #a l i = - if i = 0 then flatten_0_is_flatten l - else - begin - let x :: l' = l in - assert(index l 0 == []); - assert(x == []); - assert(flatten l == flatten l'); - flatten_i_incr l (i-1); - assert(flatten_i l i == flatten_i l' (i-1)); - assert(forall (j:nat{j < length l'}). index l' j == index l (j+1)); - flatten_nil_prefix_as_flatten_i l' (i-1); - assert(flatten l' == flatten_i l' (i-1)) - end -#pop-options - -/// The proof is trivial, the functions are the same. -/// Just keeping two definitions to allow changes... -val hashMap_move_elements_from_list_s_as_flat_lem - (#t : Type0) (hm : hashMap_s_nes t) - (ls : slot_s t) : - Lemma - (ensures ( - hashMap_move_elements_from_list_s hm ls == - hashMap_move_elements_s_flat hm ls)) - (decreases ls) - -#push-options "--fuel 1" -let rec hashMap_move_elements_from_list_s_as_flat_lem #t hm ls = - match ls with - | [] -> () - | (key, value) :: ls' -> - match hashMap_insert_no_resize_s hm key value with - | Fail _ -> () - | Return hm' -> - hashMap_move_elements_from_list_s_as_flat_lem hm' ls' -#pop-options - -/// Composition of two calls to [hashMap_move_elements_s_flat] -let hashMap_move_elements_s_flat_comp - (#t : Type0) (hm : hashMap_s_nes t) (slot0 slot1 : slot_s t) : - Tot (result_hashMap_s_nes t) = - match hashMap_move_elements_s_flat hm slot0 with - | Fail e -> Fail e - | Return hm1 -> hashMap_move_elements_s_flat hm1 slot1 - -/// High-level desc: -/// move_elements (move_elements hm slot0) slo1 == move_elements hm (slot0 @ slot1) -val hashMap_move_elements_s_flat_append_lem - (#t : Type0) (hm : hashMap_s_nes t) (slot0 slot1 : slot_s t) : - Lemma - (ensures ( - match hashMap_move_elements_s_flat_comp hm slot0 slot1, - hashMap_move_elements_s_flat hm (slot0 @ slot1) - with - | Fail _, Fail _ -> True - | Return hm1, Return hm2 -> hm1 == hm2 - | _ -> False)) - (decreases (slot0)) - -#push-options "--fuel 1" -let rec hashMap_move_elements_s_flat_append_lem #t hm slot0 slot1 = - match slot0 with - | [] -> () - | (k,v) :: slot0' -> - match hashMap_insert_no_resize_s hm k v with - | Fail _ -> () - | Return hm' -> - hashMap_move_elements_s_flat_append_lem hm' slot0' slot1 -#pop-options - -val flatten_i_same_suffix (#a : Type) (l0 l1 : list (list a)) (i : nat) : - Lemma - (requires ( - i <= length l0 /\ - length l0 = length l1 /\ - (forall (j:nat{i <= j /\ j < length l0}). index l0 j == index l1 j))) - (ensures (flatten_i l0 i == flatten_i l1 i)) - (decreases (length l0 - i)) - -#push-options "--fuel 1" -let rec flatten_i_same_suffix #a l0 l1 i = - if i < length l0 then - flatten_i_same_suffix l0 l1 (i+1) - else () -#pop-options - -/// Refinement lemma: -/// [hashMap_move_elements_s] refines [hashMap_move_elements_s_flat] -/// (actually the functions are equal on all inputs). -val hashMap_move_elements_s_lem_refin_flat - (#t : Type0) (hm : hashMap_s_nes t) - (slots : slots_s t) - (i : nat{i <= length slots /\ length slots <= usize_max}) : - Lemma - (ensures ( - match hashMap_move_elements_s hm slots i, - hashMap_move_elements_s_flat hm (flatten_i slots i) - with - | Fail _, Fail _ -> True - | Return hm, Return hm' -> hm == hm' - | _ -> False)) - (decreases (length slots - i)) - -#push-options "--fuel 1" -let rec hashMap_move_elements_s_lem_refin_flat #t hm slots i = - let len = length slots in - if i < len then - begin - let slot = index slots i in - hashMap_move_elements_from_list_s_as_flat_lem hm slot; - match hashMap_move_elements_from_list_s hm slot with - | Fail _ -> - assert(flatten_i slots i == slot @ flatten_i slots (i+1)); - hashMap_move_elements_s_flat_append_lem hm slot (flatten_i slots (i+1)); - assert(Fail? (hashMap_move_elements_s_flat hm (flatten_i slots i))) - | Return hm' -> - let slots' = list_update slots i [] in - flatten_i_same_suffix slots slots' (i+1); - hashMap_move_elements_s_lem_refin_flat hm' slots' (i+1); - hashMap_move_elements_s_flat_append_lem hm slot (flatten_i slots' (i+1)); - () - end - else () -#pop-options - -let assoc_list_inv (#t : Type0) (al : assoc_list t) : Type0 = - // All the keys are pairwise distinct - pairwise_rel binding_neq al - -let disjoint_hm_al_on_key - (#t : Type0) (hm : hashMap_s_nes t) (al : assoc_list t) (k : key) : Type0 = - match hashMap_s_find hm k, assoc_list_find k al with - | Some _, None - | None, Some _ - | None, None -> True - | Some _, Some _ -> False - -/// Playing a dangerous game here: using forall quantifiers -let disjoint_hm_al (#t : Type0) (hm : hashMap_s_nes t) (al : assoc_list t) : Type0 = - forall (k:key). disjoint_hm_al_on_key hm al k - -let find_in_union_hm_al - (#t : Type0) (hm : hashMap_s_nes t) (al : assoc_list t) (k : key) : - option t = - match hashMap_s_find hm k with - | Some b -> Some b - | None -> assoc_list_find k al - -/// Auxiliary lemma -val for_all_binding_neq_find_lem (#t : Type0) (k : key) (v : t) (al : assoc_list t) : - Lemma (requires (for_all (binding_neq (k,v)) al)) - (ensures (assoc_list_find k al == None)) - -#push-options "--fuel 1" -let rec for_all_binding_neq_find_lem #t k v al = - match al with - | [] -> () - | b :: al' -> for_all_binding_neq_find_lem k v al' -#pop-options - -val hashMap_move_elements_s_flat_lem - (#t : Type0) (hm : hashMap_s_nes t) (al : assoc_list t) : - Lemma - (requires ( - // Invariants - hashMap_s_inv hm /\ - assoc_list_inv al /\ - // The two are disjoint - disjoint_hm_al hm al /\ - // We can add all the elements to the hashmap - hashMap_s_len hm + length al <= usize_max)) - (ensures ( - match hashMap_move_elements_s_flat hm al with - | Fail _ -> False // We can't fail - | Return hm' -> - // The invariant is preserved - hashMap_s_inv hm' /\ - // The new hash map is the union of the two maps - (forall (k:key). hashMap_s_find hm' k == find_in_union_hm_al hm al k) /\ - hashMap_s_len hm' = hashMap_s_len hm + length al)) - (decreases al) - -#restart-solver -#push-options "--z3rlimit 200 --fuel 1" -let rec hashMap_move_elements_s_flat_lem #t hm al = - match al with - | [] -> () - | (k,v) :: al' -> - hashMap_insert_no_resize_s_lem hm k v; - match hashMap_insert_no_resize_s hm k v with - | Fail _ -> () - | Return hm' -> - assert(hashMap_s_inv hm'); - assert(assoc_list_inv al'); - let disjoint_lem (k' : key) : - Lemma (disjoint_hm_al_on_key hm' al' k') - [SMTPat (disjoint_hm_al_on_key hm' al' k')] = - if k' = k then - begin - assert(hashMap_s_find hm' k' == Some v); - for_all_binding_neq_find_lem k v al'; - assert(assoc_list_find k' al' == None) - end - else - begin - assert(hashMap_s_find hm' k' == hashMap_s_find hm k'); - assert(assoc_list_find k' al' == assoc_list_find k' al) - end - in - assert(disjoint_hm_al hm' al'); - assert(hashMap_s_len hm' + length al' <= usize_max); - hashMap_move_elements_s_flat_lem hm' al' -#pop-options - -/// We need to prove that the invariants on the "low-level" representations of -/// the hash map imply the invariants on the "high-level" representations. - -val slots_t_inv_implies_slots_s_inv - (#t : Type0) (slots : slots_t t{length slots <= usize_max}) : - Lemma (requires (slots_t_inv slots)) - (ensures (slots_s_inv (slots_t_v slots))) - -let slots_t_inv_implies_slots_s_inv #t slots = - // Ok, works fine: this lemma was useless. - // Problem is: I can never really predict for sure with F*... - () - -val hashMap_t_base_inv_implies_hashMap_s_inv - (#t : Type0) (hm : hashMap_t t) : - Lemma (requires (hashMap_t_base_inv hm)) - (ensures (hashMap_s_inv (hashMap_t_v hm))) - -let hashMap_t_base_inv_implies_hashMap_s_inv #t hm = () // same as previous - -/// Introducing a "partial" version of the hash map invariant, which operates on -/// a suffix of the hash map. -let partial_hashMap_s_inv - (#t : Type0) (len : usize{len > 0}) (offset : usize) - (hm : hashMap_s t{offset + length hm <= usize_max}) : Type0 = - forall(i:nat{i < length hm}). {:pattern index hm i} slot_s_inv len (offset + i) (index hm i) - -/// Auxiliary lemma. -/// If a binding comes from a slot i, then its key is different from the keys -/// of the bindings in the other slots (because the hashes of the keys are distinct). -val binding_in_previous_slot_implies_neq - (#t : Type0) (len : usize{len > 0}) - (i : usize) (b : binding t) - (offset : usize{i < offset}) - (slots : hashMap_s t{offset + length slots <= usize_max}) : - Lemma - (requires ( - // The binding comes from a slot not in [slots] - hash_mod_key (fst b) len = i /\ - // The slots are the well-formed suffix of a hash map - partial_hashMap_s_inv len offset slots)) - (ensures ( - for_all (binding_neq b) (flatten slots))) - (decreases slots) - -#push-options "--z3rlimit 100 --fuel 1" -let rec binding_in_previous_slot_implies_neq #t len i b offset slots = - match slots with - | [] -> () - | s :: slots' -> - assert(slot_s_inv len offset (index slots 0)); // Triggers patterns - assert(slot_s_inv len offset s); - // Proving TARGET. We use quantifiers. - assert(for_all (same_hash_mod_key len offset) s); - forall_index_equiv_list_for_all (same_hash_mod_key len offset) s; - assert(forall (i:nat{i < length s}). same_hash_mod_key len offset (index s i)); - let aux (i:nat{i < length s}) : - Lemma - (requires (same_hash_mod_key len offset (index s i))) - (ensures (binding_neq b (index s i))) - [SMTPat (index s i)] = () - in - assert(forall (i:nat{i < length s}). binding_neq b (index s i)); - forall_index_equiv_list_for_all (binding_neq b) s; - assert(for_all (binding_neq b) s); // TARGET - // - assert(forall (i:nat{i < length slots'}). index slots' i == index slots (i+1)); // Triggers instantiations - binding_in_previous_slot_implies_neq len i b (offset+1) slots'; - for_all_append (binding_neq b) s (flatten slots') -#pop-options - -val partial_hashMap_s_inv_implies_assoc_list_lem - (#t : Type0) (len : usize{len > 0}) (offset : usize) - (hm : hashMap_s t{offset + length hm <= usize_max}) : - Lemma - (requires ( - partial_hashMap_s_inv len offset hm)) - (ensures (assoc_list_inv (flatten hm))) - (decreases (length hm + length (flatten hm))) - -#push-options "--fuel 1" -let rec partial_hashMap_s_inv_implies_assoc_list_lem #t len offset hm = - match hm with - | [] -> () - | slot :: hm' -> - assert(flatten hm == slot @ flatten hm'); - assert(forall (i:nat{i < length hm'}). index hm' i == index hm (i+1)); // Triggers instantiations - match slot with - | [] -> - assert(flatten hm == flatten hm'); - assert(partial_hashMap_s_inv len (offset+1) hm'); // Triggers instantiations - partial_hashMap_s_inv_implies_assoc_list_lem len (offset+1) hm' - | x :: slot' -> - assert(flatten (slot' :: hm') == slot' @ flatten hm'); - let hm'' = slot' :: hm' in - assert(forall (i:nat{0 < i /\ i < length hm''}). index hm'' i == index hm i); // Triggers instantiations - assert(forall (i:nat{0 < i /\ i < length hm''}). slot_s_inv len (offset + i) (index hm'' i)); - assert(index hm 0 == slot); // Triggers instantiations - assert(slot_s_inv len offset slot); - assert(slot_s_inv len offset slot'); - assert(partial_hashMap_s_inv len offset hm''); - partial_hashMap_s_inv_implies_assoc_list_lem len offset (slot' :: hm'); - // Proving that the key in `x` is different from all the other keys in - // the flattened map - assert(for_all (binding_neq x) slot'); - for_all_append (binding_neq x) slot' (flatten hm'); - assert(partial_hashMap_s_inv len (offset+1) hm'); - binding_in_previous_slot_implies_neq #t len offset x (offset+1) hm'; - assert(for_all (binding_neq x) (flatten hm')); - assert(for_all (binding_neq x) (flatten (slot' :: hm'))) -#pop-options - -val hashMap_s_inv_implies_assoc_list_lem - (#t : Type0) (hm : hashMap_s t) : - Lemma (requires (hashMap_s_inv hm)) - (ensures (assoc_list_inv (flatten hm))) - -let hashMap_s_inv_implies_assoc_list_lem #t hm = - partial_hashMap_s_inv_implies_assoc_list_lem (length hm) 0 hm - -val hashMap_t_base_inv_implies_assoc_list_lem - (#t : Type0) (hm : hashMap_t t): - Lemma (requires (hashMap_t_base_inv hm)) - (ensures (assoc_list_inv (hashMap_t_al_v hm))) - -let hashMap_t_base_inv_implies_assoc_list_lem #t hm = - hashMap_s_inv_implies_assoc_list_lem (hashMap_t_v hm) - -/// For some reason, we can't write the below [forall] directly in the [ensures] -/// clause of the next lemma: it makes Z3 fails even with a huge rlimit. -/// I have no idea what's going on. -let hashMap_is_assoc_list - (#t : Type0) (ntable : hashMap_t t{length ntable.slots > 0}) - (al : assoc_list t) : Type0 = - (forall (k:key). hashMap_t_find_s ntable k == assoc_list_find k al) - -let partial_hashMap_s_find - (#t : Type0) (len : usize{len > 0}) (offset : usize) - (hm : hashMap_s_nes t{offset + length hm = len}) - (k : key{hash_mod_key k len >= offset}) : option t = - let i = hash_mod_key k len in - let slot = index hm (i - offset) in - slot_s_find k slot - -val not_same_hash_key_not_found_in_slot - (#t : Type0) (len : usize{len > 0}) - (k : key) - (i : usize) - (slot : slot_s t) : - Lemma - (requires ( - hash_mod_key k len <> i /\ - slot_s_inv len i slot)) - (ensures (slot_s_find k slot == None)) - -#push-options "--fuel 1" -let rec not_same_hash_key_not_found_in_slot #t len k i slot = - match slot with - | [] -> () - | (k',v) :: slot' -> not_same_hash_key_not_found_in_slot len k i slot' -#pop-options - -/// Small variation of [binding_in_previous_slot_implies_neq]: if the hash of -/// a key links it to a previous slot, it can't be found in the slots after. -val key_in_previous_slot_implies_not_found - (#t : Type0) (len : usize{len > 0}) - (k : key) - (offset : usize) - (slots : hashMap_s t{offset + length slots = len}) : - Lemma - (requires ( - // The binding comes from a slot not in [slots] - hash_mod_key k len < offset /\ - // The slots are the well-formed suffix of a hash map - partial_hashMap_s_inv len offset slots)) - (ensures ( - assoc_list_find k (flatten slots) == None)) - (decreases slots) - -#push-options "--fuel 1" -let rec key_in_previous_slot_implies_not_found #t len k offset slots = - match slots with - | [] -> () - | slot :: slots' -> - find_append (same_key k) slot (flatten slots'); - assert(index slots 0 == slot); // Triggers instantiations - not_same_hash_key_not_found_in_slot #t len k offset slot; - assert(assoc_list_find k slot == None); - assert(forall (i:nat{i < length slots'}). index slots' i == index slots (i+1)); // Triggers instantiations - key_in_previous_slot_implies_not_found len k (offset+1) slots' -#pop-options - -val partial_hashMap_s_is_assoc_list_lem - (#t : Type0) (len : usize{len > 0}) (offset : usize) - (hm : hashMap_s_nes t{offset + length hm = len}) - (k : key{hash_mod_key k len >= offset}) : - Lemma - (requires ( - partial_hashMap_s_inv len offset hm)) - (ensures ( - partial_hashMap_s_find len offset hm k == assoc_list_find k (flatten hm))) - (decreases hm) - -#push-options "--fuel 1" -let rec partial_hashMap_s_is_assoc_list_lem #t len offset hm k = - match hm with - | [] -> () - | slot :: hm' -> - let h = hash_mod_key k len in - let i = h - offset in - if i = 0 then - begin - // We must look in the current slot - assert(partial_hashMap_s_find len offset hm k == slot_s_find k slot); - find_append (same_key k) slot (flatten hm'); - assert(forall (i:nat{i < length hm'}). index hm' i == index hm (i+1)); // Triggers instantiations - key_in_previous_slot_implies_not_found #t len k (offset+1) hm'; - assert( // Of course, writing `== None` doesn't work... - match find (same_key k) (flatten hm') with - | None -> True - | Some _ -> False); - assert( - find (same_key k) (flatten hm) == - begin match find (same_key k) slot with - | Some x -> Some x - | None -> find (same_key k) (flatten hm') - end); - () - end - else - begin - // We must ignore the current slot - assert(partial_hashMap_s_find len offset hm k == - partial_hashMap_s_find len (offset+1) hm' k); - find_append (same_key k) slot (flatten hm'); - assert(index hm 0 == slot); // Triggers instantiations - not_same_hash_key_not_found_in_slot #t len k offset slot; - assert(forall (i:nat{i < length hm'}). index hm' i == index hm (i+1)); // Triggers instantiations - partial_hashMap_s_is_assoc_list_lem #t len (offset+1) hm' k - end -#pop-options - -val hashMap_is_assoc_list_lem (#t : Type0) (hm : hashMap_t t) : - Lemma (requires (hashMap_t_base_inv hm)) - (ensures (hashMap_is_assoc_list hm (hashMap_t_al_v hm))) - -let hashMap_is_assoc_list_lem #t hm = - let aux (k:key) : - Lemma (hashMap_t_find_s hm k == assoc_list_find k (hashMap_t_al_v hm)) - [SMTPat (hashMap_t_find_s hm k)] = - let hm_v = hashMap_t_v hm in - let len = length hm_v in - partial_hashMap_s_is_assoc_list_lem #t len 0 hm_v k - in - () - -/// The final lemma about [move_elements]: calling it on an empty hash table moves -/// all the elements to this empty table. -val hashMap_move_elements_lem - (t : Type0) (ntable : hashMap_t t) (slots : alloc_vec_Vec (list_t t)) : - Lemma - (requires ( - let al = flatten (slots_t_v slots) in - hashMap_t_base_inv ntable /\ - length al <= usize_max /\ - assoc_list_inv al /\ - // The table is empty - hashMap_t_len_s ntable = 0 /\ - (forall (k:key). hashMap_t_find_s ntable k == None))) - (ensures ( - let al = flatten (slots_t_v slots) in - match hashMap_move_elements t ntable slots 0, - hashMap_move_elements_s_flat (hashMap_t_v ntable) al - with - | Return (ntable', _), Return ntable'_v -> - // The invariant is preserved - hashMap_t_base_inv ntable' /\ - // We preserved the parameters - hashMap_t_same_params ntable' ntable /\ - // The table has the same number of slots - length ntable'.slots = length ntable.slots /\ - // The count is good - hashMap_t_len_s ntable' = length al /\ - // The table can be linked to its model (we need this only to reveal - // "pretty" functional lemmas to the user in the fsti - so that we - // can write lemmas with SMT patterns - this is very F* specific) - hashMap_t_v ntable' == ntable'_v /\ - // The new table contains exactly all the bindings from the slots - // Rk.: see the comment for [hashMap_is_assoc_list] - hashMap_is_assoc_list ntable' al - | _ -> False // We can only succeed - )) - -// Weird, dirty things happen below. -// Manually unfolding some postconditions allowed to make the proof pass, -// and also revealed the reason why some proofs failed with "Unknown assertion -// failed" (resulting in the call to [flatten_0_is_flatten] for instance). -// I think manually unfolding the postconditions allowed to account for the -// lack of ifuel (this kind of proofs is annoying, really). -#restart-solver -#push-options "--z3rlimit 100" -let hashMap_move_elements_lem t ntable slots = - let ntable_v = hashMap_t_v ntable in - let slots_v = slots_t_v slots in - let al = flatten slots_v in - hashMap_move_elements_lem_refin t ntable slots 0; - begin - match hashMap_move_elements t ntable slots 0, - hashMap_move_elements_s ntable_v slots_v 0 - with - | Fail _, Fail _ -> () - | Return (ntable', _), Return ntable'_v -> - assert(hashMap_t_base_inv ntable'); - assert(hashMap_t_v ntable' == ntable'_v) - | _ -> assert(False) - end; - hashMap_move_elements_s_lem_refin_flat ntable_v slots_v 0; - begin - match hashMap_move_elements_s ntable_v slots_v 0, - hashMap_move_elements_s_flat ntable_v (flatten_i slots_v 0) - with - | Fail _, Fail _ -> () - | Return hm, Return hm' -> assert(hm == hm') - | _ -> assert(False) - end; - flatten_0_is_flatten slots_v; // flatten_i slots_v 0 == flatten slots_v - hashMap_move_elements_s_flat_lem ntable_v al; - match hashMap_move_elements t ntable slots 0, - hashMap_move_elements_s_flat ntable_v al - with - | Return (ntable', _), Return ntable'_v -> - assert(hashMap_t_base_inv ntable'); - assert(length ntable'.slots = length ntable.slots); - assert(hashMap_t_len_s ntable' = length al); - assert(hashMap_t_v ntable' == ntable'_v); - assert(hashMap_is_assoc_list ntable' al) - | _ -> assert(False) -#pop-options - -(*** try_resize *) - -/// High-level model 1. -/// This is one is slightly "crude": we just simplify a bit the function. - -let hashMap_try_resize_s_simpl - (#t : Type0) - (hm : hashMap_t t) : - Pure (result (hashMap_t t)) - (requires ( - let (divid, divis) = hm.max_load_factor in - divid > 0 /\ divis > 0)) - (ensures (fun _ -> True)) = - let capacity = length hm.slots in - let (divid, divis) = hm.max_load_factor in - if capacity <= (usize_max / 2) / divid then - let ncapacity : usize = capacity * 2 in - begin match hashMap_new_with_capacity t ncapacity divid divis with - | Fail e -> Fail e - | Return ntable -> - match hashMap_move_elements t ntable hm.slots 0 with - | Fail e -> Fail e - | Return (ntable', _) -> - let hm = - { hm with slots = ntable'.slots; - max_load = ntable'.max_load } - in - Return hm - end - else Return hm - -val hashMap_try_resize_lem_refin - (t : Type0) (self : hashMap_t t) : - Lemma - (requires ( - let (divid, divis) = self.max_load_factor in - divid > 0 /\ divis > 0)) - (ensures ( - match hashMap_try_resize t self, - hashMap_try_resize_s_simpl self - with - | Fail _, Fail _ -> True - | Return hm1, Return hm2 -> hm1 == hm2 - | _ -> False)) - -let hashMap_try_resize_lem_refin t self = () - -/// Isolating arithmetic proofs - -let gt_lem0 (n m q : nat) : - Lemma (requires (m > 0 /\ n > q)) - (ensures (n * m > q * m)) = () - -let ge_lem0 (n m q : nat) : - Lemma (requires (m > 0 /\ n >= q)) - (ensures (n * m >= q * m)) = () - -let gt_ge_trans (n m p : nat) : - Lemma (requires (n > m /\ m >= p)) (ensures (n > p)) = () - -let ge_trans (n m p : nat) : - Lemma (requires (n >= m /\ m >= p)) (ensures (n >= p)) = () - -#push-options "--z3rlimit 200" -let gt_lem1 (n m q : nat) : - Lemma (requires (m > 0 /\ n > q / m)) (ensures (n * m > q)) = - assert(n >= q / m + 1); - ge_lem0 n m (q / m + 1); - assert(n * m >= (q / m) * m + m) -#pop-options - -let gt_lem2 (n m p q : nat) : - Lemma (requires (m > 0 /\ p > 0 /\ n > (q / m) / p)) (ensures (n * m * p > q)) = - gt_lem1 n p (q / m); - assert(n * p > q / m); - gt_lem1 (n * p) m q - -let ge_lem1 (n m q : nat) : - Lemma (requires (n >= m /\ q > 0)) - (ensures (n / q >= m / q)) = - FStar.Math.Lemmas.lemma_div_le m n q - -#restart-solver -#push-options "--z3rlimit 200" -let times_divid_lem (n m p : pos) : Lemma ((n * m) / p >= n * (m / p)) - = - FStar.Math.Lemmas.multiply_fractions m p; - assert(m >= (m / p) * p); - assert(n * m >= n * (m / p) * p); // - ge_lem1 (n * m) (n * (m / p) * p) p; - assert((n * m) / p >= (n * (m / p) * p) / p); - assert(n * (m / p) * p = (n * (m / p)) * p); - FStar.Math.Lemmas.cancel_mul_div (n * (m / p)) p; - assert(((n * (m / p)) * p) / p = n * (m / p)) -#pop-options - -/// The good old arithmetic proofs and their unstability... -/// At some point I thought it was stable because it worked with `--quake 100`. -/// Of course, it broke the next time I checked the file... -/// It seems things are ok when we check this proof on its own, but not when -/// it is sent at the same time as the one above (though we put #restart-solver!). -/// I also tried `--quake 1/100` to no avail: it seems that when Z3 decides to -/// fail the first one, it fails them all. I inserted #restart-solver before -/// the previous lemma to see if it had an effect (of course not). -val new_max_load_lem - (len : usize) (capacity : usize{capacity > 0}) - (divid : usize{divid > 0}) (divis : usize{divis > 0}) : - Lemma - (requires ( - let max_load = (capacity * divid) / divis in - let ncapacity = 2 * capacity in - let nmax_load = (ncapacity * divid) / divis in - capacity > 0 /\ 0 < divid /\ divid < divis /\ - capacity * divid >= divis /\ - len = max_load + 1)) - (ensures ( - let max_load = (capacity * divid) / divis in - let ncapacity = 2 * capacity in - let nmax_load = (ncapacity * divid) / divis in - len <= nmax_load)) - -let mul_assoc (a b c : nat) : Lemma (a * b * c == a * (b * c)) = () - -let ge_lem2 (a b c d : nat) : Lemma (requires (a >= b + c /\ c >= d)) (ensures (a >= b + d)) = () -let ge_div_lem1 (a b : nat) : Lemma (requires (a >= b /\ b > 0)) (ensures (a / b >= 1)) = () - -#restart-solver -#push-options "--z3rlimit 100 --z3cliopt smt.arith.nl=false" -let new_max_load_lem len capacity divid divis = - FStar.Math.Lemmas.paren_mul_left 2 capacity divid; - mul_assoc 2 capacity divid; - // The following assertion often breaks though it is given by the above - // lemma. I really don't know what to do (I deactivated non-linear - // arithmetic and added the previous lemma call, moved the assertion up, - // boosted the rlimit...). - assert(2 * capacity * divid == 2 * (capacity * divid)); - let max_load = (capacity * divid) / divis in - let ncapacity = 2 * capacity in - let nmax_load = (ncapacity * divid) / divis in - assert(nmax_load = (2 * capacity * divid) / divis); - times_divid_lem 2 (capacity * divid) divis; - assert((2 * (capacity * divid)) / divis >= 2 * ((capacity * divid) / divis)); - assert(nmax_load >= 2 * ((capacity * divid) / divis)); - assert(nmax_load >= 2 * max_load); - assert(nmax_load >= max_load + max_load); - ge_div_lem1 (capacity * divid) divis; - ge_lem2 nmax_load max_load max_load 1; - assert(nmax_load >= max_load + 1) -#pop-options - -val hashMap_try_resize_s_simpl_lem (#t : Type0) (hm : hashMap_t t) : - Lemma - (requires ( - // The base invariant is satisfied - hashMap_t_base_inv hm /\ - // However, the "full" invariant is broken, as we call [try_resize] - // only if the current number of entries is > the max load. - // - // There are two situations: - // - either we just reached the max load - // - or we were already saturated and can't resize - (let (dividend, divisor) = hm.max_load_factor in - hm.num_entries == hm.max_load + 1 \/ - length hm.slots * 2 * dividend > usize_max) - )) - (ensures ( - match hashMap_try_resize_s_simpl hm with - | Fail _ -> False - | Return hm' -> - // The full invariant is now satisfied (the full invariant is "base - // invariant" + the map is not overloaded (or can't be resized because - // already too big) - hashMap_t_inv hm' /\ - // It contains the same bindings as the initial map - (forall (k:key). hashMap_t_find_s hm' k == hashMap_t_find_s hm k))) - -#restart-solver -#push-options "--z3rlimit 400" -let hashMap_try_resize_s_simpl_lem #t hm = - let capacity = length hm.slots in - let (divid, divis) = hm.max_load_factor in - if capacity <= (usize_max / 2) / divid then - begin - let ncapacity : usize = capacity * 2 in - assert(ncapacity * divid <= usize_max); - assert(hashMap_t_len_s hm = hm.max_load + 1); - new_max_load_lem (hashMap_t_len_s hm) capacity divid divis; - hashMap_new_with_capacity_lem t ncapacity divid divis; - match hashMap_new_with_capacity t ncapacity divid divis with - | Fail _ -> () - | Return ntable -> - let slots = hm.slots in - let al = flatten (slots_t_v slots) in - // Proving that: length al = hm.num_entries - assert(al == flatten (map slot_t_v slots)); - assert(al == flatten (map list_t_v slots)); - assert(hashMap_t_al_v hm == flatten (hashMap_t_v hm)); - assert(hashMap_t_al_v hm == flatten (map list_t_v hm.slots)); - assert(al == hashMap_t_al_v hm); - assert(hashMap_t_base_inv ntable); - assert(length al = hm.num_entries); - assert(length al <= usize_max); - hashMap_t_base_inv_implies_assoc_list_lem hm; - assert(assoc_list_inv al); - assert(hashMap_t_len_s ntable = 0); - assert(forall (k:key). hashMap_t_find_s ntable k == None); - hashMap_move_elements_lem t ntable hm.slots; - match hashMap_move_elements t ntable hm.slots 0 with - | Fail _ -> () - | Return (ntable', _) -> - hashMap_is_assoc_list_lem hm; - assert(hashMap_is_assoc_list hm (hashMap_t_al_v hm)); - let hm' = - { hm with slots = ntable'.slots; - max_load = ntable'.max_load } - in - assert(hashMap_t_base_inv ntable'); - assert(hashMap_t_base_inv hm'); - assert(hashMap_t_len_s hm' = hashMap_t_len_s hm); - new_max_load_lem (hashMap_t_len_s hm') capacity divid divis; - assert(hashMap_t_len_s hm' <= hm'.max_load); // Requires a lemma - assert(hashMap_t_inv hm') - end - else - begin - gt_lem2 capacity 2 divid usize_max; - assert(capacity * 2 * divid > usize_max) - end -#pop-options - -let hashMap_t_same_bindings (#t : Type0) (hm hm' : hashMap_t_nes t) : Type0 = - forall (k:key). hashMap_t_find_s hm k == hashMap_t_find_s hm' k - -/// The final lemma about [try_resize] -val hashMap_try_resize_lem (#t : Type0) (hm : hashMap_t t) : - Lemma - (requires ( - hashMap_t_base_inv hm /\ - // However, the "full" invariant is broken, as we call [try_resize] - // only if the current number of entries is > the max load. - // - // There are two situations: - // - either we just reached the max load - // - or we were already saturated and can't resize - (let (dividend, divisor) = hm.max_load_factor in - hm.num_entries == hm.max_load + 1 \/ - length hm.slots * 2 * dividend > usize_max))) - (ensures ( - match hashMap_try_resize t hm with - | Fail _ -> False - | Return hm' -> - // The full invariant is now satisfied (the full invariant is "base - // invariant" + the map is not overloaded (or can't be resized because - // already too big) - hashMap_t_inv hm' /\ - // The length is the same - hashMap_t_len_s hm' = hashMap_t_len_s hm /\ - // It contains the same bindings as the initial map - hashMap_t_same_bindings hm' hm)) - -let hashMap_try_resize_lem #t hm = - hashMap_try_resize_lem_refin t hm; - hashMap_try_resize_s_simpl_lem hm - -(*** insert *) - -/// The high-level model (very close to the original function: we don't need something -/// very high level, just to clean it a bit) -let hashMap_insert_s - (#t : Type0) (self : hashMap_t t) (key : usize) (value : t) : - result (hashMap_t t) = - match hashMap_insert_no_resize t self key value with - | Fail e -> Fail e - | Return hm' -> - if hashMap_t_len_s hm' > hm'.max_load then - hashMap_try_resize t hm' - else Return hm' - -val hashMap_insert_lem_refin - (t : Type0) (self : hashMap_t t) (key : usize) (value : t) : - Lemma (requires True) - (ensures ( - match hashMap_insert t self key value, - hashMap_insert_s self key value - with - | Fail _, Fail _ -> True - | Return hm1, Return hm2 -> hm1 == hm2 - | _ -> False)) - -let hashMap_insert_lem_refin t self key value = () - -/// Helper -let hashMap_insert_bindings_lem - (t : Type0) (self : hashMap_t_nes t) (key : usize) (value : t) - (hm' hm'' : hashMap_t_nes t) : - Lemma - (requires ( - hashMap_s_updated_binding (hashMap_t_v self) key - (Some value) (hashMap_t_v hm') /\ - hashMap_t_same_bindings hm' hm'')) - (ensures ( - hashMap_s_updated_binding (hashMap_t_v self) key - (Some value) (hashMap_t_v hm''))) - = () - -val hashMap_insert_lem_aux - (#t : Type0) (self : hashMap_t t) (key : usize) (value : t) : - Lemma (requires (hashMap_t_inv self)) - (ensures ( - match hashMap_insert t self key value with - | Fail _ -> - // We can fail only if: - // - the key is not in the map and we need to add it - // - we are already saturated - hashMap_t_len_s self = usize_max /\ - None? (hashMap_t_find_s self key) - | Return hm' -> - // The invariant is preserved - hashMap_t_inv hm' /\ - // [key] maps to [value] and the other bindings are preserved - hashMap_s_updated_binding (hashMap_t_v self) key (Some value) (hashMap_t_v hm') /\ - // The length is incremented, iff we inserted a new key - (match hashMap_t_find_s self key with - | None -> hashMap_t_len_s hm' = hashMap_t_len_s self + 1 - | Some _ -> hashMap_t_len_s hm' = hashMap_t_len_s self))) - -#restart-solver -#push-options "--z3rlimit 200" -let hashMap_insert_lem_aux #t self key value = - hashMap_insert_no_resize_lem_s t self key value; - hashMap_insert_no_resize_s_lem (hashMap_t_v self) key value; - match hashMap_insert_no_resize t self key value with - | Fail _ -> () - | Return hm' -> - // Expanding the post of [hashMap_insert_no_resize_lem_s] - let self_v = hashMap_t_v self in - let hm'_v = Return?.v (hashMap_insert_no_resize_s self_v key value) in - assert(hashMap_t_base_inv hm'); - assert(hashMap_t_same_params hm' self); - assert(hashMap_t_v hm' == hm'_v); - assert(hashMap_s_len hm'_v == hashMap_t_len_s hm'); - // Expanding the post of [hashMap_insert_no_resize_s_lem] - assert(insert_post self_v key value hm'_v); - // Expanding [insert_post] - assert(hashMap_s_inv hm'_v); - assert( - match hashMap_s_find self_v key with - | None -> hashMap_s_len hm'_v = hashMap_s_len self_v + 1 - | Some _ -> hashMap_s_len hm'_v = hashMap_s_len self_v); - if hashMap_t_len_s hm' > hm'.max_load then - begin - hashMap_try_resize_lem hm'; - // Expanding the post of [hashMap_try_resize_lem] - let hm'' = Return?.v (hashMap_try_resize t hm') in - assert(hashMap_t_inv hm''); - let hm''_v = hashMap_t_v hm'' in - assert(forall k. hashMap_t_find_s hm'' k == hashMap_t_find_s hm' k); - assert(hashMap_t_len_s hm'' = hashMap_t_len_s hm'); // TODO - // Proving the post - assert(hashMap_t_inv hm''); - hashMap_insert_bindings_lem t self key value hm' hm''; - assert( - match hashMap_t_find_s self key with - | None -> hashMap_t_len_s hm'' = hashMap_t_len_s self + 1 - | Some _ -> hashMap_t_len_s hm'' = hashMap_t_len_s self) - end - else () -#pop-options - -let hashMap_insert_lem #t self key value = - hashMap_insert_lem_aux #t self key value - -(*** contains_key *) - -(**** contains_key_in_list *) - -val hashMap_contains_key_in_list_lem - (#t : Type0) (key : usize) (ls : list_t t) : - Lemma - (ensures ( - match hashMap_contains_key_in_list t key ls with - | Fail _ -> False - | Return b -> - b = Some? (slot_t_find_s key ls))) - - -#push-options "--fuel 1" -let rec hashMap_contains_key_in_list_lem #t key ls = - match ls with - | List_Cons ckey x ls0 -> - let b = ckey = key in - if b - then () - else - begin - hashMap_contains_key_in_list_lem key ls0; - match hashMap_contains_key_in_list t key ls0 with - | Fail _ -> () - | Return b0 -> () - end - | List_Nil -> () -#pop-options - -(**** contains_key *) - -val hashMap_contains_key_lem_aux - (#t : Type0) (self : hashMap_t_nes t) (key : usize) : - Lemma - (ensures ( - match hashMap_contains_key t self key with - | Fail _ -> False - | Return b -> b = Some? (hashMap_t_find_s self key))) - -let hashMap_contains_key_lem_aux #t self key = - begin match hash_key key with - | Fail _ -> () - | Return i -> - let v = self.slots in - let i0 = alloc_vec_Vec_len (list_t t) v in - begin match usize_rem i i0 with - | Fail _ -> () - | Return hash_mod -> - begin match alloc_vec_Vec_index_usize v hash_mod with - | Fail _ -> () - | Return l -> - hashMap_contains_key_in_list_lem key l; - begin match hashMap_contains_key_in_list t key l with - | Fail _ -> () - | Return b -> () - end - end - end - end - -/// The lemma in the .fsti -let hashMap_contains_key_lem #t self key = - hashMap_contains_key_lem_aux #t self key - -(*** get *) - -(**** get_in_list *) - -val hashMap_get_in_list_lem - (#t : Type0) (key : usize) (ls : list_t t) : - Lemma - (ensures ( - match hashMap_get_in_list t key ls, slot_t_find_s key ls with - | Fail _, None -> True - | Return x, Some x' -> x == x' - | _ -> False)) - -#push-options "--fuel 1" -let rec hashMap_get_in_list_lem #t key ls = - begin match ls with - | List_Cons ckey cvalue ls0 -> - let b = ckey = key in - if b - then () - else - begin - hashMap_get_in_list_lem key ls0; - match hashMap_get_in_list t key ls0 with - | Fail _ -> () - | Return x -> () - end - | List_Nil -> () - end -#pop-options - -(**** get *) - -val hashMap_get_lem_aux - (#t : Type0) (self : hashMap_t_nes t) (key : usize) : - Lemma - (ensures ( - match hashMap_get t self key, hashMap_t_find_s self key with - | Fail _, None -> True - | Return x, Some x' -> x == x' - | _ -> False)) - -let hashMap_get_lem_aux #t self key = - begin match hash_key key with - | Fail _ -> () - | Return i -> - let v = self.slots in - let i0 = alloc_vec_Vec_len (list_t t) v in - begin match usize_rem i i0 with - | Fail _ -> () - | Return hash_mod -> - begin match alloc_vec_Vec_index_usize v hash_mod with - | Fail _ -> () - | Return l -> - begin - hashMap_get_in_list_lem key l; - match hashMap_get_in_list t key l with - | Fail _ -> () - | Return x -> () - end - end - end - end - -/// .fsti -let hashMap_get_lem #t self key = hashMap_get_lem_aux #t self key - -(*** get_mut'fwd *) - - -(**** get_mut_in_list'fwd *) - -val hashMap_get_mut_in_list_loop_lem - (#t : Type0) (ls : list_t t) (key : usize) : - Lemma - (ensures ( - match hashMap_get_mut_in_list_loop t ls key, slot_t_find_s key ls with - | Fail _, None -> True - | Return x, Some x' -> x == x' - | _ -> False)) - -#push-options "--fuel 1" -let rec hashMap_get_mut_in_list_loop_lem #t ls key = - begin match ls with - | List_Cons ckey cvalue ls0 -> - let b = ckey = key in - if b - then () - else - begin - hashMap_get_mut_in_list_loop_lem ls0 key; - match hashMap_get_mut_in_list_loop t ls0 key with - | Fail _ -> () - | Return x -> () - end - | List_Nil -> () - end -#pop-options - -(**** get_mut'fwd *) - -val hashMap_get_mut_lem_aux - (#t : Type0) (self : hashMap_t_nes t) (key : usize) : - Lemma - (ensures ( - match hashMap_get_mut t self key, hashMap_t_find_s self key with - | Fail _, None -> True - | Return x, Some x' -> x == x' - | _ -> False)) - -let hashMap_get_mut_lem_aux #t self key = - begin match hash_key key with - | Fail _ -> () - | Return i -> - let v = self.slots in - let i0 = alloc_vec_Vec_len (list_t t) v in - begin match usize_rem i i0 with - | Fail _ -> () - | Return hash_mod -> - begin match alloc_vec_Vec_index_usize v hash_mod with - | Fail _ -> () - | Return l -> - begin - hashMap_get_mut_in_list_loop_lem l key; - match hashMap_get_mut_in_list_loop t l key with - | Fail _ -> () - | Return x -> () - end - end - end - end - -let hashMap_get_mut_lem #t self key = - hashMap_get_mut_lem_aux #t self key - -(*** get_mut'back *) - -(**** get_mut_in_list'back *) - -val hashMap_get_mut_in_list_loop_back_lem - (#t : Type0) (ls : list_t t) (key : usize) (ret : t) : - Lemma - (requires (Some? (slot_t_find_s key ls))) - (ensures ( - match hashMap_get_mut_in_list_loop_back t ls key ret with - | Fail _ -> False - | Return ls' -> list_t_v ls' == find_update (same_key key) (list_t_v ls) (key,ret) - | _ -> False)) - -#push-options "--fuel 1" -let rec hashMap_get_mut_in_list_loop_back_lem #t ls key ret = - begin match ls with - | List_Cons ckey cvalue ls0 -> - let b = ckey = key in - if b - then let ls1 = List_Cons ckey ret ls0 in () - else - begin - hashMap_get_mut_in_list_loop_back_lem ls0 key ret; - match hashMap_get_mut_in_list_loop_back t ls0 key ret with - | Fail _ -> () - | Return l -> let ls1 = List_Cons ckey cvalue l in () - end - | List_Nil -> () - end -#pop-options - -(**** get_mut'back *) - -/// Refinement lemma -val hashMap_get_mut_back_lem_refin - (#t : Type0) (self : hashMap_t t{length self.slots > 0}) - (key : usize) (ret : t) : - Lemma - (requires (Some? (hashMap_t_find_s self key))) - (ensures ( - match hashMap_get_mut_back t self key ret with - | Fail _ -> False - | Return hm' -> - hashMap_t_v hm' == hashMap_insert_no_fail_s (hashMap_t_v self) key ret)) - -let hashMap_get_mut_back_lem_refin #t self key ret = - begin match hash_key key with - | Fail _ -> () - | Return i -> - let i0 = self.num_entries in - let p = self.max_load_factor in - let i1 = self.max_load in - let v = self.slots in - let i2 = alloc_vec_Vec_len (list_t t) v in - begin match usize_rem i i2 with - | Fail _ -> () - | Return hash_mod -> - begin match alloc_vec_Vec_index_usize v hash_mod with - | Fail _ -> () - | Return l -> - begin - hashMap_get_mut_in_list_loop_back_lem l key ret; - match hashMap_get_mut_in_list_loop_back t l key ret with - | Fail _ -> () - | Return l0 -> - begin match alloc_vec_Vec_update_usize v hash_mod l0 with - | Fail _ -> () - | Return v0 -> let self0 = MkhashMap_t i0 p i1 v0 in () - end - end - end - end - end - -/// Final lemma -val hashMap_get_mut_back_lem_aux - (#t : Type0) (hm : hashMap_t t) - (key : usize) (ret : t) : - Lemma - (requires ( - hashMap_t_inv hm /\ - Some? (hashMap_t_find_s hm key))) - (ensures ( - match hashMap_get_mut_back t hm key ret with - | Fail _ -> False - | Return hm' -> - // Functional spec - hashMap_t_v hm' == hashMap_insert_no_fail_s (hashMap_t_v hm) key ret /\ - // The invariant is preserved - hashMap_t_inv hm' /\ - // The length is preserved - hashMap_t_len_s hm' = hashMap_t_len_s hm /\ - // [key] maps to [value] - hashMap_t_find_s hm' key == Some ret /\ - // The other bindings are preserved - (forall k'. k' <> key ==> hashMap_t_find_s hm' k' == hashMap_t_find_s hm k'))) - -let hashMap_get_mut_back_lem_aux #t hm key ret = - let hm_v = hashMap_t_v hm in - hashMap_get_mut_back_lem_refin hm key ret; - match hashMap_get_mut_back t hm key ret with - | Fail _ -> assert(False) - | Return hm' -> - hashMap_insert_no_fail_s_lem hm_v key ret - -/// .fsti -let hashMap_get_mut_back_lem #t hm key ret = hashMap_get_mut_back_lem_aux hm key ret - -(*** remove'fwd *) - -val hashMap_remove_from_list_lem - (#t : Type0) (key : usize) (ls : list_t t) : - Lemma - (ensures ( - match hashMap_remove_from_list t key ls with - | Fail _ -> False - | Return opt_x -> - opt_x == slot_t_find_s key ls /\ - (Some? opt_x ==> length (slot_t_v ls) > 0))) - -#push-options "--fuel 1" -let rec hashMap_remove_from_list_lem #t key ls = - begin match ls with - | List_Cons ckey x tl -> - let b = ckey = key in - if b - then - let mv_ls = core_mem_replace (list_t t) (List_Cons ckey x tl) List_Nil in - begin match mv_ls with - | List_Cons i cvalue tl0 -> () - | List_Nil -> () - end - else - begin - hashMap_remove_from_list_lem key tl; - match hashMap_remove_from_list t key tl with - | Fail _ -> () - | Return opt -> () - end - | List_Nil -> () - end -#pop-options - -val hashMap_remove_lem_aux - (#t : Type0) (self : hashMap_t t) (key : usize) : - Lemma - (requires ( - // We need the invariant to prove that upon decrementing the entries counter, - // the counter doesn't become negative - hashMap_t_inv self)) - (ensures ( - match hashMap_remove t self key with - | Fail _ -> False - | Return opt_x -> opt_x == hashMap_t_find_s self key)) - -let hashMap_remove_lem_aux #t self key = - begin match hash_key key with - | Fail _ -> () - | Return i -> - let i0 = self.num_entries in - let v = self.slots in - let i1 = alloc_vec_Vec_len (list_t t) v in - begin match usize_rem i i1 with - | Fail _ -> () - | Return hash_mod -> - begin match alloc_vec_Vec_index_usize v hash_mod with - | Fail _ -> () - | Return l -> - begin - hashMap_remove_from_list_lem key l; - match hashMap_remove_from_list t key l with - | Fail _ -> () - | Return x -> - begin match x with - | None -> () - | Some x0 -> - begin - assert(l == index v hash_mod); - assert(length (list_t_v #t l) > 0); - length_flatten_index (hashMap_t_v self) hash_mod; - match usize_sub i0 1 with - | Fail _ -> () - | Return _ -> () - end - end - end - end - end - end - -/// .fsti -let hashMap_remove_lem #t self key = hashMap_remove_lem_aux #t self key - -(*** remove'back *) - -(**** Refinement proofs *) - -/// High-level model for [remove_from_list'back] -let hashMap_remove_from_list_s - (#t : Type0) (key : usize) (ls : slot_s t) : - slot_s t = - filter_one (not_same_key key) ls - -/// Refinement lemma -val hashMap_remove_from_list_back_lem_refin - (#t : Type0) (key : usize) (ls : list_t t) : - Lemma - (ensures ( - match hashMap_remove_from_list_back t key ls with - | Fail _ -> False - | Return ls' -> - list_t_v ls' == hashMap_remove_from_list_s key (list_t_v ls) /\ - // The length is decremented, iff the key was in the slot - (let len = length (list_t_v ls) in - let len' = length (list_t_v ls') in - match slot_s_find key (list_t_v ls) with - | None -> len = len' - | Some _ -> len = len' + 1))) - -#push-options "--fuel 1" -let rec hashMap_remove_from_list_back_lem_refin #t key ls = - begin match ls with - | List_Cons ckey x tl -> - let b = ckey = key in - if b - then - let mv_ls = core_mem_replace (list_t t) (List_Cons ckey x tl) List_Nil in - begin match mv_ls with - | List_Cons i cvalue tl0 -> () - | List_Nil -> () - end - else - begin - hashMap_remove_from_list_back_lem_refin key tl; - match hashMap_remove_from_list_back t key tl with - | Fail _ -> () - | Return l -> let ls0 = List_Cons ckey x l in () - end - | List_Nil -> () - end -#pop-options - -/// High-level model for [remove_from_list'back] -let hashMap_remove_s - (#t : Type0) (self : hashMap_s_nes t) (key : usize) : - hashMap_s t = - let len = length self in - let hash = hash_mod_key key len in - let slot = index self hash in - let slot' = hashMap_remove_from_list_s key slot in - list_update self hash slot' - -/// Refinement lemma -val hashMap_remove_back_lem_refin - (#t : Type0) (self : hashMap_t_nes t) (key : usize) : - Lemma - (requires ( - // We need the invariant to prove that upon decrementing the entries counter, - // the counter doesn't become negative - hashMap_t_inv self)) - (ensures ( - match hashMap_remove_back t self key with - | Fail _ -> False - | Return hm' -> - hashMap_t_same_params hm' self /\ - hashMap_t_v hm' == hashMap_remove_s (hashMap_t_v self) key /\ - // The length is decremented iff the key was in the map - (let len = hashMap_t_len_s self in - let len' = hashMap_t_len_s hm' in - match hashMap_t_find_s self key with - | None -> len = len' - | Some _ -> len = len' + 1))) - -let hashMap_remove_back_lem_refin #t self key = - begin match hash_key key with - | Fail _ -> () - | Return i -> - let i0 = self.num_entries in - let p = self.max_load_factor in - let i1 = self.max_load in - let v = self.slots in - let i2 = alloc_vec_Vec_len (list_t t) v in - begin match usize_rem i i2 with - | Fail _ -> () - | Return hash_mod -> - begin match alloc_vec_Vec_index_usize v hash_mod with - | Fail _ -> () - | Return l -> - begin - hashMap_remove_from_list_lem key l; - match hashMap_remove_from_list t key l with - | Fail _ -> () - | Return x -> - begin match x with - | None -> - begin - hashMap_remove_from_list_back_lem_refin key l; - match hashMap_remove_from_list_back t key l with - | Fail _ -> () - | Return l0 -> - begin - length_flatten_update (slots_t_v v) hash_mod (list_t_v l0); - match alloc_vec_Vec_update_usize v hash_mod l0 with - | Fail _ -> () - | Return v0 -> () - end - end - | Some x0 -> - begin - assert(l == index v hash_mod); - assert(length (list_t_v #t l) > 0); - length_flatten_index (hashMap_t_v self) hash_mod; - match usize_sub i0 1 with - | Fail _ -> () - | Return i3 -> - begin - hashMap_remove_from_list_back_lem_refin key l; - match hashMap_remove_from_list_back t key l with - | Fail _ -> () - | Return l0 -> - begin - length_flatten_update (slots_t_v v) hash_mod (list_t_v l0); - match alloc_vec_Vec_update_usize v hash_mod l0 with - | Fail _ -> () - | Return v0 -> () - end - end - end - end - end - end - end - end - -(**** Invariants, high-level properties *) - -val hashMap_remove_from_list_s_lem - (#t : Type0) (k : usize) (slot : slot_s t) (len : usize{len > 0}) (i : usize) : - Lemma - (requires (slot_s_inv len i slot)) - (ensures ( - let slot' = hashMap_remove_from_list_s k slot in - slot_s_inv len i slot' /\ - slot_s_find k slot' == None /\ - (forall (k':key{k' <> k}). slot_s_find k' slot' == slot_s_find k' slot) /\ - // This postcondition is necessary to prove that the invariant is preserved - // in the recursive calls. This allows us to do the proof in one go. - (forall (b:binding t). for_all (binding_neq b) slot ==> for_all (binding_neq b) slot') - )) - -#push-options "--fuel 1" -let rec hashMap_remove_from_list_s_lem #t key slot len i = - match slot with - | [] -> () - | (k',v) :: slot' -> - if k' <> key then - begin - hashMap_remove_from_list_s_lem key slot' len i; - let slot'' = hashMap_remove_from_list_s key slot' in - assert(for_all (same_hash_mod_key len i) ((k',v)::slot'')); - assert(for_all (binding_neq (k',v)) slot'); // Triggers instanciation - assert(for_all (binding_neq (k',v)) slot'') - end - else - begin - assert(for_all (binding_neq (k',v)) slot'); - for_all_binding_neq_find_lem key v slot' - end -#pop-options - -val hashMap_remove_s_lem - (#t : Type0) (self : hashMap_s_nes t) (key : usize) : - Lemma - (requires (hashMap_s_inv self)) - (ensures ( - let hm' = hashMap_remove_s self key in - // The invariant is preserved - hashMap_s_inv hm' /\ - // We updated the binding - hashMap_s_updated_binding self key None hm')) - -let hashMap_remove_s_lem #t self key = - let len = length self in - let hash = hash_mod_key key len in - let slot = index self hash in - hashMap_remove_from_list_s_lem key slot len hash; - let slot' = hashMap_remove_from_list_s key slot in - let hm' = list_update self hash slot' in - assert(hashMap_s_inv self) - -/// Final lemma about [remove'back] -val hashMap_remove_back_lem_aux - (#t : Type0) (self : hashMap_t t) (key : usize) : - Lemma - (requires (hashMap_t_inv self)) - (ensures ( - match hashMap_remove_back t self key with - | Fail _ -> False - | Return hm' -> - hashMap_t_inv self /\ - hashMap_t_same_params hm' self /\ - // We updated the binding - hashMap_s_updated_binding (hashMap_t_v self) key None (hashMap_t_v hm') /\ - hashMap_t_v hm' == hashMap_remove_s (hashMap_t_v self) key /\ - // The length is decremented iff the key was in the map - (let len = hashMap_t_len_s self in - let len' = hashMap_t_len_s hm' in - match hashMap_t_find_s self key with - | None -> len = len' - | Some _ -> len = len' + 1))) - -let hashMap_remove_back_lem_aux #t self key = - hashMap_remove_back_lem_refin self key; - hashMap_remove_s_lem (hashMap_t_v self) key - -/// .fsti -let hashMap_remove_back_lem #t self key = - hashMap_remove_back_lem_aux #t self key diff --git a/tests/fstar-split/hashmap/Hashmap.Properties.fsti b/tests/fstar-split/hashmap/Hashmap.Properties.fsti deleted file mode 100644 index 26c0ec06..00000000 --- a/tests/fstar-split/hashmap/Hashmap.Properties.fsti +++ /dev/null @@ -1,267 +0,0 @@ -(** Properties about the hashmap *) -module Hashmap.Properties -open Primitives -open FStar.List.Tot -open FStar.Mul -open Hashmap.Types -open Hashmap.Clauses -open Hashmap.Funs - -#set-options "--z3rlimit 50 --fuel 0 --ifuel 1" - -// Small trick to align the .fst and the .fsti -val _align_fsti : unit - -(*** Utilities *) - -type key : eqtype = usize - -type hash : eqtype = usize - -val hashMap_t_inv (#t : Type0) (hm : hashMap_t t) : Type0 - -val len_s (#t : Type0) (hm : hashMap_t t) : nat - -val find_s (#t : Type0) (hm : hashMap_t t) (k : key) : option t - -(*** Overloading *) - -/// Upon inserting *new* entries in the hash map, the slots vector is resized -/// whenever we reach the max load, unless we can't resize anymore because -/// there are already too many entries. This way, we maintain performance by -/// limiting the hash collisions. -/// This is expressed by the following property, which is maintained in the hash -/// map invariant. -val hashMap_not_overloaded_lem (#t : Type0) (hm : hashMap_t t) : - Lemma - (requires (hashMap_t_inv hm)) - (ensures ( - // The capacity is the number of slots - let capacity = length hm.slots in - // The max load factor defines a threshold on the number of entries: - // if there are more entries than a given fraction of the number of slots, - // we resize the slots vector to limit the hash collisions - let (dividend, divisor) = hm.max_load_factor in - // technicality: this postcondition won't typecheck if we don't reveal - // that divisor > 0 (because of the division) - divisor > 0 /\ - begin - // The max load, computed as a fraction of the capacity - let max_load = (capacity * dividend) / divisor in - // The number of entries inserted in the map is given by [len_s] (see - // the functional correctness lemmas, which state how this number evolves): - let len = len_s hm in - // We prove that: - // - either the number of entries is <= than the max load threshold - len <= max_load - // - or we couldn't resize the map, because then the arithmetic computations - // would overflow (note that we always multiply the number of slots by 2) - || 2* capacity * dividend > usize_max - end)) - -(*** Functional correctness *) -(**** [new'fwd] *) - -/// [new] doesn't fail and returns an empty hash map -val hashMap_new_lem (t : Type0) : - Lemma - (ensures ( - match hashMap_new t with - | Fail _ -> False - | Return hm -> - // The hash map invariant is satisfied - hashMap_t_inv hm /\ - // The hash map has a length of 0 - len_s hm = 0 /\ - // It contains no bindings - (forall k. find_s hm k == None))) - -(**** [clear] *) - -/// [clear] doesn't fail and turns the hash map into an empty map -val hashMap_clear_lem - (#t : Type0) (self : hashMap_t t) : - Lemma - (requires (hashMap_t_inv self)) - (ensures ( - match hashMap_clear t self with - | Fail _ -> False - | Return hm -> - // The hash map invariant is satisfied - hashMap_t_inv hm /\ - // The hash map has a length of 0 - len_s hm = 0 /\ - // It contains no bindings - (forall k. find_s hm k == None))) - -(**** [len] *) - -/// [len] can't fail and returns the length (the number of elements) of the hash map -val hashMap_len_lem (#t : Type0) (self : hashMap_t t) : - Lemma - (requires (hashMap_t_inv self)) - (ensures ( - match hashMap_len t self with - | Fail _ -> False - | Return l -> l = len_s self)) - - -(**** [insert'fwd_back] *) - -/// The backward function for [insert] (note it is named "...insert'fwd_back" because -/// the forward function doesn't return anything, and was thus filtered - in a -/// sense the effect of applying the forward function then the backward function is -/// entirely encompassed by the effect of the backward function alone). -/// -/// [insert'fwd_back] simply inserts a binding. -val hashMap_insert_lem - (#t : Type0) (self : hashMap_t t) (key : usize) (value : t) : - Lemma - (requires (hashMap_t_inv self)) - (ensures ( - match hashMap_insert t self key value with - | Fail _ -> - // We can fail only if: - // - the key is not in the map and we thus need to add it - None? (find_s self key) /\ - // - and we are already saturated (we can't increment the internal counter) - len_s self = usize_max - | Return hm' -> - // The invariant is preserved - hashMap_t_inv hm' /\ - // [key] maps to [value] - find_s hm' key == Some value /\ - // The other bindings are preserved - (forall k'. k' <> key ==> find_s hm' k' == find_s self k') /\ - begin - // The length is incremented, iff we inserted a new key - match find_s self key with - | None -> len_s hm' = len_s self + 1 - | Some _ -> len_s hm' = len_s self - end)) - - -(**** [contains_key] *) - -/// [contains_key'fwd] can't fail and returns `true` if and only if there is -/// a binding for key [key] -val hashMap_contains_key_lem - (#t : Type0) (self : hashMap_t t) (key : usize) : - Lemma - (requires (hashMap_t_inv self)) - (ensures ( - match hashMap_contains_key t self key with - | Fail _ -> False - | Return b -> b = Some? (find_s self key))) - -(**** [get'fwd] *) - -/// [get] returns (a shared borrow to) the binding for key [key] -val hashMap_get_lem - (#t : Type0) (self : hashMap_t t) (key : usize) : - Lemma - (requires (hashMap_t_inv self)) - (ensures ( - match hashMap_get t self key, find_s self key with - | Fail _, None -> True - | Return x, Some x' -> x == x' - | _ -> False)) - -(**** [get_mut'fwd] *) - -/// [get_mut'fwd] returns (a mutable borrow to) the binding for key [key]. -/// -/// The *forward* function models the action of getting a borrow to an element -/// in Rust, which gives the possibility of modifying this element in place. Then, -/// upon ending the borrow, the effect of the modification is modelled in the -/// translation through a call to the backward function. -val hashMap_get_mut_lem - (#t : Type0) (self : hashMap_t t) (key : usize) : - Lemma - (requires (hashMap_t_inv self)) - (ensures ( - match hashMap_get_mut t self key, find_s self key with - | Fail _, None -> True - | Return x, Some x' -> x == x' - | _ -> False)) - - -(**** [get_mut'back] *) - -/// [get_mut'back] updates the binding for key [key], without failing. -/// A call to [get_mut'back] must follow a call to [get_mut'fwd], which gives -/// us that there must be a binding for key [key] in the map (otherwise we -/// can't prove the absence of failure). -val hashMap_get_mut_back_lem - (#t : Type0) (hm : hashMap_t t) (key : usize) (ret : t) : - Lemma - (requires ( - hashMap_t_inv hm /\ - // A call to the backward function must follow a call to the forward - // function, whose success gives us that there is a binding for the key. - // In the case of *forward* functions, "success" has to be understood as - // the absence of panics. When translating code from Rust to pure lambda - // calculus, we have the property that the generated calls to the backward - // functions can't fail (because their are preceded by calls to forward - // functions, which must then have succeeded before): for a backward function, - // "failure" is to be understood as the semantics getting stuck. - // This is of course true unless we filtered the call to the forward function - // because its effect is encompassed by the backward function, as with - // [hashMap_clear]). - Some? (find_s hm key))) - (ensures ( - match hashMap_get_mut_back t hm key ret with - | Fail _ -> False // Can't fail - | Return hm' -> - // The invariant is preserved - hashMap_t_inv hm' /\ - // The length is preserved - len_s hm' = len_s hm /\ - // [key] maps to the update value, [ret] - find_s hm' key == Some ret /\ - // The other bindings are preserved - (forall k'. k' <> key ==> find_s hm' k' == find_s hm k'))) - -(**** [remove'fwd] *) - -/// [remove'fwd] returns the (optional) element which has been removed from the map -/// (the rust function *moves* it out of the map). Note that the effect of the update -/// on the map is modelles through the call to [remove'back] ([remove] takes a -/// mutable borrow to the hash map as parameter). -val hashMap_remove_lem - (#t : Type0) (self : hashMap_t t) (key : usize) : - Lemma - (requires (hashMap_t_inv self)) - (ensures ( - match hashMap_remove t self key with - | Fail _ -> False - | Return opt_x -> opt_x == find_s self key)) - - -(**** [remove'back] *) - -/// The hash map given as parameter to [remove] is given through a mutable borrow: -/// hence the backward function which gives back the updated map, without the -/// binding. -val hashMap_remove_back_lem - (#t : Type0) (self : hashMap_t t) (key : usize) : - Lemma - (requires (hashMap_t_inv self)) - (ensures ( - match hashMap_remove_back t self key with - | Fail _ -> False - | Return hm' -> - // The invariant is preserved - hashMap_t_inv self /\ - // The binding for [key] is not there anymore - find_s hm' key == None /\ - // The other bindings are preserved - (forall k'. k' <> key ==> find_s hm' k' == find_s self k') /\ - begin - // The length is decremented iff the key was in the map - let len = len_s self in - let len' = len_s hm' in - match find_s self key with - | None -> len = len' - | Some _ -> len = len' + 1 - end)) diff --git a/tests/fstar-split/hashmap/Hashmap.Types.fst b/tests/fstar-split/hashmap/Hashmap.Types.fst deleted file mode 100644 index ef96b1e9..00000000 --- a/tests/fstar-split/hashmap/Hashmap.Types.fst +++ /dev/null @@ -1,23 +0,0 @@ -(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *) -(** [hashmap]: type definitions *) -module Hashmap.Types -open Primitives - -#set-options "--z3rlimit 50 --fuel 1 --ifuel 1" - -(** [hashmap::List] - Source: 'src/hashmap.rs', lines 19:0-19:16 *) -type list_t (t : Type0) = -| List_Cons : usize -> t -> list_t t -> list_t t -| List_Nil : list_t t - -(** [hashmap::HashMap] - Source: 'src/hashmap.rs', lines 35:0-35:21 *) -type hashMap_t (t : Type0) = -{ - num_entries : usize; - max_load_factor : (usize & usize); - max_load : usize; - slots : alloc_vec_Vec (list_t t); -} - diff --git a/tests/fstar-split/hashmap/Makefile b/tests/fstar-split/hashmap/Makefile deleted file mode 100644 index fa7d1f36..00000000 --- a/tests/fstar-split/hashmap/Makefile +++ /dev/null @@ -1,49 +0,0 @@ -# This file was automatically generated - modify ../Makefile.template instead -INCLUDE_DIRS = . - -FSTAR_INCLUDES = $(addprefix --include ,$(INCLUDE_DIRS)) - -FSTAR_HINTS ?= --use_hints --use_hint_hashes --record_hints - -FSTAR_OPTIONS = $(FSTAR_HINTS) \ - --cache_checked_modules $(FSTAR_INCLUDES) --cmi \ - --warn_error '+241@247+285-274' \ - -FSTAR_EXE ?= fstar.exe -FSTAR_NO_FLAGS = $(FSTAR_EXE) --already_cached 'Prims FStar LowStar Steel' --odir obj --cache_dir obj - -FSTAR = $(FSTAR_NO_FLAGS) $(FSTAR_OPTIONS) - -# The F* roots are used to compute the dependency graph, and generate the .depend file -FSTAR_ROOTS ?= $(wildcard *.fst *.fsti) - -# Build all the files -all: $(addprefix obj/,$(addsuffix .checked,$(FSTAR_ROOTS))) - -# This is the right way to ensure the .depend file always gets re-built. -ifeq (,$(filter %-in,$(MAKECMDGOALS))) -ifndef NODEPEND -ifndef MAKE_RESTARTS -.depend: .FORCE - $(FSTAR_NO_FLAGS) --dep full $(notdir $(FSTAR_ROOTS)) > $@ - -.PHONY: .FORCE -.FORCE: -endif -endif - -include .depend -endif - -# For the interactive mode -%.fst-in %.fsti-in: - @echo $(FSTAR_OPTIONS) - -# Generete the .checked files in batch mode -%.checked: - $(FSTAR) $(FSTAR_OPTIONS) $< && \ - touch -c $@ - -.PHONY: clean -clean: - rm -f obj/* diff --git a/tests/fstar-split/hashmap/Primitives.fst b/tests/fstar-split/hashmap/Primitives.fst deleted file mode 100644 index a3ffbde4..00000000 --- a/tests/fstar-split/hashmap/Primitives.fst +++ /dev/null @@ -1,884 +0,0 @@ -/// This file lists primitive and assumed functions and types -module Primitives -open FStar.Mul -open FStar.List.Tot - -#set-options "--z3rlimit 15 --fuel 0 --ifuel 1" - -(*** Utilities *) -val list_update (#a : Type0) (ls : list a) (i : nat{i < length ls}) (x : a) : - ls':list a{ - length ls' = length ls /\ - index ls' i == x - } -#push-options "--fuel 1" -let rec list_update #a ls i x = - match ls with - | x' :: ls -> if i = 0 then x :: ls else x' :: list_update ls (i-1) x -#pop-options - -(*** Result *) -type error : Type0 = -| Failure -| OutOfFuel - -type result (a : Type0) : Type0 = -| Return : v:a -> result a -| Fail : e:error -> result a - -// Monadic return operator -unfold let return (#a : Type0) (x : a) : result a = Return x - -// Monadic bind operator. -// Allows to use the notation: -// ``` -// let* x = y in -// ... -// ``` -unfold let (let*) (#a #b : Type0) (m: result a) - (f: (x:a) -> Pure (result b) (requires (m == Return x)) (ensures fun _ -> True)) : - result b = - match m with - | Return x -> f x - | Fail e -> Fail e - -// Monadic assert(...) -let massert (b:bool) : result unit = if b then Return () else Fail Failure - -// Normalize and unwrap a successful result (used for globals). -let eval_global (#a : Type0) (x : result a{Return? (normalize_term x)}) : a = Return?.v x - -(*** Misc *) -type char = FStar.Char.char -type string = string - -let is_zero (n: nat) : bool = n = 0 -let decrease (n: nat{n > 0}) : nat = n - 1 - -let core_mem_replace (a : Type0) (x : a) (y : a) : a = x -let core_mem_replace_back (a : Type0) (x : a) (y : a) : a = y - -// We don't really use raw pointers for now -type mut_raw_ptr (t : Type0) = { v : t } -type const_raw_ptr (t : Type0) = { v : t } - -(*** Scalars *) -/// Rem.: most of the following code was partially generated - -assume val size_numbits : pos - -// TODO: we could use FStar.Int.int_t and FStar.UInt.int_t - -let isize_min : int = -9223372036854775808 // TODO: should be opaque -let isize_max : int = 9223372036854775807 // TODO: should be opaque -let i8_min : int = -128 -let i8_max : int = 127 -let i16_min : int = -32768 -let i16_max : int = 32767 -let i32_min : int = -2147483648 -let i32_max : int = 2147483647 -let i64_min : int = -9223372036854775808 -let i64_max : int = 9223372036854775807 -let i128_min : int = -170141183460469231731687303715884105728 -let i128_max : int = 170141183460469231731687303715884105727 -let usize_min : int = 0 -let usize_max : int = 4294967295 // TODO: should be opaque -let u8_min : int = 0 -let u8_max : int = 255 -let u16_min : int = 0 -let u16_max : int = 65535 -let u32_min : int = 0 -let u32_max : int = 4294967295 -let u64_min : int = 0 -let u64_max : int = 18446744073709551615 -let u128_min : int = 0 -let u128_max : int = 340282366920938463463374607431768211455 - -type scalar_ty = -| Isize -| I8 -| I16 -| I32 -| I64 -| I128 -| Usize -| U8 -| U16 -| U32 -| U64 -| U128 - -let is_unsigned = function - | Isize | I8 | I16 | I32 | I64 | I128 -> false - | Usize | U8 | U16 | U32 | U64 | U128 -> true - -let scalar_min (ty : scalar_ty) : int = - match ty with - | Isize -> isize_min - | I8 -> i8_min - | I16 -> i16_min - | I32 -> i32_min - | I64 -> i64_min - | I128 -> i128_min - | Usize -> usize_min - | U8 -> u8_min - | U16 -> u16_min - | U32 -> u32_min - | U64 -> u64_min - | U128 -> u128_min - -let scalar_max (ty : scalar_ty) : int = - match ty with - | Isize -> isize_max - | I8 -> i8_max - | I16 -> i16_max - | I32 -> i32_max - | I64 -> i64_max - | I128 -> i128_max - | Usize -> usize_max - | U8 -> u8_max - | U16 -> u16_max - | U32 -> u32_max - | U64 -> u64_max - | U128 -> u128_max - -type scalar (ty : scalar_ty) : eqtype = x:int{scalar_min ty <= x && x <= scalar_max ty} - -let mk_scalar (ty : scalar_ty) (x : int) : result (scalar ty) = - if scalar_min ty <= x && scalar_max ty >= x then Return x else Fail Failure - -let scalar_neg (#ty : scalar_ty) (x : scalar ty) : result (scalar ty) = mk_scalar ty (-x) - -let scalar_div (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - if y <> 0 then mk_scalar ty (x / y) else Fail Failure - -/// The remainder operation -let int_rem (x : int) (y : int{y <> 0}) : int = - if x >= 0 then (x % y) else -(x % y) - -(* Checking consistency with Rust *) -let _ = assert_norm(int_rem 1 2 = 1) -let _ = assert_norm(int_rem (-1) 2 = -1) -let _ = assert_norm(int_rem 1 (-2) = 1) -let _ = assert_norm(int_rem (-1) (-2) = -1) - -let scalar_rem (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - if y <> 0 then mk_scalar ty (int_rem x y) else Fail Failure - -let scalar_add (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - mk_scalar ty (x + y) - -let scalar_sub (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - mk_scalar ty (x - y) - -let scalar_mul (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - mk_scalar ty (x * y) - -let scalar_xor (#ty : scalar_ty) - (x : scalar ty) (y : scalar ty) : scalar ty = - match ty with - | U8 -> FStar.UInt.logxor #8 x y - | U16 -> FStar.UInt.logxor #16 x y - | U32 -> FStar.UInt.logxor #32 x y - | U64 -> FStar.UInt.logxor #64 x y - | U128 -> FStar.UInt.logxor #128 x y - | Usize -> admit() // TODO - | I8 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 8); - normalize_spec (scalar I8); - FStar.Int.logxor #8 x y - | I16 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 16); - normalize_spec (scalar I16); - FStar.Int.logxor #16 x y - | I32 -> FStar.Int.logxor #32 x y - | I64 -> FStar.Int.logxor #64 x y - | I128 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 128); - normalize_spec (scalar I128); - FStar.Int.logxor #128 x y - | Isize -> admit() // TODO - -let scalar_or (#ty : scalar_ty) - (x : scalar ty) (y : scalar ty) : scalar ty = - match ty with - | U8 -> FStar.UInt.logor #8 x y - | U16 -> FStar.UInt.logor #16 x y - | U32 -> FStar.UInt.logor #32 x y - | U64 -> FStar.UInt.logor #64 x y - | U128 -> FStar.UInt.logor #128 x y - | Usize -> admit() // TODO - | I8 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 8); - normalize_spec (scalar I8); - FStar.Int.logor #8 x y - | I16 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 16); - normalize_spec (scalar I16); - FStar.Int.logor #16 x y - | I32 -> FStar.Int.logor #32 x y - | I64 -> FStar.Int.logor #64 x y - | I128 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 128); - normalize_spec (scalar I128); - FStar.Int.logor #128 x y - | Isize -> admit() // TODO - -let scalar_and (#ty : scalar_ty) - (x : scalar ty) (y : scalar ty) : scalar ty = - match ty with - | U8 -> FStar.UInt.logand #8 x y - | U16 -> FStar.UInt.logand #16 x y - | U32 -> FStar.UInt.logand #32 x y - | U64 -> FStar.UInt.logand #64 x y - | U128 -> FStar.UInt.logand #128 x y - | Usize -> admit() // TODO - | I8 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 8); - normalize_spec (scalar I8); - FStar.Int.logand #8 x y - | I16 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 16); - normalize_spec (scalar I16); - FStar.Int.logand #16 x y - | I32 -> FStar.Int.logand #32 x y - | I64 -> FStar.Int.logand #64 x y - | I128 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 128); - normalize_spec (scalar I128); - FStar.Int.logand #128 x y - | Isize -> admit() // TODO - -// Shift left -let scalar_shl (#ty0 #ty1 : scalar_ty) - (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) = - admit() - -// Shift right -let scalar_shr (#ty0 #ty1 : scalar_ty) - (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) = - admit() - -(** Cast an integer from a [src_ty] to a [tgt_ty] *) -// TODO: check the semantics of casts in Rust -let scalar_cast (src_ty : scalar_ty) (tgt_ty : scalar_ty) (x : scalar src_ty) : result (scalar tgt_ty) = - mk_scalar tgt_ty x - -// This can't fail, but for now we make all casts faillible (easier for the translation) -let scalar_cast_bool (tgt_ty : scalar_ty) (x : bool) : result (scalar tgt_ty) = - mk_scalar tgt_ty (if x then 1 else 0) - -/// The scalar types -type isize : eqtype = scalar Isize -type i8 : eqtype = scalar I8 -type i16 : eqtype = scalar I16 -type i32 : eqtype = scalar I32 -type i64 : eqtype = scalar I64 -type i128 : eqtype = scalar I128 -type usize : eqtype = scalar Usize -type u8 : eqtype = scalar U8 -type u16 : eqtype = scalar U16 -type u32 : eqtype = scalar U32 -type u64 : eqtype = scalar U64 -type u128 : eqtype = scalar U128 - - -let core_isize_min : isize = isize_min -let core_isize_max : isize = isize_max -let core_i8_min : i8 = i8_min -let core_i8_max : i8 = i8_max -let core_i16_min : i16 = i16_min -let core_i16_max : i16 = i16_max -let core_i32_min : i32 = i32_min -let core_i32_max : i32 = i32_max -let core_i64_min : i64 = i64_min -let core_i64_max : i64 = i64_max -let core_i128_min : i128 = i128_min -let core_i128_max : i128 = i128_max - -let core_usize_min : usize = usize_min -let core_usize_max : usize = usize_max -let core_u8_min : u8 = u8_min -let core_u8_max : u8 = u8_max -let core_u16_min : u16 = u16_min -let core_u16_max : u16 = u16_max -let core_u32_min : u32 = u32_min -let core_u32_max : u32 = u32_max -let core_u64_min : u64 = u64_min -let core_u64_max : u64 = u64_max -let core_u128_min : u128 = u128_min -let core_u128_max : u128 = u128_max - -/// Negation -let isize_neg = scalar_neg #Isize -let i8_neg = scalar_neg #I8 -let i16_neg = scalar_neg #I16 -let i32_neg = scalar_neg #I32 -let i64_neg = scalar_neg #I64 -let i128_neg = scalar_neg #I128 - -/// Division -let isize_div = scalar_div #Isize -let i8_div = scalar_div #I8 -let i16_div = scalar_div #I16 -let i32_div = scalar_div #I32 -let i64_div = scalar_div #I64 -let i128_div = scalar_div #I128 -let usize_div = scalar_div #Usize -let u8_div = scalar_div #U8 -let u16_div = scalar_div #U16 -let u32_div = scalar_div #U32 -let u64_div = scalar_div #U64 -let u128_div = scalar_div #U128 - -/// Remainder -let isize_rem = scalar_rem #Isize -let i8_rem = scalar_rem #I8 -let i16_rem = scalar_rem #I16 -let i32_rem = scalar_rem #I32 -let i64_rem = scalar_rem #I64 -let i128_rem = scalar_rem #I128 -let usize_rem = scalar_rem #Usize -let u8_rem = scalar_rem #U8 -let u16_rem = scalar_rem #U16 -let u32_rem = scalar_rem #U32 -let u64_rem = scalar_rem #U64 -let u128_rem = scalar_rem #U128 - -/// Addition -let isize_add = scalar_add #Isize -let i8_add = scalar_add #I8 -let i16_add = scalar_add #I16 -let i32_add = scalar_add #I32 -let i64_add = scalar_add #I64 -let i128_add = scalar_add #I128 -let usize_add = scalar_add #Usize -let u8_add = scalar_add #U8 -let u16_add = scalar_add #U16 -let u32_add = scalar_add #U32 -let u64_add = scalar_add #U64 -let u128_add = scalar_add #U128 - -/// Subtraction -let isize_sub = scalar_sub #Isize -let i8_sub = scalar_sub #I8 -let i16_sub = scalar_sub #I16 -let i32_sub = scalar_sub #I32 -let i64_sub = scalar_sub #I64 -let i128_sub = scalar_sub #I128 -let usize_sub = scalar_sub #Usize -let u8_sub = scalar_sub #U8 -let u16_sub = scalar_sub #U16 -let u32_sub = scalar_sub #U32 -let u64_sub = scalar_sub #U64 -let u128_sub = scalar_sub #U128 - -/// Multiplication -let isize_mul = scalar_mul #Isize -let i8_mul = scalar_mul #I8 -let i16_mul = scalar_mul #I16 -let i32_mul = scalar_mul #I32 -let i64_mul = scalar_mul #I64 -let i128_mul = scalar_mul #I128 -let usize_mul = scalar_mul #Usize -let u8_mul = scalar_mul #U8 -let u16_mul = scalar_mul #U16 -let u32_mul = scalar_mul #U32 -let u64_mul = scalar_mul #U64 -let u128_mul = scalar_mul #U128 - -/// Xor -let u8_xor = scalar_xor #U8 -let u16_xor = scalar_xor #U16 -let u32_xor = scalar_xor #U32 -let u64_xor = scalar_xor #U64 -let u128_xor = scalar_xor #U128 -let usize_xor = scalar_xor #Usize -let i8_xor = scalar_xor #I8 -let i16_xor = scalar_xor #I16 -let i32_xor = scalar_xor #I32 -let i64_xor = scalar_xor #I64 -let i128_xor = scalar_xor #I128 -let isize_xor = scalar_xor #Isize - -/// Or -let u8_or = scalar_or #U8 -let u16_or = scalar_or #U16 -let u32_or = scalar_or #U32 -let u64_or = scalar_or #U64 -let u128_or = scalar_or #U128 -let usize_or = scalar_or #Usize -let i8_or = scalar_or #I8 -let i16_or = scalar_or #I16 -let i32_or = scalar_or #I32 -let i64_or = scalar_or #I64 -let i128_or = scalar_or #I128 -let isize_or = scalar_or #Isize - -/// And -let u8_and = scalar_and #U8 -let u16_and = scalar_and #U16 -let u32_and = scalar_and #U32 -let u64_and = scalar_and #U64 -let u128_and = scalar_and #U128 -let usize_and = scalar_and #Usize -let i8_and = scalar_and #I8 -let i16_and = scalar_and #I16 -let i32_and = scalar_and #I32 -let i64_and = scalar_and #I64 -let i128_and = scalar_and #I128 -let isize_and = scalar_and #Isize - -/// Shift left -let u8_shl #ty = scalar_shl #U8 #ty -let u16_shl #ty = scalar_shl #U16 #ty -let u32_shl #ty = scalar_shl #U32 #ty -let u64_shl #ty = scalar_shl #U64 #ty -let u128_shl #ty = scalar_shl #U128 #ty -let usize_shl #ty = scalar_shl #Usize #ty -let i8_shl #ty = scalar_shl #I8 #ty -let i16_shl #ty = scalar_shl #I16 #ty -let i32_shl #ty = scalar_shl #I32 #ty -let i64_shl #ty = scalar_shl #I64 #ty -let i128_shl #ty = scalar_shl #I128 #ty -let isize_shl #ty = scalar_shl #Isize #ty - -/// Shift right -let u8_shr #ty = scalar_shr #U8 #ty -let u16_shr #ty = scalar_shr #U16 #ty -let u32_shr #ty = scalar_shr #U32 #ty -let u64_shr #ty = scalar_shr #U64 #ty -let u128_shr #ty = scalar_shr #U128 #ty -let usize_shr #ty = scalar_shr #Usize #ty -let i8_shr #ty = scalar_shr #I8 #ty -let i16_shr #ty = scalar_shr #I16 #ty -let i32_shr #ty = scalar_shr #I32 #ty -let i64_shr #ty = scalar_shr #I64 #ty -let i128_shr #ty = scalar_shr #I128 #ty -let isize_shr #ty = scalar_shr #Isize #ty - -(*** core::ops *) - -// Trait declaration: [core::ops::index::Index] -noeq type core_ops_index_Index (self idx : Type0) = { - output : Type0; - index : self → idx → result output -} - -// Trait declaration: [core::ops::index::IndexMut] -noeq type core_ops_index_IndexMut (self idx : Type0) = { - indexInst : core_ops_index_Index self idx; - index_mut : self → idx → result indexInst.output; - index_mut_back : self → idx → indexInst.output → result self; -} - -// Trait declaration [core::ops::deref::Deref] -noeq type core_ops_deref_Deref (self : Type0) = { - target : Type0; - deref : self → result target; -} - -// Trait declaration [core::ops::deref::DerefMut] -noeq type core_ops_deref_DerefMut (self : Type0) = { - derefInst : core_ops_deref_Deref self; - deref_mut : self → result derefInst.target; - deref_mut_back : self → derefInst.target → result self; -} - -type core_ops_range_Range (a : Type0) = { - start : a; - end_ : a; -} - -(*** [alloc] *) - -let alloc_boxed_Box_deref (t : Type0) (x : t) : result t = Return x -let alloc_boxed_Box_deref_mut (t : Type0) (x : t) : result t = Return x -let alloc_boxed_Box_deref_mut_back (t : Type) (_ : t) (x : t) : result t = Return x - -// Trait instance -let alloc_boxed_Box_coreopsDerefInst (self : Type0) : core_ops_deref_Deref self = { - target = self; - deref = alloc_boxed_Box_deref self; -} - -// Trait instance -let alloc_boxed_Box_coreopsDerefMutInst (self : Type0) : core_ops_deref_DerefMut self = { - derefInst = alloc_boxed_Box_coreopsDerefInst self; - deref_mut = alloc_boxed_Box_deref_mut self; - deref_mut_back = alloc_boxed_Box_deref_mut_back self; -} - -(*** Array *) -type array (a : Type0) (n : usize) = s:list a{length s = n} - -// We tried putting the normalize_term condition as a refinement on the list -// but it didn't work. It works with the requires clause. -let mk_array (a : Type0) (n : usize) - (l : list a) : - Pure (array a n) - (requires (normalize_term(FStar.List.Tot.length l) = n)) - (ensures (fun _ -> True)) = - normalize_term_spec (FStar.List.Tot.length l); - l - -let array_index_usize (a : Type0) (n : usize) (x : array a n) (i : usize) : result a = - if i < length x then Return (index x i) - else Fail Failure - -let array_update_usize (a : Type0) (n : usize) (x : array a n) (i : usize) (nx : a) : result (array a n) = - if i < length x then Return (list_update x i nx) - else Fail Failure - -(*** Slice *) -type slice (a : Type0) = s:list a{length s <= usize_max} - -let slice_len (a : Type0) (s : slice a) : usize = length s - -let slice_index_usize (a : Type0) (x : slice a) (i : usize) : result a = - if i < length x then Return (index x i) - else Fail Failure - -let slice_update_usize (a : Type0) (x : slice a) (i : usize) (nx : a) : result (slice a) = - if i < length x then Return (list_update x i nx) - else Fail Failure - -(*** Subslices *) - -let array_to_slice (a : Type0) (n : usize) (x : array a n) : result (slice a) = Return x -let array_from_slice (a : Type0) (n : usize) (x : array a n) (s : slice a) : result (array a n) = - if length s = n then Return s - else Fail Failure - -// TODO: finish the definitions below (there lacks [List.drop] and [List.take] in the standard library *) -let array_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) : result (slice a) = - admit() - -let array_update_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) (ns : slice a) : result (array a n) = - admit() - -let array_repeat (a : Type0) (n : usize) (x : a) : array a n = - admit() - -let slice_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) : result (slice a) = - admit() - -let slice_update_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) (ns : slice a) : result (slice a) = - admit() - -(*** Vector *) -type alloc_vec_Vec (a : Type0) = v:list a{length v <= usize_max} - -let alloc_vec_Vec_new (a : Type0) : alloc_vec_Vec a = assert_norm(length #a [] == 0); [] -let alloc_vec_Vec_len (a : Type0) (v : alloc_vec_Vec a) : usize = length v - -// Helper -let alloc_vec_Vec_index_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : result a = - if i < length v then Return (index v i) else Fail Failure -// Helper -let alloc_vec_Vec_update_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) = - if i < length v then Return (list_update v i x) else Fail Failure - -// The **forward** function shouldn't be used -let alloc_vec_Vec_push_fwd (a : Type0) (v : alloc_vec_Vec a) (x : a) : unit = () -let alloc_vec_Vec_push (a : Type0) (v : alloc_vec_Vec a) (x : a) : - Pure (result (alloc_vec_Vec a)) - (requires True) - (ensures (fun res -> - match res with - | Fail e -> e == Failure - | Return v' -> length v' = length v + 1)) = - if length v < usize_max then begin - (**) assert_norm(length [x] == 1); - (**) append_length v [x]; - (**) assert(length (append v [x]) = length v + 1); - Return (append v [x]) - end - else Fail Failure - -// The **forward** function shouldn't be used -let alloc_vec_Vec_insert_fwd (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result unit = - if i < length v then Return () else Fail Failure -let alloc_vec_Vec_insert (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) = - if i < length v then Return (list_update v i x) else Fail Failure - -// Trait declaration: [core::slice::index::private_slice_index::Sealed] -type core_slice_index_private_slice_index_Sealed (self : Type0) = unit - -// Trait declaration: [core::slice::index::SliceIndex] -noeq type core_slice_index_SliceIndex (self t : Type0) = { - sealedInst : core_slice_index_private_slice_index_Sealed self; - output : Type0; - get : self → t → result (option output); - get_mut : self → t → result (option output); - get_mut_back : self → t → option output → result t; - get_unchecked : self → const_raw_ptr t → result (const_raw_ptr output); - get_unchecked_mut : self → mut_raw_ptr t → result (mut_raw_ptr output); - index : self → t → result output; - index_mut : self → t → result output; - index_mut_back : self → t → output → result t; -} - -// [core::slice::index::[T]::index]: forward function -let core_slice_index_Slice_index - (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (s : slice t) (i : idx) : result inst.output = - let* x = inst.get i s in - match x with - | None -> Fail Failure - | Some x -> Return x - -// [core::slice::index::Range:::get]: forward function -let core_slice_index_RangeUsize_get (t : Type0) (i : core_ops_range_Range usize) (s : slice t) : - result (option (slice t)) = - admit () // TODO - -// [core::slice::index::Range::get_mut]: forward function -let core_slice_index_RangeUsize_get_mut - (t : Type0) : core_ops_range_Range usize → slice t → result (option (slice t)) = - admit () // TODO - -// [core::slice::index::Range::get_mut]: backward function 0 -let core_slice_index_RangeUsize_get_mut_back - (t : Type0) : - core_ops_range_Range usize → slice t → option (slice t) → result (slice t) = - admit () // TODO - -// [core::slice::index::Range::get_unchecked]: forward function -let core_slice_index_RangeUsize_get_unchecked - (t : Type0) : - core_ops_range_Range usize → const_raw_ptr (slice t) → result (const_raw_ptr (slice t)) = - // Don't know what the model should be - for now we always fail to make - // sure code which uses it fails - fun _ _ -> Fail Failure - -// [core::slice::index::Range::get_unchecked_mut]: forward function -let core_slice_index_RangeUsize_get_unchecked_mut - (t : Type0) : - core_ops_range_Range usize → mut_raw_ptr (slice t) → result (mut_raw_ptr (slice t)) = - // Don't know what the model should be - for now we always fail to make - // sure code which uses it fails - fun _ _ -> Fail Failure - -// [core::slice::index::Range::index]: forward function -let core_slice_index_RangeUsize_index - (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) = - admit () // TODO - -// [core::slice::index::Range::index_mut]: forward function -let core_slice_index_RangeUsize_index_mut - (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) = - admit () // TODO - -// [core::slice::index::Range::index_mut]: backward function 0 -let core_slice_index_RangeUsize_index_mut_back - (t : Type0) : core_ops_range_Range usize → slice t → slice t → result (slice t) = - admit () // TODO - -// [core::slice::index::[T]::index_mut]: forward function -let core_slice_index_Slice_index_mut - (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) : - slice t → idx → result inst.output = - admit () // - -// [core::slice::index::[T]::index_mut]: backward function 0 -let core_slice_index_Slice_index_mut_back - (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) : - slice t → idx → inst.output → result (slice t) = - admit () // TODO - -// [core::array::[T; N]::index]: forward function -let core_array_Array_index - (t idx : Type0) (n : usize) (inst : core_ops_index_Index (slice t) idx) - (a : array t n) (i : idx) : result inst.output = - admit () // TODO - -// [core::array::[T; N]::index_mut]: forward function -let core_array_Array_index_mut - (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx) - (a : array t n) (i : idx) : result inst.indexInst.output = - admit () // TODO - -// [core::array::[T; N]::index_mut]: backward function 0 -let core_array_Array_index_mut_back - (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx) - (a : array t n) (i : idx) (x : inst.indexInst.output) : result (array t n) = - admit () // TODO - -// Trait implementation: [core::slice::index::private_slice_index::Range] -let core_slice_index_private_slice_index_SealedRangeUsizeInst - : core_slice_index_private_slice_index_Sealed (core_ops_range_Range usize) = () - -// Trait implementation: [core::slice::index::Range] -let core_slice_index_SliceIndexRangeUsizeSliceTInst (t : Type0) : - core_slice_index_SliceIndex (core_ops_range_Range usize) (slice t) = { - sealedInst = core_slice_index_private_slice_index_SealedRangeUsizeInst; - output = slice t; - get = core_slice_index_RangeUsize_get t; - get_mut = core_slice_index_RangeUsize_get_mut t; - get_mut_back = core_slice_index_RangeUsize_get_mut_back t; - get_unchecked = core_slice_index_RangeUsize_get_unchecked t; - get_unchecked_mut = core_slice_index_RangeUsize_get_unchecked_mut t; - index = core_slice_index_RangeUsize_index t; - index_mut = core_slice_index_RangeUsize_index_mut t; - index_mut_back = core_slice_index_RangeUsize_index_mut_back t; -} - -// Trait implementation: [core::slice::index::[T]] -let core_ops_index_IndexSliceTIInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_Index (slice t) idx = { - output = inst.output; - index = core_slice_index_Slice_index t idx inst; -} - -// Trait implementation: [core::slice::index::[T]] -let core_ops_index_IndexMutSliceTIInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_IndexMut (slice t) idx = { - indexInst = core_ops_index_IndexSliceTIInst t idx inst; - index_mut = core_slice_index_Slice_index_mut t idx inst; - index_mut_back = core_slice_index_Slice_index_mut_back t idx inst; -} - -// Trait implementation: [core::array::[T; N]] -let core_ops_index_IndexArrayInst (t idx : Type0) (n : usize) - (inst : core_ops_index_Index (slice t) idx) : - core_ops_index_Index (array t n) idx = { - output = inst.output; - index = core_array_Array_index t idx n inst; -} - -// Trait implementation: [core::array::[T; N]] -let core_ops_index_IndexMutArrayIInst (t idx : Type0) (n : usize) - (inst : core_ops_index_IndexMut (slice t) idx) : - core_ops_index_IndexMut (array t n) idx = { - indexInst = core_ops_index_IndexArrayInst t idx n inst.indexInst; - index_mut = core_array_Array_index_mut t idx n inst; - index_mut_back = core_array_Array_index_mut_back t idx n inst; -} - -// [core::slice::index::usize::get]: forward function -let core_slice_index_usize_get - (t : Type0) : usize → slice t → result (option t) = - admit () // TODO - -// [core::slice::index::usize::get_mut]: forward function -let core_slice_index_usize_get_mut - (t : Type0) : usize → slice t → result (option t) = - admit () // TODO - -// [core::slice::index::usize::get_mut]: backward function 0 -let core_slice_index_usize_get_mut_back - (t : Type0) : usize → slice t → option t → result (slice t) = - admit () // TODO - -// [core::slice::index::usize::get_unchecked]: forward function -let core_slice_index_usize_get_unchecked - (t : Type0) : usize → const_raw_ptr (slice t) → result (const_raw_ptr t) = - admit () // TODO - -// [core::slice::index::usize::get_unchecked_mut]: forward function -let core_slice_index_usize_get_unchecked_mut - (t : Type0) : usize → mut_raw_ptr (slice t) → result (mut_raw_ptr t) = - admit () // TODO - -// [core::slice::index::usize::index]: forward function -let core_slice_index_usize_index (t : Type0) : usize → slice t → result t = - admit () // TODO - -// [core::slice::index::usize::index_mut]: forward function -let core_slice_index_usize_index_mut (t : Type0) : usize → slice t → result t = - admit () // TODO - -// [core::slice::index::usize::index_mut]: backward function 0 -let core_slice_index_usize_index_mut_back - (t : Type0) : usize → slice t → t → result (slice t) = - admit () // TODO - -// Trait implementation: [core::slice::index::private_slice_index::usize] -let core_slice_index_private_slice_index_SealedUsizeInst - : core_slice_index_private_slice_index_Sealed usize = () - -// Trait implementation: [core::slice::index::usize] -let core_slice_index_SliceIndexUsizeSliceTInst (t : Type0) : - core_slice_index_SliceIndex usize (slice t) = { - sealedInst = core_slice_index_private_slice_index_SealedUsizeInst; - output = t; - get = core_slice_index_usize_get t; - get_mut = core_slice_index_usize_get_mut t; - get_mut_back = core_slice_index_usize_get_mut_back t; - get_unchecked = core_slice_index_usize_get_unchecked t; - get_unchecked_mut = core_slice_index_usize_get_unchecked_mut t; - index = core_slice_index_usize_index t; - index_mut = core_slice_index_usize_index_mut t; - index_mut_back = core_slice_index_usize_index_mut_back t; -} - -// [alloc::vec::Vec::index]: forward function -let alloc_vec_Vec_index (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (self : alloc_vec_Vec t) (i : idx) : result inst.output = - admit () // TODO - -// [alloc::vec::Vec::index_mut]: forward function -let alloc_vec_Vec_index_mut (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (self : alloc_vec_Vec t) (i : idx) : result inst.output = - admit () // TODO - -// [alloc::vec::Vec::index_mut]: backward function 0 -let alloc_vec_Vec_index_mut_back - (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (self : alloc_vec_Vec t) (i : idx) (x : inst.output) : result (alloc_vec_Vec t) = - admit () // TODO - -// Trait implementation: [alloc::vec::Vec] -let alloc_vec_Vec_coreopsindexIndexInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_Index (alloc_vec_Vec t) idx = { - output = inst.output; - index = alloc_vec_Vec_index t idx inst; -} - -// Trait implementation: [alloc::vec::Vec] -let alloc_vec_Vec_coreopsindexIndexMutInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_IndexMut (alloc_vec_Vec t) idx = { - indexInst = alloc_vec_Vec_coreopsindexIndexInst t idx inst; - index_mut = alloc_vec_Vec_index_mut t idx inst; - index_mut_back = alloc_vec_Vec_index_mut_back t idx inst; -} - -(*** Theorems *) - -let alloc_vec_Vec_index_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : - Lemma ( - alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i == - alloc_vec_Vec_index_usize v i) - [SMTPat (alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)] - = - admit() - -let alloc_vec_Vec_index_mut_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : - Lemma ( - alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i == - alloc_vec_Vec_index_usize v i) - [SMTPat (alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)] - = - admit() - -let alloc_vec_Vec_index_mut_back_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : - Lemma ( - alloc_vec_Vec_index_mut_back a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i x == - alloc_vec_Vec_update_usize v i x) - [SMTPat (alloc_vec_Vec_index_mut_back a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i x)] - = - admit() diff --git a/tests/fstar-split/hashmap_on_disk/HashmapMain.Clauses.Template.fst b/tests/fstar-split/hashmap_on_disk/HashmapMain.Clauses.Template.fst deleted file mode 100644 index 7b274f59..00000000 --- a/tests/fstar-split/hashmap_on_disk/HashmapMain.Clauses.Template.fst +++ /dev/null @@ -1,72 +0,0 @@ -(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *) -(** [hashmap_main]: templates for the decreases clauses *) -module HashmapMain.Clauses.Template -open Primitives -open HashmapMain.Types - -#set-options "--z3rlimit 50 --fuel 1 --ifuel 1" - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::allocate_slots]: decreases clause - Source: 'src/hashmap.rs', lines 50:4-56:5 *) -unfold -let hashmap_HashMap_allocate_slots_loop_decreases (t : Type0) - (slots : alloc_vec_Vec (hashmap_List_t t)) (n : usize) : nat = - admit () - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::clear]: decreases clause - Source: 'src/hashmap.rs', lines 80:4-88:5 *) -unfold -let hashmap_HashMap_clear_loop_decreases (t : Type0) - (slots : alloc_vec_Vec (hashmap_List_t t)) (i : usize) : nat = - admit () - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::insert_in_list]: decreases clause - Source: 'src/hashmap.rs', lines 97:4-114:5 *) -unfold -let hashmap_HashMap_insert_in_list_loop_decreases (t : Type0) (key : usize) - (value : t) (ls : hashmap_List_t t) : nat = - admit () - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::move_elements_from_list]: decreases clause - Source: 'src/hashmap.rs', lines 183:4-196:5 *) -unfold -let hashmap_HashMap_move_elements_from_list_loop_decreases (t : Type0) - (ntable : hashmap_HashMap_t t) (ls : hashmap_List_t t) : nat = - admit () - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::move_elements]: decreases clause - Source: 'src/hashmap.rs', lines 171:4-180:5 *) -unfold -let hashmap_HashMap_move_elements_loop_decreases (t : Type0) - (ntable : hashmap_HashMap_t t) (slots : alloc_vec_Vec (hashmap_List_t t)) - (i : usize) : nat = - admit () - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::contains_key_in_list]: decreases clause - Source: 'src/hashmap.rs', lines 206:4-219:5 *) -unfold -let hashmap_HashMap_contains_key_in_list_loop_decreases (t : Type0) - (key : usize) (ls : hashmap_List_t t) : nat = - admit () - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::get_in_list]: decreases clause - Source: 'src/hashmap.rs', lines 224:4-237:5 *) -unfold -let hashmap_HashMap_get_in_list_loop_decreases (t : Type0) (key : usize) - (ls : hashmap_List_t t) : nat = - admit () - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::get_mut_in_list]: decreases clause - Source: 'src/hashmap.rs', lines 245:4-254:5 *) -unfold -let hashmap_HashMap_get_mut_in_list_loop_decreases (t : Type0) - (ls : hashmap_List_t t) (key : usize) : nat = - admit () - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::remove_from_list]: decreases clause - Source: 'src/hashmap.rs', lines 265:4-291:5 *) -unfold -let hashmap_HashMap_remove_from_list_loop_decreases (t : Type0) (key : usize) - (ls : hashmap_List_t t) : nat = - admit () - diff --git a/tests/fstar-split/hashmap_on_disk/HashmapMain.Clauses.fst b/tests/fstar-split/hashmap_on_disk/HashmapMain.Clauses.fst deleted file mode 100644 index be5a4ab1..00000000 --- a/tests/fstar-split/hashmap_on_disk/HashmapMain.Clauses.fst +++ /dev/null @@ -1,61 +0,0 @@ -(** [hashmap]: the decreases clauses *) -module HashmapMain.Clauses -open Primitives -open FStar.List.Tot -open HashmapMain.Types - -#set-options "--z3rlimit 50 --fuel 0 --ifuel 1" - -(** [hashmap::HashMap::allocate_slots]: decreases clause *) -unfold -let hashmap_HashMap_allocate_slots_loop_decreases (t : Type0) (slots : alloc_vec_Vec (hashmap_List_t t)) - (n : usize) : nat = n - -(** [hashmap::HashMap::clear]: decreases clause *) -unfold -let hashmap_HashMap_clear_loop_decreases (t : Type0) (slots : alloc_vec_Vec (hashmap_List_t t)) - (i : usize) : nat = - if i < length slots then length slots - i else 0 - -(** [hashmap::HashMap::insert_in_list]: decreases clause *) -unfold -let hashmap_HashMap_insert_in_list_loop_decreases (t : Type0) (key : usize) (value : t) - (ls : hashmap_List_t t) : hashmap_List_t t = - ls - -(** [hashmap::HashMap::move_elements_from_list]: decreases clause *) -unfold -let hashmap_HashMap_move_elements_from_list_loop_decreases (t : Type0) - (ntable : hashmap_HashMap_t t) (ls : hashmap_List_t t) : hashmap_List_t t = - ls - -(** [hashmap::HashMap::move_elements]: decreases clause *) -unfold -let hashmap_HashMap_move_elements_loop_decreases (t : Type0) (ntable : hashmap_HashMap_t t) - (slots : alloc_vec_Vec (hashmap_List_t t)) (i : usize) : nat = - if i < length slots then length slots - i else 0 - -(** [hashmap::HashMap::contains_key_in_list]: decreases clause *) -unfold -let hashmap_HashMap_contains_key_in_list_loop_decreases (t : Type0) (key : usize) - (ls : hashmap_List_t t) : hashmap_List_t t = - ls - -(** [hashmap::HashMap::get_in_list]: decreases clause *) -unfold -let hashmap_HashMap_get_in_list_loop_decreases (t : Type0) (key : usize) (ls : hashmap_List_t t) : - hashmap_List_t t = - ls - -(** [hashmap::HashMap::get_mut_in_list]: decreases clause *) -unfold -let hashmap_HashMap_get_mut_in_list_loop_decreases (t : Type0) - (ls : hashmap_List_t t) (key : usize) : hashmap_List_t t = - ls - -(** [hashmap::HashMap::remove_from_list]: decreases clause *) -unfold -let hashmap_HashMap_remove_from_list_loop_decreases (t : Type0) (key : usize) - (ls : hashmap_List_t t) : hashmap_List_t t = - ls - diff --git a/tests/fstar-split/hashmap_on_disk/HashmapMain.Funs.fst b/tests/fstar-split/hashmap_on_disk/HashmapMain.Funs.fst deleted file mode 100644 index 2e2d54b8..00000000 --- a/tests/fstar-split/hashmap_on_disk/HashmapMain.Funs.fst +++ /dev/null @@ -1,576 +0,0 @@ -(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *) -(** [hashmap_main]: function definitions *) -module HashmapMain.Funs -open Primitives -include HashmapMain.Types -include HashmapMain.FunsExternal -include HashmapMain.Clauses - -#set-options "--z3rlimit 50 --fuel 1 --ifuel 1" - -(** [hashmap_main::hashmap::hash_key]: forward function - Source: 'src/hashmap.rs', lines 27:0-27:32 *) -let hashmap_hash_key (k : usize) : result usize = - Return k - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::allocate_slots]: loop 0: forward function - Source: 'src/hashmap.rs', lines 50:4-56:5 *) -let rec hashmap_HashMap_allocate_slots_loop - (t : Type0) (slots : alloc_vec_Vec (hashmap_List_t t)) (n : usize) : - Tot (result (alloc_vec_Vec (hashmap_List_t t))) - (decreases (hashmap_HashMap_allocate_slots_loop_decreases t slots n)) - = - if n > 0 - then - let* slots1 = alloc_vec_Vec_push (hashmap_List_t t) slots Hashmap_List_Nil - in - let* n1 = usize_sub n 1 in - hashmap_HashMap_allocate_slots_loop t slots1 n1 - else Return slots - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::allocate_slots]: forward function - Source: 'src/hashmap.rs', lines 50:4-50:76 *) -let hashmap_HashMap_allocate_slots - (t : Type0) (slots : alloc_vec_Vec (hashmap_List_t t)) (n : usize) : - result (alloc_vec_Vec (hashmap_List_t t)) - = - hashmap_HashMap_allocate_slots_loop t slots n - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::new_with_capacity]: forward function - Source: 'src/hashmap.rs', lines 59:4-63:13 *) -let hashmap_HashMap_new_with_capacity - (t : Type0) (capacity : usize) (max_load_dividend : usize) - (max_load_divisor : usize) : - result (hashmap_HashMap_t t) - = - let* slots = - hashmap_HashMap_allocate_slots t (alloc_vec_Vec_new (hashmap_List_t t)) - capacity in - let* i = usize_mul capacity max_load_dividend in - let* i1 = usize_div i max_load_divisor in - Return - { - num_entries = 0; - max_load_factor = (max_load_dividend, max_load_divisor); - max_load = i1; - slots = slots - } - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::new]: forward function - Source: 'src/hashmap.rs', lines 75:4-75:24 *) -let hashmap_HashMap_new (t : Type0) : result (hashmap_HashMap_t t) = - hashmap_HashMap_new_with_capacity t 32 4 5 - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::clear]: loop 0: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/hashmap.rs', lines 80:4-88:5 *) -let rec hashmap_HashMap_clear_loop - (t : Type0) (slots : alloc_vec_Vec (hashmap_List_t t)) (i : usize) : - Tot (result (alloc_vec_Vec (hashmap_List_t t))) - (decreases (hashmap_HashMap_clear_loop_decreases t slots i)) - = - let i1 = alloc_vec_Vec_len (hashmap_List_t t) slots in - if i < i1 - then - let* i2 = usize_add i 1 in - let* slots1 = - alloc_vec_Vec_index_mut_back (hashmap_List_t t) usize - (core_slice_index_SliceIndexUsizeSliceTInst (hashmap_List_t t)) slots i - Hashmap_List_Nil in - hashmap_HashMap_clear_loop t slots1 i2 - else Return slots - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::clear]: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/hashmap.rs', lines 80:4-80:27 *) -let hashmap_HashMap_clear - (t : Type0) (self : hashmap_HashMap_t t) : result (hashmap_HashMap_t t) = - let* v = hashmap_HashMap_clear_loop t self.slots 0 in - Return { self with num_entries = 0; slots = v } - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::len]: forward function - Source: 'src/hashmap.rs', lines 90:4-90:30 *) -let hashmap_HashMap_len - (t : Type0) (self : hashmap_HashMap_t t) : result usize = - Return self.num_entries - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::insert_in_list]: loop 0: forward function - Source: 'src/hashmap.rs', lines 97:4-114:5 *) -let rec hashmap_HashMap_insert_in_list_loop - (t : Type0) (key : usize) (value : t) (ls : hashmap_List_t t) : - Tot (result bool) - (decreases (hashmap_HashMap_insert_in_list_loop_decreases t key value ls)) - = - begin match ls with - | Hashmap_List_Cons ckey _ tl -> - if ckey = key - then Return false - else hashmap_HashMap_insert_in_list_loop t key value tl - | Hashmap_List_Nil -> Return true - end - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::insert_in_list]: forward function - Source: 'src/hashmap.rs', lines 97:4-97:71 *) -let hashmap_HashMap_insert_in_list - (t : Type0) (key : usize) (value : t) (ls : hashmap_List_t t) : result bool = - hashmap_HashMap_insert_in_list_loop t key value ls - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::insert_in_list]: loop 0: backward function 0 - Source: 'src/hashmap.rs', lines 97:4-114:5 *) -let rec hashmap_HashMap_insert_in_list_loop_back - (t : Type0) (key : usize) (value : t) (ls : hashmap_List_t t) : - Tot (result (hashmap_List_t t)) - (decreases (hashmap_HashMap_insert_in_list_loop_decreases t key value ls)) - = - begin match ls with - | Hashmap_List_Cons ckey cvalue tl -> - if ckey = key - then Return (Hashmap_List_Cons ckey value tl) - else - let* tl1 = hashmap_HashMap_insert_in_list_loop_back t key value tl in - Return (Hashmap_List_Cons ckey cvalue tl1) - | Hashmap_List_Nil -> Return (Hashmap_List_Cons key value Hashmap_List_Nil) - end - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::insert_in_list]: backward function 0 - Source: 'src/hashmap.rs', lines 97:4-97:71 *) -let hashmap_HashMap_insert_in_list_back - (t : Type0) (key : usize) (value : t) (ls : hashmap_List_t t) : - result (hashmap_List_t t) - = - hashmap_HashMap_insert_in_list_loop_back t key value ls - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::insert_no_resize]: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/hashmap.rs', lines 117:4-117:54 *) -let hashmap_HashMap_insert_no_resize - (t : Type0) (self : hashmap_HashMap_t t) (key : usize) (value : t) : - result (hashmap_HashMap_t t) - = - let* hash = hashmap_hash_key key in - let i = alloc_vec_Vec_len (hashmap_List_t t) self.slots in - let* hash_mod = usize_rem hash i in - let* l = - alloc_vec_Vec_index_mut (hashmap_List_t t) usize - (core_slice_index_SliceIndexUsizeSliceTInst (hashmap_List_t t)) - self.slots hash_mod in - let* inserted = hashmap_HashMap_insert_in_list t key value l in - if inserted - then - let* i1 = usize_add self.num_entries 1 in - let* l1 = hashmap_HashMap_insert_in_list_back t key value l in - let* v = - alloc_vec_Vec_index_mut_back (hashmap_List_t t) usize - (core_slice_index_SliceIndexUsizeSliceTInst (hashmap_List_t t)) - self.slots hash_mod l1 in - Return { self with num_entries = i1; slots = v } - else - let* l1 = hashmap_HashMap_insert_in_list_back t key value l in - let* v = - alloc_vec_Vec_index_mut_back (hashmap_List_t t) usize - (core_slice_index_SliceIndexUsizeSliceTInst (hashmap_List_t t)) - self.slots hash_mod l1 in - Return { self with slots = v } - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::move_elements_from_list]: loop 0: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/hashmap.rs', lines 183:4-196:5 *) -let rec hashmap_HashMap_move_elements_from_list_loop - (t : Type0) (ntable : hashmap_HashMap_t t) (ls : hashmap_List_t t) : - Tot (result (hashmap_HashMap_t t)) - (decreases ( - hashmap_HashMap_move_elements_from_list_loop_decreases t ntable ls)) - = - begin match ls with - | Hashmap_List_Cons k v tl -> - let* ntable1 = hashmap_HashMap_insert_no_resize t ntable k v in - hashmap_HashMap_move_elements_from_list_loop t ntable1 tl - | Hashmap_List_Nil -> Return ntable - end - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::move_elements_from_list]: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/hashmap.rs', lines 183:4-183:72 *) -let hashmap_HashMap_move_elements_from_list - (t : Type0) (ntable : hashmap_HashMap_t t) (ls : hashmap_List_t t) : - result (hashmap_HashMap_t t) - = - hashmap_HashMap_move_elements_from_list_loop t ntable ls - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::move_elements]: loop 0: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/hashmap.rs', lines 171:4-180:5 *) -let rec hashmap_HashMap_move_elements_loop - (t : Type0) (ntable : hashmap_HashMap_t t) - (slots : alloc_vec_Vec (hashmap_List_t t)) (i : usize) : - Tot (result ((hashmap_HashMap_t t) & (alloc_vec_Vec (hashmap_List_t t)))) - (decreases (hashmap_HashMap_move_elements_loop_decreases t ntable slots i)) - = - let i1 = alloc_vec_Vec_len (hashmap_List_t t) slots in - if i < i1 - then - let* l = - alloc_vec_Vec_index_mut (hashmap_List_t t) usize - (core_slice_index_SliceIndexUsizeSliceTInst (hashmap_List_t t)) slots i - in - let ls = core_mem_replace (hashmap_List_t t) l Hashmap_List_Nil in - let* ntable1 = hashmap_HashMap_move_elements_from_list t ntable ls in - let* i2 = usize_add i 1 in - let l1 = core_mem_replace_back (hashmap_List_t t) l Hashmap_List_Nil in - let* slots1 = - alloc_vec_Vec_index_mut_back (hashmap_List_t t) usize - (core_slice_index_SliceIndexUsizeSliceTInst (hashmap_List_t t)) slots i - l1 in - hashmap_HashMap_move_elements_loop t ntable1 slots1 i2 - else Return (ntable, slots) - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::move_elements]: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/hashmap.rs', lines 171:4-171:95 *) -let hashmap_HashMap_move_elements - (t : Type0) (ntable : hashmap_HashMap_t t) - (slots : alloc_vec_Vec (hashmap_List_t t)) (i : usize) : - result ((hashmap_HashMap_t t) & (alloc_vec_Vec (hashmap_List_t t))) - = - hashmap_HashMap_move_elements_loop t ntable slots i - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::try_resize]: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/hashmap.rs', lines 140:4-140:28 *) -let hashmap_HashMap_try_resize - (t : Type0) (self : hashmap_HashMap_t t) : result (hashmap_HashMap_t t) = - let* max_usize = scalar_cast U32 Usize core_u32_max in - let capacity = alloc_vec_Vec_len (hashmap_List_t t) self.slots in - let* n1 = usize_div max_usize 2 in - let (i, i1) = self.max_load_factor in - let* i2 = usize_div n1 i in - if capacity <= i2 - then - let* i3 = usize_mul capacity 2 in - let* ntable = hashmap_HashMap_new_with_capacity t i3 i i1 in - let* (ntable1, _) = hashmap_HashMap_move_elements t ntable self.slots 0 in - Return - { ntable1 with num_entries = self.num_entries; max_load_factor = (i, i1) - } - else Return { self with max_load_factor = (i, i1) } - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::insert]: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/hashmap.rs', lines 129:4-129:48 *) -let hashmap_HashMap_insert - (t : Type0) (self : hashmap_HashMap_t t) (key : usize) (value : t) : - result (hashmap_HashMap_t t) - = - let* self1 = hashmap_HashMap_insert_no_resize t self key value in - let* i = hashmap_HashMap_len t self1 in - if i > self1.max_load - then hashmap_HashMap_try_resize t self1 - else Return self1 - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::contains_key_in_list]: loop 0: forward function - Source: 'src/hashmap.rs', lines 206:4-219:5 *) -let rec hashmap_HashMap_contains_key_in_list_loop - (t : Type0) (key : usize) (ls : hashmap_List_t t) : - Tot (result bool) - (decreases (hashmap_HashMap_contains_key_in_list_loop_decreases t key ls)) - = - begin match ls with - | Hashmap_List_Cons ckey _ tl -> - if ckey = key - then Return true - else hashmap_HashMap_contains_key_in_list_loop t key tl - | Hashmap_List_Nil -> Return false - end - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::contains_key_in_list]: forward function - Source: 'src/hashmap.rs', lines 206:4-206:68 *) -let hashmap_HashMap_contains_key_in_list - (t : Type0) (key : usize) (ls : hashmap_List_t t) : result bool = - hashmap_HashMap_contains_key_in_list_loop t key ls - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::contains_key]: forward function - Source: 'src/hashmap.rs', lines 199:4-199:49 *) -let hashmap_HashMap_contains_key - (t : Type0) (self : hashmap_HashMap_t t) (key : usize) : result bool = - let* hash = hashmap_hash_key key in - let i = alloc_vec_Vec_len (hashmap_List_t t) self.slots in - let* hash_mod = usize_rem hash i in - let* l = - alloc_vec_Vec_index (hashmap_List_t t) usize - (core_slice_index_SliceIndexUsizeSliceTInst (hashmap_List_t t)) - self.slots hash_mod in - hashmap_HashMap_contains_key_in_list t key l - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::get_in_list]: loop 0: forward function - Source: 'src/hashmap.rs', lines 224:4-237:5 *) -let rec hashmap_HashMap_get_in_list_loop - (t : Type0) (key : usize) (ls : hashmap_List_t t) : - Tot (result t) - (decreases (hashmap_HashMap_get_in_list_loop_decreases t key ls)) - = - begin match ls with - | Hashmap_List_Cons ckey cvalue tl -> - if ckey = key - then Return cvalue - else hashmap_HashMap_get_in_list_loop t key tl - | Hashmap_List_Nil -> Fail Failure - end - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::get_in_list]: forward function - Source: 'src/hashmap.rs', lines 224:4-224:70 *) -let hashmap_HashMap_get_in_list - (t : Type0) (key : usize) (ls : hashmap_List_t t) : result t = - hashmap_HashMap_get_in_list_loop t key ls - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::get]: forward function - Source: 'src/hashmap.rs', lines 239:4-239:55 *) -let hashmap_HashMap_get - (t : Type0) (self : hashmap_HashMap_t t) (key : usize) : result t = - let* hash = hashmap_hash_key key in - let i = alloc_vec_Vec_len (hashmap_List_t t) self.slots in - let* hash_mod = usize_rem hash i in - let* l = - alloc_vec_Vec_index (hashmap_List_t t) usize - (core_slice_index_SliceIndexUsizeSliceTInst (hashmap_List_t t)) - self.slots hash_mod in - hashmap_HashMap_get_in_list t key l - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::get_mut_in_list]: loop 0: forward function - Source: 'src/hashmap.rs', lines 245:4-254:5 *) -let rec hashmap_HashMap_get_mut_in_list_loop - (t : Type0) (ls : hashmap_List_t t) (key : usize) : - Tot (result t) - (decreases (hashmap_HashMap_get_mut_in_list_loop_decreases t ls key)) - = - begin match ls with - | Hashmap_List_Cons ckey cvalue tl -> - if ckey = key - then Return cvalue - else hashmap_HashMap_get_mut_in_list_loop t tl key - | Hashmap_List_Nil -> Fail Failure - end - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::get_mut_in_list]: forward function - Source: 'src/hashmap.rs', lines 245:4-245:86 *) -let hashmap_HashMap_get_mut_in_list - (t : Type0) (ls : hashmap_List_t t) (key : usize) : result t = - hashmap_HashMap_get_mut_in_list_loop t ls key - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::get_mut_in_list]: loop 0: backward function 0 - Source: 'src/hashmap.rs', lines 245:4-254:5 *) -let rec hashmap_HashMap_get_mut_in_list_loop_back - (t : Type0) (ls : hashmap_List_t t) (key : usize) (ret : t) : - Tot (result (hashmap_List_t t)) - (decreases (hashmap_HashMap_get_mut_in_list_loop_decreases t ls key)) - = - begin match ls with - | Hashmap_List_Cons ckey cvalue tl -> - if ckey = key - then Return (Hashmap_List_Cons ckey ret tl) - else - let* tl1 = hashmap_HashMap_get_mut_in_list_loop_back t tl key ret in - Return (Hashmap_List_Cons ckey cvalue tl1) - | Hashmap_List_Nil -> Fail Failure - end - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::get_mut_in_list]: backward function 0 - Source: 'src/hashmap.rs', lines 245:4-245:86 *) -let hashmap_HashMap_get_mut_in_list_back - (t : Type0) (ls : hashmap_List_t t) (key : usize) (ret : t) : - result (hashmap_List_t t) - = - hashmap_HashMap_get_mut_in_list_loop_back t ls key ret - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::get_mut]: forward function - Source: 'src/hashmap.rs', lines 257:4-257:67 *) -let hashmap_HashMap_get_mut - (t : Type0) (self : hashmap_HashMap_t t) (key : usize) : result t = - let* hash = hashmap_hash_key key in - let i = alloc_vec_Vec_len (hashmap_List_t t) self.slots in - let* hash_mod = usize_rem hash i in - let* l = - alloc_vec_Vec_index_mut (hashmap_List_t t) usize - (core_slice_index_SliceIndexUsizeSliceTInst (hashmap_List_t t)) - self.slots hash_mod in - hashmap_HashMap_get_mut_in_list t l key - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::get_mut]: backward function 0 - Source: 'src/hashmap.rs', lines 257:4-257:67 *) -let hashmap_HashMap_get_mut_back - (t : Type0) (self : hashmap_HashMap_t t) (key : usize) (ret : t) : - result (hashmap_HashMap_t t) - = - let* hash = hashmap_hash_key key in - let i = alloc_vec_Vec_len (hashmap_List_t t) self.slots in - let* hash_mod = usize_rem hash i in - let* l = - alloc_vec_Vec_index_mut (hashmap_List_t t) usize - (core_slice_index_SliceIndexUsizeSliceTInst (hashmap_List_t t)) - self.slots hash_mod in - let* l1 = hashmap_HashMap_get_mut_in_list_back t l key ret in - let* v = - alloc_vec_Vec_index_mut_back (hashmap_List_t t) usize - (core_slice_index_SliceIndexUsizeSliceTInst (hashmap_List_t t)) - self.slots hash_mod l1 in - Return { self with slots = v } - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::remove_from_list]: loop 0: forward function - Source: 'src/hashmap.rs', lines 265:4-291:5 *) -let rec hashmap_HashMap_remove_from_list_loop - (t : Type0) (key : usize) (ls : hashmap_List_t t) : - Tot (result (option t)) - (decreases (hashmap_HashMap_remove_from_list_loop_decreases t key ls)) - = - begin match ls with - | Hashmap_List_Cons ckey x tl -> - if ckey = key - then - let mv_ls = - core_mem_replace (hashmap_List_t t) (Hashmap_List_Cons ckey x tl) - Hashmap_List_Nil in - begin match mv_ls with - | Hashmap_List_Cons _ cvalue _ -> Return (Some cvalue) - | Hashmap_List_Nil -> Fail Failure - end - else hashmap_HashMap_remove_from_list_loop t key tl - | Hashmap_List_Nil -> Return None - end - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::remove_from_list]: forward function - Source: 'src/hashmap.rs', lines 265:4-265:69 *) -let hashmap_HashMap_remove_from_list - (t : Type0) (key : usize) (ls : hashmap_List_t t) : result (option t) = - hashmap_HashMap_remove_from_list_loop t key ls - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::remove_from_list]: loop 0: backward function 1 - Source: 'src/hashmap.rs', lines 265:4-291:5 *) -let rec hashmap_HashMap_remove_from_list_loop_back - (t : Type0) (key : usize) (ls : hashmap_List_t t) : - Tot (result (hashmap_List_t t)) - (decreases (hashmap_HashMap_remove_from_list_loop_decreases t key ls)) - = - begin match ls with - | Hashmap_List_Cons ckey x tl -> - if ckey = key - then - let mv_ls = - core_mem_replace (hashmap_List_t t) (Hashmap_List_Cons ckey x tl) - Hashmap_List_Nil in - begin match mv_ls with - | Hashmap_List_Cons _ _ tl1 -> Return tl1 - | Hashmap_List_Nil -> Fail Failure - end - else - let* tl1 = hashmap_HashMap_remove_from_list_loop_back t key tl in - Return (Hashmap_List_Cons ckey x tl1) - | Hashmap_List_Nil -> Return Hashmap_List_Nil - end - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::remove_from_list]: backward function 1 - Source: 'src/hashmap.rs', lines 265:4-265:69 *) -let hashmap_HashMap_remove_from_list_back - (t : Type0) (key : usize) (ls : hashmap_List_t t) : - result (hashmap_List_t t) - = - hashmap_HashMap_remove_from_list_loop_back t key ls - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::remove]: forward function - Source: 'src/hashmap.rs', lines 294:4-294:52 *) -let hashmap_HashMap_remove - (t : Type0) (self : hashmap_HashMap_t t) (key : usize) : result (option t) = - let* hash = hashmap_hash_key key in - let i = alloc_vec_Vec_len (hashmap_List_t t) self.slots in - let* hash_mod = usize_rem hash i in - let* l = - alloc_vec_Vec_index_mut (hashmap_List_t t) usize - (core_slice_index_SliceIndexUsizeSliceTInst (hashmap_List_t t)) - self.slots hash_mod in - let* x = hashmap_HashMap_remove_from_list t key l in - begin match x with - | None -> Return None - | Some x1 -> let* _ = usize_sub self.num_entries 1 in Return (Some x1) - end - -(** [hashmap_main::hashmap::{hashmap_main::hashmap::HashMap}::remove]: backward function 0 - Source: 'src/hashmap.rs', lines 294:4-294:52 *) -let hashmap_HashMap_remove_back - (t : Type0) (self : hashmap_HashMap_t t) (key : usize) : - result (hashmap_HashMap_t t) - = - let* hash = hashmap_hash_key key in - let i = alloc_vec_Vec_len (hashmap_List_t t) self.slots in - let* hash_mod = usize_rem hash i in - let* l = - alloc_vec_Vec_index_mut (hashmap_List_t t) usize - (core_slice_index_SliceIndexUsizeSliceTInst (hashmap_List_t t)) - self.slots hash_mod in - let* x = hashmap_HashMap_remove_from_list t key l in - begin match x with - | None -> - let* l1 = hashmap_HashMap_remove_from_list_back t key l in - let* v = - alloc_vec_Vec_index_mut_back (hashmap_List_t t) usize - (core_slice_index_SliceIndexUsizeSliceTInst (hashmap_List_t t)) - self.slots hash_mod l1 in - Return { self with slots = v } - | Some _ -> - let* i1 = usize_sub self.num_entries 1 in - let* l1 = hashmap_HashMap_remove_from_list_back t key l in - let* v = - alloc_vec_Vec_index_mut_back (hashmap_List_t t) usize - (core_slice_index_SliceIndexUsizeSliceTInst (hashmap_List_t t)) - self.slots hash_mod l1 in - Return { self with num_entries = i1; slots = v } - end - -(** [hashmap_main::hashmap::test1]: forward function - Source: 'src/hashmap.rs', lines 315:0-315:10 *) -let hashmap_test1 : result unit = - let* hm = hashmap_HashMap_new u64 in - let* hm1 = hashmap_HashMap_insert u64 hm 0 42 in - let* hm2 = hashmap_HashMap_insert u64 hm1 128 18 in - let* hm3 = hashmap_HashMap_insert u64 hm2 1024 138 in - let* hm4 = hashmap_HashMap_insert u64 hm3 1056 256 in - let* i = hashmap_HashMap_get u64 hm4 128 in - if not (i = 18) - then Fail Failure - else - let* hm5 = hashmap_HashMap_get_mut_back u64 hm4 1024 56 in - let* i1 = hashmap_HashMap_get u64 hm5 1024 in - if not (i1 = 56) - then Fail Failure - else - let* x = hashmap_HashMap_remove u64 hm5 1024 in - begin match x with - | None -> Fail Failure - | Some x1 -> - if not (x1 = 56) - then Fail Failure - else - let* hm6 = hashmap_HashMap_remove_back u64 hm5 1024 in - let* i2 = hashmap_HashMap_get u64 hm6 0 in - if not (i2 = 42) - then Fail Failure - else - let* i3 = hashmap_HashMap_get u64 hm6 128 in - if not (i3 = 18) - then Fail Failure - else - let* i4 = hashmap_HashMap_get u64 hm6 1056 in - if not (i4 = 256) then Fail Failure else Return () - end - -(** [hashmap_main::insert_on_disk]: forward function - Source: 'src/hashmap_main.rs', lines 7:0-7:43 *) -let insert_on_disk - (key : usize) (value : u64) (st : state) : result (state & unit) = - let* (st1, hm) = hashmap_utils_deserialize st in - let* hm1 = hashmap_HashMap_insert u64 hm key value in - let* (st2, _) = hashmap_utils_serialize hm1 st1 in - Return (st2, ()) - -(** [hashmap_main::main]: forward function - Source: 'src/hashmap_main.rs', lines 16:0-16:13 *) -let main : result unit = - Return () - diff --git a/tests/fstar-split/hashmap_on_disk/HashmapMain.FunsExternal.fsti b/tests/fstar-split/hashmap_on_disk/HashmapMain.FunsExternal.fsti deleted file mode 100644 index b00bbcde..00000000 --- a/tests/fstar-split/hashmap_on_disk/HashmapMain.FunsExternal.fsti +++ /dev/null @@ -1,18 +0,0 @@ -(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *) -(** [hashmap_main]: external function declarations *) -module HashmapMain.FunsExternal -open Primitives -include HashmapMain.Types - -#set-options "--z3rlimit 50 --fuel 1 --ifuel 1" - -(** [hashmap_main::hashmap_utils::deserialize]: forward function - Source: 'src/hashmap_utils.rs', lines 10:0-10:43 *) -val hashmap_utils_deserialize - : state -> result (state & (hashmap_HashMap_t u64)) - -(** [hashmap_main::hashmap_utils::serialize]: forward function - Source: 'src/hashmap_utils.rs', lines 5:0-5:42 *) -val hashmap_utils_serialize - : hashmap_HashMap_t u64 -> state -> result (state & unit) - diff --git a/tests/fstar-split/hashmap_on_disk/HashmapMain.Properties.fst b/tests/fstar-split/hashmap_on_disk/HashmapMain.Properties.fst deleted file mode 100644 index 358df29e..00000000 --- a/tests/fstar-split/hashmap_on_disk/HashmapMain.Properties.fst +++ /dev/null @@ -1,48 +0,0 @@ -(** Properties about the hashmap written on disk *) -module HashmapMain.Properties -open Primitives -open HashmapMain.Funs - -#set-options "--z3rlimit 50 --fuel 0 --ifuel 1" - -/// Below, we focus on the functions to read from disk/write to disk to showcase -/// how such reasoning which mixes opaque functions together with a state-error -/// monad can be performed. - -(*** Hypotheses *) - -/// [state_v] gives us the hash map currently stored on disk -assume -val state_v : state -> hashmap_HashMap_t u64 - -/// [serialize] updates the hash map stored on disk -assume -val serialize_lem (hm : hashmap_HashMap_t u64) (st : state) : Lemma ( - match hashmap_utils_serialize hm st with - | Fail _ -> True - | Return (st', ()) -> state_v st' == hm) - [SMTPat (hashmap_utils_serialize hm st)] - -/// [deserialize] gives us the hash map stored on disk, without updating it -assume -val deserialize_lem (st : state) : Lemma ( - match hashmap_utils_deserialize st with - | Fail _ -> True - | Return (st', hm) -> hm == state_v st /\ st' == st) - [SMTPat (hashmap_utils_deserialize st)] - -(*** Lemmas *) - -/// The obvious lemma about [insert_on_disk]: the updated hash map stored on disk -/// is exactly the hash map produced from inserting the binding ([key], [value]) -/// in the hash map previously stored on disk. -val insert_on_disk_lem (key : usize) (value : u64) (st : state) : Lemma ( - match insert_on_disk key value st with - | Fail _ -> True - | Return (st', ()) -> - let hm = state_v st in - match hashmap_HashMap_insert u64 hm key value with - | Fail _ -> False - | Return hm' -> hm' == state_v st') - -let insert_on_disk_lem key value st = () diff --git a/tests/fstar-split/hashmap_on_disk/HashmapMain.Types.fst b/tests/fstar-split/hashmap_on_disk/HashmapMain.Types.fst deleted file mode 100644 index afebcde3..00000000 --- a/tests/fstar-split/hashmap_on_disk/HashmapMain.Types.fst +++ /dev/null @@ -1,24 +0,0 @@ -(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *) -(** [hashmap_main]: type definitions *) -module HashmapMain.Types -open Primitives -include HashmapMain.TypesExternal - -#set-options "--z3rlimit 50 --fuel 1 --ifuel 1" - -(** [hashmap_main::hashmap::List] - Source: 'src/hashmap.rs', lines 19:0-19:16 *) -type hashmap_List_t (t : Type0) = -| Hashmap_List_Cons : usize -> t -> hashmap_List_t t -> hashmap_List_t t -| Hashmap_List_Nil : hashmap_List_t t - -(** [hashmap_main::hashmap::HashMap] - Source: 'src/hashmap.rs', lines 35:0-35:21 *) -type hashmap_HashMap_t (t : Type0) = -{ - num_entries : usize; - max_load_factor : (usize & usize); - max_load : usize; - slots : alloc_vec_Vec (hashmap_List_t t); -} - diff --git a/tests/fstar-split/hashmap_on_disk/HashmapMain.TypesExternal.fsti b/tests/fstar-split/hashmap_on_disk/HashmapMain.TypesExternal.fsti deleted file mode 100644 index 75747408..00000000 --- a/tests/fstar-split/hashmap_on_disk/HashmapMain.TypesExternal.fsti +++ /dev/null @@ -1,10 +0,0 @@ -(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *) -(** [hashmap_main]: external type declarations *) -module HashmapMain.TypesExternal -open Primitives - -#set-options "--z3rlimit 50 --fuel 1 --ifuel 1" - -(** The state type used in the state-error monad *) -val state : Type0 - diff --git a/tests/fstar-split/hashmap_on_disk/Makefile b/tests/fstar-split/hashmap_on_disk/Makefile deleted file mode 100644 index fa7d1f36..00000000 --- a/tests/fstar-split/hashmap_on_disk/Makefile +++ /dev/null @@ -1,49 +0,0 @@ -# This file was automatically generated - modify ../Makefile.template instead -INCLUDE_DIRS = . - -FSTAR_INCLUDES = $(addprefix --include ,$(INCLUDE_DIRS)) - -FSTAR_HINTS ?= --use_hints --use_hint_hashes --record_hints - -FSTAR_OPTIONS = $(FSTAR_HINTS) \ - --cache_checked_modules $(FSTAR_INCLUDES) --cmi \ - --warn_error '+241@247+285-274' \ - -FSTAR_EXE ?= fstar.exe -FSTAR_NO_FLAGS = $(FSTAR_EXE) --already_cached 'Prims FStar LowStar Steel' --odir obj --cache_dir obj - -FSTAR = $(FSTAR_NO_FLAGS) $(FSTAR_OPTIONS) - -# The F* roots are used to compute the dependency graph, and generate the .depend file -FSTAR_ROOTS ?= $(wildcard *.fst *.fsti) - -# Build all the files -all: $(addprefix obj/,$(addsuffix .checked,$(FSTAR_ROOTS))) - -# This is the right way to ensure the .depend file always gets re-built. -ifeq (,$(filter %-in,$(MAKECMDGOALS))) -ifndef NODEPEND -ifndef MAKE_RESTARTS -.depend: .FORCE - $(FSTAR_NO_FLAGS) --dep full $(notdir $(FSTAR_ROOTS)) > $@ - -.PHONY: .FORCE -.FORCE: -endif -endif - -include .depend -endif - -# For the interactive mode -%.fst-in %.fsti-in: - @echo $(FSTAR_OPTIONS) - -# Generete the .checked files in batch mode -%.checked: - $(FSTAR) $(FSTAR_OPTIONS) $< && \ - touch -c $@ - -.PHONY: clean -clean: - rm -f obj/* diff --git a/tests/fstar-split/hashmap_on_disk/Primitives.fst b/tests/fstar-split/hashmap_on_disk/Primitives.fst deleted file mode 100644 index a3ffbde4..00000000 --- a/tests/fstar-split/hashmap_on_disk/Primitives.fst +++ /dev/null @@ -1,884 +0,0 @@ -/// This file lists primitive and assumed functions and types -module Primitives -open FStar.Mul -open FStar.List.Tot - -#set-options "--z3rlimit 15 --fuel 0 --ifuel 1" - -(*** Utilities *) -val list_update (#a : Type0) (ls : list a) (i : nat{i < length ls}) (x : a) : - ls':list a{ - length ls' = length ls /\ - index ls' i == x - } -#push-options "--fuel 1" -let rec list_update #a ls i x = - match ls with - | x' :: ls -> if i = 0 then x :: ls else x' :: list_update ls (i-1) x -#pop-options - -(*** Result *) -type error : Type0 = -| Failure -| OutOfFuel - -type result (a : Type0) : Type0 = -| Return : v:a -> result a -| Fail : e:error -> result a - -// Monadic return operator -unfold let return (#a : Type0) (x : a) : result a = Return x - -// Monadic bind operator. -// Allows to use the notation: -// ``` -// let* x = y in -// ... -// ``` -unfold let (let*) (#a #b : Type0) (m: result a) - (f: (x:a) -> Pure (result b) (requires (m == Return x)) (ensures fun _ -> True)) : - result b = - match m with - | Return x -> f x - | Fail e -> Fail e - -// Monadic assert(...) -let massert (b:bool) : result unit = if b then Return () else Fail Failure - -// Normalize and unwrap a successful result (used for globals). -let eval_global (#a : Type0) (x : result a{Return? (normalize_term x)}) : a = Return?.v x - -(*** Misc *) -type char = FStar.Char.char -type string = string - -let is_zero (n: nat) : bool = n = 0 -let decrease (n: nat{n > 0}) : nat = n - 1 - -let core_mem_replace (a : Type0) (x : a) (y : a) : a = x -let core_mem_replace_back (a : Type0) (x : a) (y : a) : a = y - -// We don't really use raw pointers for now -type mut_raw_ptr (t : Type0) = { v : t } -type const_raw_ptr (t : Type0) = { v : t } - -(*** Scalars *) -/// Rem.: most of the following code was partially generated - -assume val size_numbits : pos - -// TODO: we could use FStar.Int.int_t and FStar.UInt.int_t - -let isize_min : int = -9223372036854775808 // TODO: should be opaque -let isize_max : int = 9223372036854775807 // TODO: should be opaque -let i8_min : int = -128 -let i8_max : int = 127 -let i16_min : int = -32768 -let i16_max : int = 32767 -let i32_min : int = -2147483648 -let i32_max : int = 2147483647 -let i64_min : int = -9223372036854775808 -let i64_max : int = 9223372036854775807 -let i128_min : int = -170141183460469231731687303715884105728 -let i128_max : int = 170141183460469231731687303715884105727 -let usize_min : int = 0 -let usize_max : int = 4294967295 // TODO: should be opaque -let u8_min : int = 0 -let u8_max : int = 255 -let u16_min : int = 0 -let u16_max : int = 65535 -let u32_min : int = 0 -let u32_max : int = 4294967295 -let u64_min : int = 0 -let u64_max : int = 18446744073709551615 -let u128_min : int = 0 -let u128_max : int = 340282366920938463463374607431768211455 - -type scalar_ty = -| Isize -| I8 -| I16 -| I32 -| I64 -| I128 -| Usize -| U8 -| U16 -| U32 -| U64 -| U128 - -let is_unsigned = function - | Isize | I8 | I16 | I32 | I64 | I128 -> false - | Usize | U8 | U16 | U32 | U64 | U128 -> true - -let scalar_min (ty : scalar_ty) : int = - match ty with - | Isize -> isize_min - | I8 -> i8_min - | I16 -> i16_min - | I32 -> i32_min - | I64 -> i64_min - | I128 -> i128_min - | Usize -> usize_min - | U8 -> u8_min - | U16 -> u16_min - | U32 -> u32_min - | U64 -> u64_min - | U128 -> u128_min - -let scalar_max (ty : scalar_ty) : int = - match ty with - | Isize -> isize_max - | I8 -> i8_max - | I16 -> i16_max - | I32 -> i32_max - | I64 -> i64_max - | I128 -> i128_max - | Usize -> usize_max - | U8 -> u8_max - | U16 -> u16_max - | U32 -> u32_max - | U64 -> u64_max - | U128 -> u128_max - -type scalar (ty : scalar_ty) : eqtype = x:int{scalar_min ty <= x && x <= scalar_max ty} - -let mk_scalar (ty : scalar_ty) (x : int) : result (scalar ty) = - if scalar_min ty <= x && scalar_max ty >= x then Return x else Fail Failure - -let scalar_neg (#ty : scalar_ty) (x : scalar ty) : result (scalar ty) = mk_scalar ty (-x) - -let scalar_div (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - if y <> 0 then mk_scalar ty (x / y) else Fail Failure - -/// The remainder operation -let int_rem (x : int) (y : int{y <> 0}) : int = - if x >= 0 then (x % y) else -(x % y) - -(* Checking consistency with Rust *) -let _ = assert_norm(int_rem 1 2 = 1) -let _ = assert_norm(int_rem (-1) 2 = -1) -let _ = assert_norm(int_rem 1 (-2) = 1) -let _ = assert_norm(int_rem (-1) (-2) = -1) - -let scalar_rem (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - if y <> 0 then mk_scalar ty (int_rem x y) else Fail Failure - -let scalar_add (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - mk_scalar ty (x + y) - -let scalar_sub (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - mk_scalar ty (x - y) - -let scalar_mul (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - mk_scalar ty (x * y) - -let scalar_xor (#ty : scalar_ty) - (x : scalar ty) (y : scalar ty) : scalar ty = - match ty with - | U8 -> FStar.UInt.logxor #8 x y - | U16 -> FStar.UInt.logxor #16 x y - | U32 -> FStar.UInt.logxor #32 x y - | U64 -> FStar.UInt.logxor #64 x y - | U128 -> FStar.UInt.logxor #128 x y - | Usize -> admit() // TODO - | I8 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 8); - normalize_spec (scalar I8); - FStar.Int.logxor #8 x y - | I16 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 16); - normalize_spec (scalar I16); - FStar.Int.logxor #16 x y - | I32 -> FStar.Int.logxor #32 x y - | I64 -> FStar.Int.logxor #64 x y - | I128 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 128); - normalize_spec (scalar I128); - FStar.Int.logxor #128 x y - | Isize -> admit() // TODO - -let scalar_or (#ty : scalar_ty) - (x : scalar ty) (y : scalar ty) : scalar ty = - match ty with - | U8 -> FStar.UInt.logor #8 x y - | U16 -> FStar.UInt.logor #16 x y - | U32 -> FStar.UInt.logor #32 x y - | U64 -> FStar.UInt.logor #64 x y - | U128 -> FStar.UInt.logor #128 x y - | Usize -> admit() // TODO - | I8 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 8); - normalize_spec (scalar I8); - FStar.Int.logor #8 x y - | I16 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 16); - normalize_spec (scalar I16); - FStar.Int.logor #16 x y - | I32 -> FStar.Int.logor #32 x y - | I64 -> FStar.Int.logor #64 x y - | I128 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 128); - normalize_spec (scalar I128); - FStar.Int.logor #128 x y - | Isize -> admit() // TODO - -let scalar_and (#ty : scalar_ty) - (x : scalar ty) (y : scalar ty) : scalar ty = - match ty with - | U8 -> FStar.UInt.logand #8 x y - | U16 -> FStar.UInt.logand #16 x y - | U32 -> FStar.UInt.logand #32 x y - | U64 -> FStar.UInt.logand #64 x y - | U128 -> FStar.UInt.logand #128 x y - | Usize -> admit() // TODO - | I8 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 8); - normalize_spec (scalar I8); - FStar.Int.logand #8 x y - | I16 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 16); - normalize_spec (scalar I16); - FStar.Int.logand #16 x y - | I32 -> FStar.Int.logand #32 x y - | I64 -> FStar.Int.logand #64 x y - | I128 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 128); - normalize_spec (scalar I128); - FStar.Int.logand #128 x y - | Isize -> admit() // TODO - -// Shift left -let scalar_shl (#ty0 #ty1 : scalar_ty) - (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) = - admit() - -// Shift right -let scalar_shr (#ty0 #ty1 : scalar_ty) - (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) = - admit() - -(** Cast an integer from a [src_ty] to a [tgt_ty] *) -// TODO: check the semantics of casts in Rust -let scalar_cast (src_ty : scalar_ty) (tgt_ty : scalar_ty) (x : scalar src_ty) : result (scalar tgt_ty) = - mk_scalar tgt_ty x - -// This can't fail, but for now we make all casts faillible (easier for the translation) -let scalar_cast_bool (tgt_ty : scalar_ty) (x : bool) : result (scalar tgt_ty) = - mk_scalar tgt_ty (if x then 1 else 0) - -/// The scalar types -type isize : eqtype = scalar Isize -type i8 : eqtype = scalar I8 -type i16 : eqtype = scalar I16 -type i32 : eqtype = scalar I32 -type i64 : eqtype = scalar I64 -type i128 : eqtype = scalar I128 -type usize : eqtype = scalar Usize -type u8 : eqtype = scalar U8 -type u16 : eqtype = scalar U16 -type u32 : eqtype = scalar U32 -type u64 : eqtype = scalar U64 -type u128 : eqtype = scalar U128 - - -let core_isize_min : isize = isize_min -let core_isize_max : isize = isize_max -let core_i8_min : i8 = i8_min -let core_i8_max : i8 = i8_max -let core_i16_min : i16 = i16_min -let core_i16_max : i16 = i16_max -let core_i32_min : i32 = i32_min -let core_i32_max : i32 = i32_max -let core_i64_min : i64 = i64_min -let core_i64_max : i64 = i64_max -let core_i128_min : i128 = i128_min -let core_i128_max : i128 = i128_max - -let core_usize_min : usize = usize_min -let core_usize_max : usize = usize_max -let core_u8_min : u8 = u8_min -let core_u8_max : u8 = u8_max -let core_u16_min : u16 = u16_min -let core_u16_max : u16 = u16_max -let core_u32_min : u32 = u32_min -let core_u32_max : u32 = u32_max -let core_u64_min : u64 = u64_min -let core_u64_max : u64 = u64_max -let core_u128_min : u128 = u128_min -let core_u128_max : u128 = u128_max - -/// Negation -let isize_neg = scalar_neg #Isize -let i8_neg = scalar_neg #I8 -let i16_neg = scalar_neg #I16 -let i32_neg = scalar_neg #I32 -let i64_neg = scalar_neg #I64 -let i128_neg = scalar_neg #I128 - -/// Division -let isize_div = scalar_div #Isize -let i8_div = scalar_div #I8 -let i16_div = scalar_div #I16 -let i32_div = scalar_div #I32 -let i64_div = scalar_div #I64 -let i128_div = scalar_div #I128 -let usize_div = scalar_div #Usize -let u8_div = scalar_div #U8 -let u16_div = scalar_div #U16 -let u32_div = scalar_div #U32 -let u64_div = scalar_div #U64 -let u128_div = scalar_div #U128 - -/// Remainder -let isize_rem = scalar_rem #Isize -let i8_rem = scalar_rem #I8 -let i16_rem = scalar_rem #I16 -let i32_rem = scalar_rem #I32 -let i64_rem = scalar_rem #I64 -let i128_rem = scalar_rem #I128 -let usize_rem = scalar_rem #Usize -let u8_rem = scalar_rem #U8 -let u16_rem = scalar_rem #U16 -let u32_rem = scalar_rem #U32 -let u64_rem = scalar_rem #U64 -let u128_rem = scalar_rem #U128 - -/// Addition -let isize_add = scalar_add #Isize -let i8_add = scalar_add #I8 -let i16_add = scalar_add #I16 -let i32_add = scalar_add #I32 -let i64_add = scalar_add #I64 -let i128_add = scalar_add #I128 -let usize_add = scalar_add #Usize -let u8_add = scalar_add #U8 -let u16_add = scalar_add #U16 -let u32_add = scalar_add #U32 -let u64_add = scalar_add #U64 -let u128_add = scalar_add #U128 - -/// Subtraction -let isize_sub = scalar_sub #Isize -let i8_sub = scalar_sub #I8 -let i16_sub = scalar_sub #I16 -let i32_sub = scalar_sub #I32 -let i64_sub = scalar_sub #I64 -let i128_sub = scalar_sub #I128 -let usize_sub = scalar_sub #Usize -let u8_sub = scalar_sub #U8 -let u16_sub = scalar_sub #U16 -let u32_sub = scalar_sub #U32 -let u64_sub = scalar_sub #U64 -let u128_sub = scalar_sub #U128 - -/// Multiplication -let isize_mul = scalar_mul #Isize -let i8_mul = scalar_mul #I8 -let i16_mul = scalar_mul #I16 -let i32_mul = scalar_mul #I32 -let i64_mul = scalar_mul #I64 -let i128_mul = scalar_mul #I128 -let usize_mul = scalar_mul #Usize -let u8_mul = scalar_mul #U8 -let u16_mul = scalar_mul #U16 -let u32_mul = scalar_mul #U32 -let u64_mul = scalar_mul #U64 -let u128_mul = scalar_mul #U128 - -/// Xor -let u8_xor = scalar_xor #U8 -let u16_xor = scalar_xor #U16 -let u32_xor = scalar_xor #U32 -let u64_xor = scalar_xor #U64 -let u128_xor = scalar_xor #U128 -let usize_xor = scalar_xor #Usize -let i8_xor = scalar_xor #I8 -let i16_xor = scalar_xor #I16 -let i32_xor = scalar_xor #I32 -let i64_xor = scalar_xor #I64 -let i128_xor = scalar_xor #I128 -let isize_xor = scalar_xor #Isize - -/// Or -let u8_or = scalar_or #U8 -let u16_or = scalar_or #U16 -let u32_or = scalar_or #U32 -let u64_or = scalar_or #U64 -let u128_or = scalar_or #U128 -let usize_or = scalar_or #Usize -let i8_or = scalar_or #I8 -let i16_or = scalar_or #I16 -let i32_or = scalar_or #I32 -let i64_or = scalar_or #I64 -let i128_or = scalar_or #I128 -let isize_or = scalar_or #Isize - -/// And -let u8_and = scalar_and #U8 -let u16_and = scalar_and #U16 -let u32_and = scalar_and #U32 -let u64_and = scalar_and #U64 -let u128_and = scalar_and #U128 -let usize_and = scalar_and #Usize -let i8_and = scalar_and #I8 -let i16_and = scalar_and #I16 -let i32_and = scalar_and #I32 -let i64_and = scalar_and #I64 -let i128_and = scalar_and #I128 -let isize_and = scalar_and #Isize - -/// Shift left -let u8_shl #ty = scalar_shl #U8 #ty -let u16_shl #ty = scalar_shl #U16 #ty -let u32_shl #ty = scalar_shl #U32 #ty -let u64_shl #ty = scalar_shl #U64 #ty -let u128_shl #ty = scalar_shl #U128 #ty -let usize_shl #ty = scalar_shl #Usize #ty -let i8_shl #ty = scalar_shl #I8 #ty -let i16_shl #ty = scalar_shl #I16 #ty -let i32_shl #ty = scalar_shl #I32 #ty -let i64_shl #ty = scalar_shl #I64 #ty -let i128_shl #ty = scalar_shl #I128 #ty -let isize_shl #ty = scalar_shl #Isize #ty - -/// Shift right -let u8_shr #ty = scalar_shr #U8 #ty -let u16_shr #ty = scalar_shr #U16 #ty -let u32_shr #ty = scalar_shr #U32 #ty -let u64_shr #ty = scalar_shr #U64 #ty -let u128_shr #ty = scalar_shr #U128 #ty -let usize_shr #ty = scalar_shr #Usize #ty -let i8_shr #ty = scalar_shr #I8 #ty -let i16_shr #ty = scalar_shr #I16 #ty -let i32_shr #ty = scalar_shr #I32 #ty -let i64_shr #ty = scalar_shr #I64 #ty -let i128_shr #ty = scalar_shr #I128 #ty -let isize_shr #ty = scalar_shr #Isize #ty - -(*** core::ops *) - -// Trait declaration: [core::ops::index::Index] -noeq type core_ops_index_Index (self idx : Type0) = { - output : Type0; - index : self → idx → result output -} - -// Trait declaration: [core::ops::index::IndexMut] -noeq type core_ops_index_IndexMut (self idx : Type0) = { - indexInst : core_ops_index_Index self idx; - index_mut : self → idx → result indexInst.output; - index_mut_back : self → idx → indexInst.output → result self; -} - -// Trait declaration [core::ops::deref::Deref] -noeq type core_ops_deref_Deref (self : Type0) = { - target : Type0; - deref : self → result target; -} - -// Trait declaration [core::ops::deref::DerefMut] -noeq type core_ops_deref_DerefMut (self : Type0) = { - derefInst : core_ops_deref_Deref self; - deref_mut : self → result derefInst.target; - deref_mut_back : self → derefInst.target → result self; -} - -type core_ops_range_Range (a : Type0) = { - start : a; - end_ : a; -} - -(*** [alloc] *) - -let alloc_boxed_Box_deref (t : Type0) (x : t) : result t = Return x -let alloc_boxed_Box_deref_mut (t : Type0) (x : t) : result t = Return x -let alloc_boxed_Box_deref_mut_back (t : Type) (_ : t) (x : t) : result t = Return x - -// Trait instance -let alloc_boxed_Box_coreopsDerefInst (self : Type0) : core_ops_deref_Deref self = { - target = self; - deref = alloc_boxed_Box_deref self; -} - -// Trait instance -let alloc_boxed_Box_coreopsDerefMutInst (self : Type0) : core_ops_deref_DerefMut self = { - derefInst = alloc_boxed_Box_coreopsDerefInst self; - deref_mut = alloc_boxed_Box_deref_mut self; - deref_mut_back = alloc_boxed_Box_deref_mut_back self; -} - -(*** Array *) -type array (a : Type0) (n : usize) = s:list a{length s = n} - -// We tried putting the normalize_term condition as a refinement on the list -// but it didn't work. It works with the requires clause. -let mk_array (a : Type0) (n : usize) - (l : list a) : - Pure (array a n) - (requires (normalize_term(FStar.List.Tot.length l) = n)) - (ensures (fun _ -> True)) = - normalize_term_spec (FStar.List.Tot.length l); - l - -let array_index_usize (a : Type0) (n : usize) (x : array a n) (i : usize) : result a = - if i < length x then Return (index x i) - else Fail Failure - -let array_update_usize (a : Type0) (n : usize) (x : array a n) (i : usize) (nx : a) : result (array a n) = - if i < length x then Return (list_update x i nx) - else Fail Failure - -(*** Slice *) -type slice (a : Type0) = s:list a{length s <= usize_max} - -let slice_len (a : Type0) (s : slice a) : usize = length s - -let slice_index_usize (a : Type0) (x : slice a) (i : usize) : result a = - if i < length x then Return (index x i) - else Fail Failure - -let slice_update_usize (a : Type0) (x : slice a) (i : usize) (nx : a) : result (slice a) = - if i < length x then Return (list_update x i nx) - else Fail Failure - -(*** Subslices *) - -let array_to_slice (a : Type0) (n : usize) (x : array a n) : result (slice a) = Return x -let array_from_slice (a : Type0) (n : usize) (x : array a n) (s : slice a) : result (array a n) = - if length s = n then Return s - else Fail Failure - -// TODO: finish the definitions below (there lacks [List.drop] and [List.take] in the standard library *) -let array_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) : result (slice a) = - admit() - -let array_update_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) (ns : slice a) : result (array a n) = - admit() - -let array_repeat (a : Type0) (n : usize) (x : a) : array a n = - admit() - -let slice_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) : result (slice a) = - admit() - -let slice_update_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) (ns : slice a) : result (slice a) = - admit() - -(*** Vector *) -type alloc_vec_Vec (a : Type0) = v:list a{length v <= usize_max} - -let alloc_vec_Vec_new (a : Type0) : alloc_vec_Vec a = assert_norm(length #a [] == 0); [] -let alloc_vec_Vec_len (a : Type0) (v : alloc_vec_Vec a) : usize = length v - -// Helper -let alloc_vec_Vec_index_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : result a = - if i < length v then Return (index v i) else Fail Failure -// Helper -let alloc_vec_Vec_update_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) = - if i < length v then Return (list_update v i x) else Fail Failure - -// The **forward** function shouldn't be used -let alloc_vec_Vec_push_fwd (a : Type0) (v : alloc_vec_Vec a) (x : a) : unit = () -let alloc_vec_Vec_push (a : Type0) (v : alloc_vec_Vec a) (x : a) : - Pure (result (alloc_vec_Vec a)) - (requires True) - (ensures (fun res -> - match res with - | Fail e -> e == Failure - | Return v' -> length v' = length v + 1)) = - if length v < usize_max then begin - (**) assert_norm(length [x] == 1); - (**) append_length v [x]; - (**) assert(length (append v [x]) = length v + 1); - Return (append v [x]) - end - else Fail Failure - -// The **forward** function shouldn't be used -let alloc_vec_Vec_insert_fwd (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result unit = - if i < length v then Return () else Fail Failure -let alloc_vec_Vec_insert (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) = - if i < length v then Return (list_update v i x) else Fail Failure - -// Trait declaration: [core::slice::index::private_slice_index::Sealed] -type core_slice_index_private_slice_index_Sealed (self : Type0) = unit - -// Trait declaration: [core::slice::index::SliceIndex] -noeq type core_slice_index_SliceIndex (self t : Type0) = { - sealedInst : core_slice_index_private_slice_index_Sealed self; - output : Type0; - get : self → t → result (option output); - get_mut : self → t → result (option output); - get_mut_back : self → t → option output → result t; - get_unchecked : self → const_raw_ptr t → result (const_raw_ptr output); - get_unchecked_mut : self → mut_raw_ptr t → result (mut_raw_ptr output); - index : self → t → result output; - index_mut : self → t → result output; - index_mut_back : self → t → output → result t; -} - -// [core::slice::index::[T]::index]: forward function -let core_slice_index_Slice_index - (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (s : slice t) (i : idx) : result inst.output = - let* x = inst.get i s in - match x with - | None -> Fail Failure - | Some x -> Return x - -// [core::slice::index::Range:::get]: forward function -let core_slice_index_RangeUsize_get (t : Type0) (i : core_ops_range_Range usize) (s : slice t) : - result (option (slice t)) = - admit () // TODO - -// [core::slice::index::Range::get_mut]: forward function -let core_slice_index_RangeUsize_get_mut - (t : Type0) : core_ops_range_Range usize → slice t → result (option (slice t)) = - admit () // TODO - -// [core::slice::index::Range::get_mut]: backward function 0 -let core_slice_index_RangeUsize_get_mut_back - (t : Type0) : - core_ops_range_Range usize → slice t → option (slice t) → result (slice t) = - admit () // TODO - -// [core::slice::index::Range::get_unchecked]: forward function -let core_slice_index_RangeUsize_get_unchecked - (t : Type0) : - core_ops_range_Range usize → const_raw_ptr (slice t) → result (const_raw_ptr (slice t)) = - // Don't know what the model should be - for now we always fail to make - // sure code which uses it fails - fun _ _ -> Fail Failure - -// [core::slice::index::Range::get_unchecked_mut]: forward function -let core_slice_index_RangeUsize_get_unchecked_mut - (t : Type0) : - core_ops_range_Range usize → mut_raw_ptr (slice t) → result (mut_raw_ptr (slice t)) = - // Don't know what the model should be - for now we always fail to make - // sure code which uses it fails - fun _ _ -> Fail Failure - -// [core::slice::index::Range::index]: forward function -let core_slice_index_RangeUsize_index - (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) = - admit () // TODO - -// [core::slice::index::Range::index_mut]: forward function -let core_slice_index_RangeUsize_index_mut - (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) = - admit () // TODO - -// [core::slice::index::Range::index_mut]: backward function 0 -let core_slice_index_RangeUsize_index_mut_back - (t : Type0) : core_ops_range_Range usize → slice t → slice t → result (slice t) = - admit () // TODO - -// [core::slice::index::[T]::index_mut]: forward function -let core_slice_index_Slice_index_mut - (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) : - slice t → idx → result inst.output = - admit () // - -// [core::slice::index::[T]::index_mut]: backward function 0 -let core_slice_index_Slice_index_mut_back - (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) : - slice t → idx → inst.output → result (slice t) = - admit () // TODO - -// [core::array::[T; N]::index]: forward function -let core_array_Array_index - (t idx : Type0) (n : usize) (inst : core_ops_index_Index (slice t) idx) - (a : array t n) (i : idx) : result inst.output = - admit () // TODO - -// [core::array::[T; N]::index_mut]: forward function -let core_array_Array_index_mut - (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx) - (a : array t n) (i : idx) : result inst.indexInst.output = - admit () // TODO - -// [core::array::[T; N]::index_mut]: backward function 0 -let core_array_Array_index_mut_back - (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx) - (a : array t n) (i : idx) (x : inst.indexInst.output) : result (array t n) = - admit () // TODO - -// Trait implementation: [core::slice::index::private_slice_index::Range] -let core_slice_index_private_slice_index_SealedRangeUsizeInst - : core_slice_index_private_slice_index_Sealed (core_ops_range_Range usize) = () - -// Trait implementation: [core::slice::index::Range] -let core_slice_index_SliceIndexRangeUsizeSliceTInst (t : Type0) : - core_slice_index_SliceIndex (core_ops_range_Range usize) (slice t) = { - sealedInst = core_slice_index_private_slice_index_SealedRangeUsizeInst; - output = slice t; - get = core_slice_index_RangeUsize_get t; - get_mut = core_slice_index_RangeUsize_get_mut t; - get_mut_back = core_slice_index_RangeUsize_get_mut_back t; - get_unchecked = core_slice_index_RangeUsize_get_unchecked t; - get_unchecked_mut = core_slice_index_RangeUsize_get_unchecked_mut t; - index = core_slice_index_RangeUsize_index t; - index_mut = core_slice_index_RangeUsize_index_mut t; - index_mut_back = core_slice_index_RangeUsize_index_mut_back t; -} - -// Trait implementation: [core::slice::index::[T]] -let core_ops_index_IndexSliceTIInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_Index (slice t) idx = { - output = inst.output; - index = core_slice_index_Slice_index t idx inst; -} - -// Trait implementation: [core::slice::index::[T]] -let core_ops_index_IndexMutSliceTIInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_IndexMut (slice t) idx = { - indexInst = core_ops_index_IndexSliceTIInst t idx inst; - index_mut = core_slice_index_Slice_index_mut t idx inst; - index_mut_back = core_slice_index_Slice_index_mut_back t idx inst; -} - -// Trait implementation: [core::array::[T; N]] -let core_ops_index_IndexArrayInst (t idx : Type0) (n : usize) - (inst : core_ops_index_Index (slice t) idx) : - core_ops_index_Index (array t n) idx = { - output = inst.output; - index = core_array_Array_index t idx n inst; -} - -// Trait implementation: [core::array::[T; N]] -let core_ops_index_IndexMutArrayIInst (t idx : Type0) (n : usize) - (inst : core_ops_index_IndexMut (slice t) idx) : - core_ops_index_IndexMut (array t n) idx = { - indexInst = core_ops_index_IndexArrayInst t idx n inst.indexInst; - index_mut = core_array_Array_index_mut t idx n inst; - index_mut_back = core_array_Array_index_mut_back t idx n inst; -} - -// [core::slice::index::usize::get]: forward function -let core_slice_index_usize_get - (t : Type0) : usize → slice t → result (option t) = - admit () // TODO - -// [core::slice::index::usize::get_mut]: forward function -let core_slice_index_usize_get_mut - (t : Type0) : usize → slice t → result (option t) = - admit () // TODO - -// [core::slice::index::usize::get_mut]: backward function 0 -let core_slice_index_usize_get_mut_back - (t : Type0) : usize → slice t → option t → result (slice t) = - admit () // TODO - -// [core::slice::index::usize::get_unchecked]: forward function -let core_slice_index_usize_get_unchecked - (t : Type0) : usize → const_raw_ptr (slice t) → result (const_raw_ptr t) = - admit () // TODO - -// [core::slice::index::usize::get_unchecked_mut]: forward function -let core_slice_index_usize_get_unchecked_mut - (t : Type0) : usize → mut_raw_ptr (slice t) → result (mut_raw_ptr t) = - admit () // TODO - -// [core::slice::index::usize::index]: forward function -let core_slice_index_usize_index (t : Type0) : usize → slice t → result t = - admit () // TODO - -// [core::slice::index::usize::index_mut]: forward function -let core_slice_index_usize_index_mut (t : Type0) : usize → slice t → result t = - admit () // TODO - -// [core::slice::index::usize::index_mut]: backward function 0 -let core_slice_index_usize_index_mut_back - (t : Type0) : usize → slice t → t → result (slice t) = - admit () // TODO - -// Trait implementation: [core::slice::index::private_slice_index::usize] -let core_slice_index_private_slice_index_SealedUsizeInst - : core_slice_index_private_slice_index_Sealed usize = () - -// Trait implementation: [core::slice::index::usize] -let core_slice_index_SliceIndexUsizeSliceTInst (t : Type0) : - core_slice_index_SliceIndex usize (slice t) = { - sealedInst = core_slice_index_private_slice_index_SealedUsizeInst; - output = t; - get = core_slice_index_usize_get t; - get_mut = core_slice_index_usize_get_mut t; - get_mut_back = core_slice_index_usize_get_mut_back t; - get_unchecked = core_slice_index_usize_get_unchecked t; - get_unchecked_mut = core_slice_index_usize_get_unchecked_mut t; - index = core_slice_index_usize_index t; - index_mut = core_slice_index_usize_index_mut t; - index_mut_back = core_slice_index_usize_index_mut_back t; -} - -// [alloc::vec::Vec::index]: forward function -let alloc_vec_Vec_index (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (self : alloc_vec_Vec t) (i : idx) : result inst.output = - admit () // TODO - -// [alloc::vec::Vec::index_mut]: forward function -let alloc_vec_Vec_index_mut (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (self : alloc_vec_Vec t) (i : idx) : result inst.output = - admit () // TODO - -// [alloc::vec::Vec::index_mut]: backward function 0 -let alloc_vec_Vec_index_mut_back - (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (self : alloc_vec_Vec t) (i : idx) (x : inst.output) : result (alloc_vec_Vec t) = - admit () // TODO - -// Trait implementation: [alloc::vec::Vec] -let alloc_vec_Vec_coreopsindexIndexInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_Index (alloc_vec_Vec t) idx = { - output = inst.output; - index = alloc_vec_Vec_index t idx inst; -} - -// Trait implementation: [alloc::vec::Vec] -let alloc_vec_Vec_coreopsindexIndexMutInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_IndexMut (alloc_vec_Vec t) idx = { - indexInst = alloc_vec_Vec_coreopsindexIndexInst t idx inst; - index_mut = alloc_vec_Vec_index_mut t idx inst; - index_mut_back = alloc_vec_Vec_index_mut_back t idx inst; -} - -(*** Theorems *) - -let alloc_vec_Vec_index_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : - Lemma ( - alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i == - alloc_vec_Vec_index_usize v i) - [SMTPat (alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)] - = - admit() - -let alloc_vec_Vec_index_mut_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : - Lemma ( - alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i == - alloc_vec_Vec_index_usize v i) - [SMTPat (alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)] - = - admit() - -let alloc_vec_Vec_index_mut_back_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : - Lemma ( - alloc_vec_Vec_index_mut_back a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i x == - alloc_vec_Vec_update_usize v i x) - [SMTPat (alloc_vec_Vec_index_mut_back a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i x)] - = - admit() diff --git a/tests/fstar-split/misc/Bitwise.fst b/tests/fstar-split/misc/Bitwise.fst deleted file mode 100644 index d7ba2c57..00000000 --- a/tests/fstar-split/misc/Bitwise.fst +++ /dev/null @@ -1,32 +0,0 @@ -(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *) -(** [bitwise] *) -module Bitwise -open Primitives - -#set-options "--z3rlimit 50 --fuel 1 --ifuel 1" - -(** [bitwise::shift_u32]: forward function - Source: 'src/bitwise.rs', lines 3:0-3:31 *) -let shift_u32 (a : u32) : result u32 = - let* t = u32_shr #Usize a 16 in u32_shl #Usize t 16 - -(** [bitwise::shift_i32]: forward function - Source: 'src/bitwise.rs', lines 10:0-10:31 *) -let shift_i32 (a : i32) : result i32 = - let* t = i32_shr #Isize a 16 in i32_shl #Isize t 16 - -(** [bitwise::xor_u32]: forward function - Source: 'src/bitwise.rs', lines 17:0-17:37 *) -let xor_u32 (a : u32) (b : u32) : result u32 = - Return (u32_xor a b) - -(** [bitwise::or_u32]: forward function - Source: 'src/bitwise.rs', lines 21:0-21:36 *) -let or_u32 (a : u32) (b : u32) : result u32 = - Return (u32_or a b) - -(** [bitwise::and_u32]: forward function - Source: 'src/bitwise.rs', lines 25:0-25:37 *) -let and_u32 (a : u32) (b : u32) : result u32 = - Return (u32_and a b) - diff --git a/tests/fstar-split/misc/Constants.fst b/tests/fstar-split/misc/Constants.fst deleted file mode 100644 index 7e56cc20..00000000 --- a/tests/fstar-split/misc/Constants.fst +++ /dev/null @@ -1,145 +0,0 @@ -(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *) -(** [constants] *) -module Constants -open Primitives - -#set-options "--z3rlimit 50 --fuel 1 --ifuel 1" - -(** [constants::X0] - Source: 'src/constants.rs', lines 5:0-5:17 *) -let x0_body : result u32 = Return 0 -let x0_c : u32 = eval_global x0_body - -(** [constants::X1] - Source: 'src/constants.rs', lines 7:0-7:17 *) -let x1_body : result u32 = Return core_u32_max -let x1_c : u32 = eval_global x1_body - -(** [constants::X2] - Source: 'src/constants.rs', lines 10:0-10:17 *) -let x2_body : result u32 = Return 3 -let x2_c : u32 = eval_global x2_body - -(** [constants::incr]: forward function - Source: 'src/constants.rs', lines 17:0-17:32 *) -let incr (n : u32) : result u32 = - u32_add n 1 - -(** [constants::X3] - Source: 'src/constants.rs', lines 15:0-15:17 *) -let x3_body : result u32 = incr 32 -let x3_c : u32 = eval_global x3_body - -(** [constants::mk_pair0]: forward function - Source: 'src/constants.rs', lines 23:0-23:51 *) -let mk_pair0 (x : u32) (y : u32) : result (u32 & u32) = - Return (x, y) - -(** [constants::Pair] - Source: 'src/constants.rs', lines 36:0-36:23 *) -type pair_t (t1 t2 : Type0) = { x : t1; y : t2; } - -(** [constants::mk_pair1]: forward function - Source: 'src/constants.rs', lines 27:0-27:55 *) -let mk_pair1 (x : u32) (y : u32) : result (pair_t u32 u32) = - Return { x = x; y = y } - -(** [constants::P0] - Source: 'src/constants.rs', lines 31:0-31:24 *) -let p0_body : result (u32 & u32) = mk_pair0 0 1 -let p0_c : (u32 & u32) = eval_global p0_body - -(** [constants::P1] - Source: 'src/constants.rs', lines 32:0-32:28 *) -let p1_body : result (pair_t u32 u32) = mk_pair1 0 1 -let p1_c : pair_t u32 u32 = eval_global p1_body - -(** [constants::P2] - Source: 'src/constants.rs', lines 33:0-33:24 *) -let p2_body : result (u32 & u32) = Return (0, 1) -let p2_c : (u32 & u32) = eval_global p2_body - -(** [constants::P3] - Source: 'src/constants.rs', lines 34:0-34:28 *) -let p3_body : result (pair_t u32 u32) = Return { x = 0; y = 1 } -let p3_c : pair_t u32 u32 = eval_global p3_body - -(** [constants::Wrap] - Source: 'src/constants.rs', lines 49:0-49:18 *) -type wrap_t (t : Type0) = { value : t; } - -(** [constants::{constants::Wrap}::new]: forward function - Source: 'src/constants.rs', lines 54:4-54:41 *) -let wrap_new (t : Type0) (value : t) : result (wrap_t t) = - Return { value = value } - -(** [constants::Y] - Source: 'src/constants.rs', lines 41:0-41:22 *) -let y_body : result (wrap_t i32) = wrap_new i32 2 -let y_c : wrap_t i32 = eval_global y_body - -(** [constants::unwrap_y]: forward function - Source: 'src/constants.rs', lines 43:0-43:30 *) -let unwrap_y : result i32 = - Return y_c.value - -(** [constants::YVAL] - Source: 'src/constants.rs', lines 47:0-47:19 *) -let yval_body : result i32 = unwrap_y -let yval_c : i32 = eval_global yval_body - -(** [constants::get_z1::Z1] - Source: 'src/constants.rs', lines 62:4-62:17 *) -let get_z1_z1_body : result i32 = Return 3 -let get_z1_z1_c : i32 = eval_global get_z1_z1_body - -(** [constants::get_z1]: forward function - Source: 'src/constants.rs', lines 61:0-61:28 *) -let get_z1 : result i32 = - Return get_z1_z1_c - -(** [constants::add]: forward function - Source: 'src/constants.rs', lines 66:0-66:39 *) -let add (a : i32) (b : i32) : result i32 = - i32_add a b - -(** [constants::Q1] - Source: 'src/constants.rs', lines 74:0-74:17 *) -let q1_body : result i32 = Return 5 -let q1_c : i32 = eval_global q1_body - -(** [constants::Q2] - Source: 'src/constants.rs', lines 75:0-75:17 *) -let q2_body : result i32 = Return q1_c -let q2_c : i32 = eval_global q2_body - -(** [constants::Q3] - Source: 'src/constants.rs', lines 76:0-76:17 *) -let q3_body : result i32 = add q2_c 3 -let q3_c : i32 = eval_global q3_body - -(** [constants::get_z2]: forward function - Source: 'src/constants.rs', lines 70:0-70:28 *) -let get_z2 : result i32 = - let* i = get_z1 in let* i1 = add i q3_c in add q1_c i1 - -(** [constants::S1] - Source: 'src/constants.rs', lines 80:0-80:18 *) -let s1_body : result u32 = Return 6 -let s1_c : u32 = eval_global s1_body - -(** [constants::S2] - Source: 'src/constants.rs', lines 81:0-81:18 *) -let s2_body : result u32 = incr s1_c -let s2_c : u32 = eval_global s2_body - -(** [constants::S3] - Source: 'src/constants.rs', lines 82:0-82:29 *) -let s3_body : result (pair_t u32 u32) = Return p3_c -let s3_c : pair_t u32 u32 = eval_global s3_body - -(** [constants::S4] - Source: 'src/constants.rs', lines 83:0-83:29 *) -let s4_body : result (pair_t u32 u32) = mk_pair1 7 8 -let s4_c : pair_t u32 u32 = eval_global s4_body - diff --git a/tests/fstar-split/misc/External.Funs.fst b/tests/fstar-split/misc/External.Funs.fst deleted file mode 100644 index 65382549..00000000 --- a/tests/fstar-split/misc/External.Funs.fst +++ /dev/null @@ -1,82 +0,0 @@ -(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *) -(** [external]: function definitions *) -module External.Funs -open Primitives -include External.Types -include External.FunsExternal - -#set-options "--z3rlimit 50 --fuel 1 --ifuel 1" - -(** [external::swap]: forward function - Source: 'src/external.rs', lines 6:0-6:46 *) -let swap (t : Type0) (x : t) (y : t) (st : state) : result (state & unit) = - let* (st1, _) = core_mem_swap t x y st in - let* (st2, _) = core_mem_swap_back0 t x y st st1 in - let* (st3, _) = core_mem_swap_back1 t x y st st2 in - Return (st3, ()) - -(** [external::swap]: backward function 0 - Source: 'src/external.rs', lines 6:0-6:46 *) -let swap_back - (t : Type0) (x : t) (y : t) (st : state) (st1 : state) : - result (state & (t & t)) - = - let* (st2, _) = core_mem_swap t x y st in - let* (st3, x1) = core_mem_swap_back0 t x y st st2 in - let* (_, y1) = core_mem_swap_back1 t x y st st3 in - Return (st1, (x1, y1)) - -(** [external::test_new_non_zero_u32]: forward function - Source: 'src/external.rs', lines 11:0-11:60 *) -let test_new_non_zero_u32 - (x : u32) (st : state) : result (state & core_num_nonzero_NonZeroU32_t) = - let* (st1, o) = core_num_nonzero_NonZeroU32_new x st in - core_option_Option_unwrap core_num_nonzero_NonZeroU32_t o st1 - -(** [external::test_vec]: forward function - Source: 'src/external.rs', lines 17:0-17:17 *) -let test_vec : result unit = - let* _ = alloc_vec_Vec_push u32 (alloc_vec_Vec_new u32) 0 in Return () - -(** Unit test for [external::test_vec] *) -let _ = assert_norm (test_vec = Return ()) - -(** [external::custom_swap]: forward function - Source: 'src/external.rs', lines 24:0-24:66 *) -let custom_swap (t : Type0) (x : t) (y : t) (st : state) : result (state & t) = - let* (st1, _) = core_mem_swap t x y st in - let* (st2, x1) = core_mem_swap_back0 t x y st st1 in - let* (st3, _) = core_mem_swap_back1 t x y st st2 in - Return (st3, x1) - -(** [external::custom_swap]: backward function 0 - Source: 'src/external.rs', lines 24:0-24:66 *) -let custom_swap_back - (t : Type0) (x : t) (y : t) (st : state) (ret : t) (st1 : state) : - result (state & (t & t)) - = - let* (st2, _) = core_mem_swap t x y st in - let* (st3, _) = core_mem_swap_back0 t x y st st2 in - let* (_, y1) = core_mem_swap_back1 t x y st st3 in - Return (st1, (ret, y1)) - -(** [external::test_custom_swap]: forward function - Source: 'src/external.rs', lines 29:0-29:59 *) -let test_custom_swap (x : u32) (y : u32) (st : state) : result (state & unit) = - let* (st1, _) = custom_swap u32 x y st in Return (st1, ()) - -(** [external::test_custom_swap]: backward function 0 - Source: 'src/external.rs', lines 29:0-29:59 *) -let test_custom_swap_back - (x : u32) (y : u32) (st : state) (st1 : state) : - result (state & (u32 & u32)) - = - custom_swap_back u32 x y st 1 st1 - -(** [external::test_swap_non_zero]: forward function - Source: 'src/external.rs', lines 35:0-35:44 *) -let test_swap_non_zero (x : u32) (st : state) : result (state & u32) = - let* (st1, _) = swap u32 x 0 st in - let* (st2, (x1, _)) = swap_back u32 x 0 st st1 in - if x1 = 0 then Fail Failure else Return (st2, x1) - diff --git a/tests/fstar-split/misc/External.FunsExternal.fsti b/tests/fstar-split/misc/External.FunsExternal.fsti deleted file mode 100644 index 923a1101..00000000 --- a/tests/fstar-split/misc/External.FunsExternal.fsti +++ /dev/null @@ -1,32 +0,0 @@ -(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *) -(** [external]: external function declarations *) -module External.FunsExternal -open Primitives -include External.Types - -#set-options "--z3rlimit 50 --fuel 1 --ifuel 1" - -(** [core::mem::swap]: forward function - Source: '/rustc/d59363ad0b6391b7fc5bbb02c9ccf9300eef3753/library/core/src/mem/mod.rs', lines 726:0-726:42 *) -val core_mem_swap (t : Type0) : t -> t -> state -> result (state & unit) - -(** [core::mem::swap]: backward function 0 - Source: '/rustc/d59363ad0b6391b7fc5bbb02c9ccf9300eef3753/library/core/src/mem/mod.rs', lines 726:0-726:42 *) -val core_mem_swap_back0 - (t : Type0) : t -> t -> state -> state -> result (state & t) - -(** [core::mem::swap]: backward function 1 - Source: '/rustc/d59363ad0b6391b7fc5bbb02c9ccf9300eef3753/library/core/src/mem/mod.rs', lines 726:0-726:42 *) -val core_mem_swap_back1 - (t : Type0) : t -> t -> state -> state -> result (state & t) - -(** [core::num::nonzero::{core::num::nonzero::NonZeroU32#14}::new]: forward function - Source: '/rustc/d59363ad0b6391b7fc5bbb02c9ccf9300eef3753/library/core/src/num/nonzero.rs', lines 79:16-79:57 *) -val core_num_nonzero_NonZeroU32_new - : u32 -> state -> result (state & (option core_num_nonzero_NonZeroU32_t)) - -(** [core::option::{core::option::Option}::unwrap]: forward function - Source: '/rustc/d59363ad0b6391b7fc5bbb02c9ccf9300eef3753/library/core/src/option.rs', lines 932:4-932:34 *) -val core_option_Option_unwrap - (t : Type0) : option t -> state -> result (state & t) - diff --git a/tests/fstar-split/misc/External.Types.fst b/tests/fstar-split/misc/External.Types.fst deleted file mode 100644 index 4fbcec47..00000000 --- a/tests/fstar-split/misc/External.Types.fst +++ /dev/null @@ -1,8 +0,0 @@ -(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *) -(** [external]: type definitions *) -module External.Types -open Primitives -include External.TypesExternal - -#set-options "--z3rlimit 50 --fuel 1 --ifuel 1" - diff --git a/tests/fstar-split/misc/External.TypesExternal.fsti b/tests/fstar-split/misc/External.TypesExternal.fsti deleted file mode 100644 index 4bfbe0c5..00000000 --- a/tests/fstar-split/misc/External.TypesExternal.fsti +++ /dev/null @@ -1,14 +0,0 @@ -(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *) -(** [external]: external type declarations *) -module External.TypesExternal -open Primitives - -#set-options "--z3rlimit 50 --fuel 1 --ifuel 1" - -(** [core::num::nonzero::NonZeroU32] - Source: '/rustc/d59363ad0b6391b7fc5bbb02c9ccf9300eef3753/library/core/src/num/nonzero.rs', lines 50:12-50:33 *) -val core_num_nonzero_NonZeroU32_t : Type0 - -(** The state type used in the state-error monad *) -val state : Type0 - diff --git a/tests/fstar-split/misc/Loops.Clauses.Template.fst b/tests/fstar-split/misc/Loops.Clauses.Template.fst deleted file mode 100644 index 244761d3..00000000 --- a/tests/fstar-split/misc/Loops.Clauses.Template.fst +++ /dev/null @@ -1,138 +0,0 @@ -(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *) -(** [loops]: templates for the decreases clauses *) -module Loops.Clauses.Template -open Primitives -open Loops.Types - -#set-options "--z3rlimit 50 --fuel 1 --ifuel 1" - -(** [loops::sum]: decreases clause - Source: 'src/loops.rs', lines 4:0-14:1 *) -unfold let sum_loop_decreases (max : u32) (i : u32) (s : u32) : nat = admit () - -(** [loops::sum_with_mut_borrows]: decreases clause - Source: 'src/loops.rs', lines 19:0-31:1 *) -unfold -let sum_with_mut_borrows_loop_decreases (max : u32) (mi : u32) (ms : u32) : nat - = - admit () - -(** [loops::sum_with_shared_borrows]: decreases clause - Source: 'src/loops.rs', lines 34:0-48:1 *) -unfold -let sum_with_shared_borrows_loop_decreases (max : u32) (i : u32) (s : u32) : - nat = - admit () - -(** [loops::sum_array]: decreases clause - Source: 'src/loops.rs', lines 50:0-58:1 *) -unfold -let sum_array_loop_decreases (n : usize) (a : array u32 n) (i : usize) - (s : u32) : nat = - admit () - -(** [loops::clear]: decreases clause - Source: 'src/loops.rs', lines 62:0-68:1 *) -unfold -let clear_loop_decreases (v : alloc_vec_Vec u32) (i : usize) : nat = admit () - -(** [loops::list_mem]: decreases clause - Source: 'src/loops.rs', lines 76:0-85:1 *) -unfold let list_mem_loop_decreases (x : u32) (ls : list_t u32) : nat = admit () - -(** [loops::list_nth_mut_loop]: decreases clause - Source: 'src/loops.rs', lines 88:0-98:1 *) -unfold -let list_nth_mut_loop_loop_decreases (t : Type0) (ls : list_t t) (i : u32) : - nat = - admit () - -(** [loops::list_nth_shared_loop]: decreases clause - Source: 'src/loops.rs', lines 101:0-111:1 *) -unfold -let list_nth_shared_loop_loop_decreases (t : Type0) (ls : list_t t) (i : u32) : - nat = - admit () - -(** [loops::get_elem_mut]: decreases clause - Source: 'src/loops.rs', lines 113:0-127:1 *) -unfold -let get_elem_mut_loop_decreases (x : usize) (ls : list_t usize) : nat = - admit () - -(** [loops::get_elem_shared]: decreases clause - Source: 'src/loops.rs', lines 129:0-143:1 *) -unfold -let get_elem_shared_loop_decreases (x : usize) (ls : list_t usize) : nat = - admit () - -(** [loops::list_nth_mut_loop_with_id]: decreases clause - Source: 'src/loops.rs', lines 154:0-165:1 *) -unfold -let list_nth_mut_loop_with_id_loop_decreases (t : Type0) (i : u32) - (ls : list_t t) : nat = - admit () - -(** [loops::list_nth_shared_loop_with_id]: decreases clause - Source: 'src/loops.rs', lines 168:0-179:1 *) -unfold -let list_nth_shared_loop_with_id_loop_decreases (t : Type0) (i : u32) - (ls : list_t t) : nat = - admit () - -(** [loops::list_nth_mut_loop_pair]: decreases clause - Source: 'src/loops.rs', lines 184:0-205:1 *) -unfold -let list_nth_mut_loop_pair_loop_decreases (t : Type0) (ls0 : list_t t) - (ls1 : list_t t) (i : u32) : nat = - admit () - -(** [loops::list_nth_shared_loop_pair]: decreases clause - Source: 'src/loops.rs', lines 208:0-229:1 *) -unfold -let list_nth_shared_loop_pair_loop_decreases (t : Type0) (ls0 : list_t t) - (ls1 : list_t t) (i : u32) : nat = - admit () - -(** [loops::list_nth_mut_loop_pair_merge]: decreases clause - Source: 'src/loops.rs', lines 233:0-248:1 *) -unfold -let list_nth_mut_loop_pair_merge_loop_decreases (t : Type0) (ls0 : list_t t) - (ls1 : list_t t) (i : u32) : nat = - admit () - -(** [loops::list_nth_shared_loop_pair_merge]: decreases clause - Source: 'src/loops.rs', lines 251:0-266:1 *) -unfold -let list_nth_shared_loop_pair_merge_loop_decreases (t : Type0) (ls0 : list_t t) - (ls1 : list_t t) (i : u32) : nat = - admit () - -(** [loops::list_nth_mut_shared_loop_pair]: decreases clause - Source: 'src/loops.rs', lines 269:0-284:1 *) -unfold -let list_nth_mut_shared_loop_pair_loop_decreases (t : Type0) (ls0 : list_t t) - (ls1 : list_t t) (i : u32) : nat = - admit () - -(** [loops::list_nth_mut_shared_loop_pair_merge]: decreases clause - Source: 'src/loops.rs', lines 288:0-303:1 *) -unfold -let list_nth_mut_shared_loop_pair_merge_loop_decreases (t : Type0) - (ls0 : list_t t) (ls1 : list_t t) (i : u32) : nat = - admit () - -(** [loops::list_nth_shared_mut_loop_pair]: decreases clause - Source: 'src/loops.rs', lines 307:0-322:1 *) -unfold -let list_nth_shared_mut_loop_pair_loop_decreases (t : Type0) (ls0 : list_t t) - (ls1 : list_t t) (i : u32) : nat = - admit () - -(** [loops::list_nth_shared_mut_loop_pair_merge]: decreases clause - Source: 'src/loops.rs', lines 326:0-341:1 *) -unfold -let list_nth_shared_mut_loop_pair_merge_loop_decreases (t : Type0) - (ls0 : list_t t) (ls1 : list_t t) (i : u32) : nat = - admit () - diff --git a/tests/fstar-split/misc/Loops.Clauses.fst b/tests/fstar-split/misc/Loops.Clauses.fst deleted file mode 100644 index 13f5513d..00000000 --- a/tests/fstar-split/misc/Loops.Clauses.fst +++ /dev/null @@ -1,112 +0,0 @@ -(** [loops]: templates for the decreases clauses *) -module Loops.Clauses -open Primitives -open Loops.Types - -#set-options "--z3rlimit 50 --fuel 1 --ifuel 1" - -(** [loops::sum]: decreases clause *) -unfold let sum_loop_decreases (max : u32) (i : u32) (s : u32) : nat = - if i <= max then max - i else 0 - -(** [loops::sum_with_mut_borrows]: decreases clause *) -unfold -let sum_with_mut_borrows_loop_decreases (max : u32) (mi : u32) (ms : u32) : nat = - if max >= mi then max - mi else 0 - -(** [loops::sum_with_shared_borrows]: decreases clause *) -unfold -let sum_with_shared_borrows_loop_decreases (max : u32) (i : u32) (s : u32) : nat = - if max >= i then max - i else 0 - -(** [loops::sum_array]: decreases clause *) -unfold -let sum_array_loop_decreases (n : usize) (_ : array u32 n) (i : usize) (_ : u32) : nat = - if n >= i then n - i else 0 - -(** [loops::clear]: decreases clause *) -unfold let clear_loop_decreases (v : alloc_vec_Vec u32) (i : usize) : nat = - if i <= List.Tot.length v then List.Tot.length v - i else 0 - -(** [loops::list_mem]: decreases clause *) -unfold let list_mem_loop_decreases (i : u32) (ls : list_t u32) : list_t u32 = - ls - -(** [loops::list_nth_mut_loop]: decreases clause *) -unfold -let list_nth_mut_loop_loop_decreases (t : Type0) (ls : list_t t) (i : u32) : nat = - i - -(** [loops::list_nth_shared_loop]: decreases clause *) -unfold -let list_nth_shared_loop_loop_decreases (t : Type0) (ls : list_t t) (i : u32) : list_t t = - ls - -(** [loops::get_elem_mut]: decreases clause *) -unfold -let get_elem_mut_loop_decreases (x : usize) (ls : list_t usize) : list_t usize = ls - -(** [loops::get_elem_shared]: decreases clause *) -unfold -let get_elem_shared_loop_decreases (x : usize) (ls : list_t usize) : list_t usize = - ls - -(** [loops::list_nth_mut_loop_with_id]: decreases clause *) -unfold -let list_nth_mut_loop_with_id_loop_decreases (t : Type0) (i : u32) (ls : list_t t) : - list_t t = - ls - -(** [loops::list_nth_shared_loop_with_id]: decreases clause *) -unfold -let list_nth_shared_loop_with_id_loop_decreases (t : Type0) (i : u32) - (ls : list_t t) : list_t t = - ls - -(** [loops::list_nth_mut_loop_pair]: decreases clause *) -unfold -let list_nth_mut_loop_pair_loop_decreases (t : Type0) (l : list_t t) (l0 : list_t t) - (i : u32) : nat = - i - -(** [loops::list_nth_shared_loop_pair]: decreases clause *) -unfold -let list_nth_shared_loop_pair_loop_decreases (t : Type0) (l : list_t t) - (l0 : list_t t) (i : u32) : list_t t = - l - -(** [loops::list_nth_mut_loop_pair_merge]: decreases clause *) -unfold -let list_nth_mut_loop_pair_merge_loop_decreases (t : Type0) (l : list_t t) - (l0 : list_t t) (i : u32) : nat = - i - -(** [loops::list_nth_shared_loop_pair_merge]: decreases clause *) -unfold -let list_nth_shared_loop_pair_merge_loop_decreases (t : Type0) (l : list_t t) - (l0 : list_t t) (i : u32) : list_t t = - l - -(** [loops::list_nth_mut_shared_loop_pair]: decreases clause *) -unfold -let list_nth_mut_shared_loop_pair_loop_decreases (t : Type0) (l : list_t t) - (l0 : list_t t) (i : u32) : list_t t = - l - -(** [loops::list_nth_mut_shared_loop_pair_merge]: decreases clause *) -unfold -let list_nth_mut_shared_loop_pair_merge_loop_decreases (t : Type0) (l : list_t t) - (l0 : list_t t) (i : u32) : list_t t = - l - -(** [loops::list_nth_shared_mut_loop_pair]: decreases clause *) -unfold -let list_nth_shared_mut_loop_pair_loop_decreases (t : Type0) (l : list_t t) - (l0 : list_t t) (i : u32) : list_t t = - l - -(** [loops::list_nth_shared_mut_loop_pair_merge]: decreases clause *) -unfold -let list_nth_shared_mut_loop_pair_merge_loop_decreases (t : Type0) (l : list_t t) - (l0 : list_t t) (i : u32) : list_t t = - l diff --git a/tests/fstar-split/misc/Loops.Funs.fst b/tests/fstar-split/misc/Loops.Funs.fst deleted file mode 100644 index 01d66726..00000000 --- a/tests/fstar-split/misc/Loops.Funs.fst +++ /dev/null @@ -1,753 +0,0 @@ -(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *) -(** [loops]: function definitions *) -module Loops.Funs -open Primitives -include Loops.Types -include Loops.Clauses - -#set-options "--z3rlimit 50 --fuel 1 --ifuel 1" - -(** [loops::sum]: loop 0: forward function - Source: 'src/loops.rs', lines 4:0-14:1 *) -let rec sum_loop - (max : u32) (i : u32) (s : u32) : - Tot (result u32) (decreases (sum_loop_decreases max i s)) - = - if i < max - then let* s1 = u32_add s i in let* i1 = u32_add i 1 in sum_loop max i1 s1 - else u32_mul s 2 - -(** [loops::sum]: forward function - Source: 'src/loops.rs', lines 4:0-4:27 *) -let sum (max : u32) : result u32 = - sum_loop max 0 0 - -(** [loops::sum_with_mut_borrows]: loop 0: forward function - Source: 'src/loops.rs', lines 19:0-31:1 *) -let rec sum_with_mut_borrows_loop - (max : u32) (mi : u32) (ms : u32) : - Tot (result u32) (decreases (sum_with_mut_borrows_loop_decreases max mi ms)) - = - if mi < max - then - let* ms1 = u32_add ms mi in - let* mi1 = u32_add mi 1 in - sum_with_mut_borrows_loop max mi1 ms1 - else u32_mul ms 2 - -(** [loops::sum_with_mut_borrows]: forward function - Source: 'src/loops.rs', lines 19:0-19:44 *) -let sum_with_mut_borrows (max : u32) : result u32 = - sum_with_mut_borrows_loop max 0 0 - -(** [loops::sum_with_shared_borrows]: loop 0: forward function - Source: 'src/loops.rs', lines 34:0-48:1 *) -let rec sum_with_shared_borrows_loop - (max : u32) (i : u32) (s : u32) : - Tot (result u32) (decreases (sum_with_shared_borrows_loop_decreases max i s)) - = - if i < max - then - let* i1 = u32_add i 1 in - let* s1 = u32_add s i1 in - sum_with_shared_borrows_loop max i1 s1 - else u32_mul s 2 - -(** [loops::sum_with_shared_borrows]: forward function - Source: 'src/loops.rs', lines 34:0-34:47 *) -let sum_with_shared_borrows (max : u32) : result u32 = - sum_with_shared_borrows_loop max 0 0 - -(** [loops::sum_array]: loop 0: forward function - Source: 'src/loops.rs', lines 50:0-58:1 *) -let rec sum_array_loop - (n : usize) (a : array u32 n) (i : usize) (s : u32) : - Tot (result u32) (decreases (sum_array_loop_decreases n a i s)) - = - if i < n - then - let* i1 = array_index_usize u32 n a i in - let* s1 = u32_add s i1 in - let* i2 = usize_add i 1 in - sum_array_loop n a i2 s1 - else Return s - -(** [loops::sum_array]: forward function - Source: 'src/loops.rs', lines 50:0-50:52 *) -let sum_array (n : usize) (a : array u32 n) : result u32 = - sum_array_loop n a 0 0 - -(** [loops::clear]: loop 0: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/loops.rs', lines 62:0-68:1 *) -let rec clear_loop - (v : alloc_vec_Vec u32) (i : usize) : - Tot (result (alloc_vec_Vec u32)) (decreases (clear_loop_decreases v i)) - = - let i1 = alloc_vec_Vec_len u32 v in - if i < i1 - then - let* i2 = usize_add i 1 in - let* v1 = - alloc_vec_Vec_index_mut_back u32 usize - (core_slice_index_SliceIndexUsizeSliceTInst u32) v i 0 in - clear_loop v1 i2 - else Return v - -(** [loops::clear]: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/loops.rs', lines 62:0-62:30 *) -let clear (v : alloc_vec_Vec u32) : result (alloc_vec_Vec u32) = - clear_loop v 0 - -(** [loops::list_mem]: loop 0: forward function - Source: 'src/loops.rs', lines 76:0-85:1 *) -let rec list_mem_loop - (x : u32) (ls : list_t u32) : - Tot (result bool) (decreases (list_mem_loop_decreases x ls)) - = - begin match ls with - | List_Cons y tl -> if y = x then Return true else list_mem_loop x tl - | List_Nil -> Return false - end - -(** [loops::list_mem]: forward function - Source: 'src/loops.rs', lines 76:0-76:52 *) -let list_mem (x : u32) (ls : list_t u32) : result bool = - list_mem_loop x ls - -(** [loops::list_nth_mut_loop]: loop 0: forward function - Source: 'src/loops.rs', lines 88:0-98:1 *) -let rec list_nth_mut_loop_loop - (t : Type0) (ls : list_t t) (i : u32) : - Tot (result t) (decreases (list_nth_mut_loop_loop_decreases t ls i)) - = - begin match ls with - | List_Cons x tl -> - if i = 0 - then Return x - else let* i1 = u32_sub i 1 in list_nth_mut_loop_loop t tl i1 - | List_Nil -> Fail Failure - end - -(** [loops::list_nth_mut_loop]: forward function - Source: 'src/loops.rs', lines 88:0-88:71 *) -let list_nth_mut_loop (t : Type0) (ls : list_t t) (i : u32) : result t = - list_nth_mut_loop_loop t ls i - -(** [loops::list_nth_mut_loop]: loop 0: backward function 0 - Source: 'src/loops.rs', lines 88:0-98:1 *) -let rec list_nth_mut_loop_loop_back - (t : Type0) (ls : list_t t) (i : u32) (ret : t) : - Tot (result (list_t t)) (decreases (list_nth_mut_loop_loop_decreases t ls i)) - = - begin match ls with - | List_Cons x tl -> - if i = 0 - then Return (List_Cons ret tl) - else - let* i1 = u32_sub i 1 in - let* tl1 = list_nth_mut_loop_loop_back t tl i1 ret in - Return (List_Cons x tl1) - | List_Nil -> Fail Failure - end - -(** [loops::list_nth_mut_loop]: backward function 0 - Source: 'src/loops.rs', lines 88:0-88:71 *) -let list_nth_mut_loop_back - (t : Type0) (ls : list_t t) (i : u32) (ret : t) : result (list_t t) = - list_nth_mut_loop_loop_back t ls i ret - -(** [loops::list_nth_shared_loop]: loop 0: forward function - Source: 'src/loops.rs', lines 101:0-111:1 *) -let rec list_nth_shared_loop_loop - (t : Type0) (ls : list_t t) (i : u32) : - Tot (result t) (decreases (list_nth_shared_loop_loop_decreases t ls i)) - = - begin match ls with - | List_Cons x tl -> - if i = 0 - then Return x - else let* i1 = u32_sub i 1 in list_nth_shared_loop_loop t tl i1 - | List_Nil -> Fail Failure - end - -(** [loops::list_nth_shared_loop]: forward function - Source: 'src/loops.rs', lines 101:0-101:66 *) -let list_nth_shared_loop (t : Type0) (ls : list_t t) (i : u32) : result t = - list_nth_shared_loop_loop t ls i - -(** [loops::get_elem_mut]: loop 0: forward function - Source: 'src/loops.rs', lines 113:0-127:1 *) -let rec get_elem_mut_loop - (x : usize) (ls : list_t usize) : - Tot (result usize) (decreases (get_elem_mut_loop_decreases x ls)) - = - begin match ls with - | List_Cons y tl -> if y = x then Return y else get_elem_mut_loop x tl - | List_Nil -> Fail Failure - end - -(** [loops::get_elem_mut]: forward function - Source: 'src/loops.rs', lines 113:0-113:73 *) -let get_elem_mut - (slots : alloc_vec_Vec (list_t usize)) (x : usize) : result usize = - let* l = - alloc_vec_Vec_index_mut (list_t usize) usize - (core_slice_index_SliceIndexUsizeSliceTInst (list_t usize)) slots 0 in - get_elem_mut_loop x l - -(** [loops::get_elem_mut]: loop 0: backward function 0 - Source: 'src/loops.rs', lines 113:0-127:1 *) -let rec get_elem_mut_loop_back - (x : usize) (ls : list_t usize) (ret : usize) : - Tot (result (list_t usize)) (decreases (get_elem_mut_loop_decreases x ls)) - = - begin match ls with - | List_Cons y tl -> - if y = x - then Return (List_Cons ret tl) - else let* tl1 = get_elem_mut_loop_back x tl ret in Return (List_Cons y tl1) - | List_Nil -> Fail Failure - end - -(** [loops::get_elem_mut]: backward function 0 - Source: 'src/loops.rs', lines 113:0-113:73 *) -let get_elem_mut_back - (slots : alloc_vec_Vec (list_t usize)) (x : usize) (ret : usize) : - result (alloc_vec_Vec (list_t usize)) - = - let* l = - alloc_vec_Vec_index_mut (list_t usize) usize - (core_slice_index_SliceIndexUsizeSliceTInst (list_t usize)) slots 0 in - let* l1 = get_elem_mut_loop_back x l ret in - alloc_vec_Vec_index_mut_back (list_t usize) usize - (core_slice_index_SliceIndexUsizeSliceTInst (list_t usize)) slots 0 l1 - -(** [loops::get_elem_shared]: loop 0: forward function - Source: 'src/loops.rs', lines 129:0-143:1 *) -let rec get_elem_shared_loop - (x : usize) (ls : list_t usize) : - Tot (result usize) (decreases (get_elem_shared_loop_decreases x ls)) - = - begin match ls with - | List_Cons y tl -> if y = x then Return y else get_elem_shared_loop x tl - | List_Nil -> Fail Failure - end - -(** [loops::get_elem_shared]: forward function - Source: 'src/loops.rs', lines 129:0-129:68 *) -let get_elem_shared - (slots : alloc_vec_Vec (list_t usize)) (x : usize) : result usize = - let* l = - alloc_vec_Vec_index (list_t usize) usize - (core_slice_index_SliceIndexUsizeSliceTInst (list_t usize)) slots 0 in - get_elem_shared_loop x l - -(** [loops::id_mut]: forward function - Source: 'src/loops.rs', lines 145:0-145:50 *) -let id_mut (t : Type0) (ls : list_t t) : result (list_t t) = - Return ls - -(** [loops::id_mut]: backward function 0 - Source: 'src/loops.rs', lines 145:0-145:50 *) -let id_mut_back - (t : Type0) (ls : list_t t) (ret : list_t t) : result (list_t t) = - Return ret - -(** [loops::id_shared]: forward function - Source: 'src/loops.rs', lines 149:0-149:45 *) -let id_shared (t : Type0) (ls : list_t t) : result (list_t t) = - Return ls - -(** [loops::list_nth_mut_loop_with_id]: loop 0: forward function - Source: 'src/loops.rs', lines 154:0-165:1 *) -let rec list_nth_mut_loop_with_id_loop - (t : Type0) (i : u32) (ls : list_t t) : - Tot (result t) (decreases (list_nth_mut_loop_with_id_loop_decreases t i ls)) - = - begin match ls with - | List_Cons x tl -> - if i = 0 - then Return x - else let* i1 = u32_sub i 1 in list_nth_mut_loop_with_id_loop t i1 tl - | List_Nil -> Fail Failure - end - -(** [loops::list_nth_mut_loop_with_id]: forward function - Source: 'src/loops.rs', lines 154:0-154:75 *) -let list_nth_mut_loop_with_id - (t : Type0) (ls : list_t t) (i : u32) : result t = - let* ls1 = id_mut t ls in list_nth_mut_loop_with_id_loop t i ls1 - -(** [loops::list_nth_mut_loop_with_id]: loop 0: backward function 0 - Source: 'src/loops.rs', lines 154:0-165:1 *) -let rec list_nth_mut_loop_with_id_loop_back - (t : Type0) (i : u32) (ls : list_t t) (ret : t) : - Tot (result (list_t t)) - (decreases (list_nth_mut_loop_with_id_loop_decreases t i ls)) - = - begin match ls with - | List_Cons x tl -> - if i = 0 - then Return (List_Cons ret tl) - else - let* i1 = u32_sub i 1 in - let* tl1 = list_nth_mut_loop_with_id_loop_back t i1 tl ret in - Return (List_Cons x tl1) - | List_Nil -> Fail Failure - end - -(** [loops::list_nth_mut_loop_with_id]: backward function 0 - Source: 'src/loops.rs', lines 154:0-154:75 *) -let list_nth_mut_loop_with_id_back - (t : Type0) (ls : list_t t) (i : u32) (ret : t) : result (list_t t) = - let* ls1 = id_mut t ls in - let* l = list_nth_mut_loop_with_id_loop_back t i ls1 ret in - id_mut_back t ls l - -(** [loops::list_nth_shared_loop_with_id]: loop 0: forward function - Source: 'src/loops.rs', lines 168:0-179:1 *) -let rec list_nth_shared_loop_with_id_loop - (t : Type0) (i : u32) (ls : list_t t) : - Tot (result t) - (decreases (list_nth_shared_loop_with_id_loop_decreases t i ls)) - = - begin match ls with - | List_Cons x tl -> - if i = 0 - then Return x - else let* i1 = u32_sub i 1 in list_nth_shared_loop_with_id_loop t i1 tl - | List_Nil -> Fail Failure - end - -(** [loops::list_nth_shared_loop_with_id]: forward function - Source: 'src/loops.rs', lines 168:0-168:70 *) -let list_nth_shared_loop_with_id - (t : Type0) (ls : list_t t) (i : u32) : result t = - let* ls1 = id_shared t ls in list_nth_shared_loop_with_id_loop t i ls1 - -(** [loops::list_nth_mut_loop_pair]: loop 0: forward function - Source: 'src/loops.rs', lines 184:0-205:1 *) -let rec list_nth_mut_loop_pair_loop - (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) : - Tot (result (t & t)) - (decreases (list_nth_mut_loop_pair_loop_decreases t ls0 ls1 i)) - = - begin match ls0 with - | List_Cons x0 tl0 -> - begin match ls1 with - | List_Cons x1 tl1 -> - if i = 0 - then Return (x0, x1) - else let* i1 = u32_sub i 1 in list_nth_mut_loop_pair_loop t tl0 tl1 i1 - | List_Nil -> Fail Failure - end - | List_Nil -> Fail Failure - end - -(** [loops::list_nth_mut_loop_pair]: forward function - Source: 'src/loops.rs', lines 184:0-188:27 *) -let list_nth_mut_loop_pair - (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) : result (t & t) = - list_nth_mut_loop_pair_loop t ls0 ls1 i - -(** [loops::list_nth_mut_loop_pair]: loop 0: backward function 0 - Source: 'src/loops.rs', lines 184:0-205:1 *) -let rec list_nth_mut_loop_pair_loop_back'a - (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) (ret : t) : - Tot (result (list_t t)) - (decreases (list_nth_mut_loop_pair_loop_decreases t ls0 ls1 i)) - = - begin match ls0 with - | List_Cons x0 tl0 -> - begin match ls1 with - | List_Cons _ tl1 -> - if i = 0 - then Return (List_Cons ret tl0) - else - let* i1 = u32_sub i 1 in - let* tl01 = list_nth_mut_loop_pair_loop_back'a t tl0 tl1 i1 ret in - Return (List_Cons x0 tl01) - | List_Nil -> Fail Failure - end - | List_Nil -> Fail Failure - end - -(** [loops::list_nth_mut_loop_pair]: backward function 0 - Source: 'src/loops.rs', lines 184:0-188:27 *) -let list_nth_mut_loop_pair_back'a - (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) (ret : t) : - result (list_t t) - = - list_nth_mut_loop_pair_loop_back'a t ls0 ls1 i ret - -(** [loops::list_nth_mut_loop_pair]: loop 0: backward function 1 - Source: 'src/loops.rs', lines 184:0-205:1 *) -let rec list_nth_mut_loop_pair_loop_back'b - (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) (ret : t) : - Tot (result (list_t t)) - (decreases (list_nth_mut_loop_pair_loop_decreases t ls0 ls1 i)) - = - begin match ls0 with - | List_Cons _ tl0 -> - begin match ls1 with - | List_Cons x1 tl1 -> - if i = 0 - then Return (List_Cons ret tl1) - else - let* i1 = u32_sub i 1 in - let* tl11 = list_nth_mut_loop_pair_loop_back'b t tl0 tl1 i1 ret in - Return (List_Cons x1 tl11) - | List_Nil -> Fail Failure - end - | List_Nil -> Fail Failure - end - -(** [loops::list_nth_mut_loop_pair]: backward function 1 - Source: 'src/loops.rs', lines 184:0-188:27 *) -let list_nth_mut_loop_pair_back'b - (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) (ret : t) : - result (list_t t) - = - list_nth_mut_loop_pair_loop_back'b t ls0 ls1 i ret - -(** [loops::list_nth_shared_loop_pair]: loop 0: forward function - Source: 'src/loops.rs', lines 208:0-229:1 *) -let rec list_nth_shared_loop_pair_loop - (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) : - Tot (result (t & t)) - (decreases (list_nth_shared_loop_pair_loop_decreases t ls0 ls1 i)) - = - begin match ls0 with - | List_Cons x0 tl0 -> - begin match ls1 with - | List_Cons x1 tl1 -> - if i = 0 - then Return (x0, x1) - else let* i1 = u32_sub i 1 in list_nth_shared_loop_pair_loop t tl0 tl1 i1 - | List_Nil -> Fail Failure - end - | List_Nil -> Fail Failure - end - -(** [loops::list_nth_shared_loop_pair]: forward function - Source: 'src/loops.rs', lines 208:0-212:19 *) -let list_nth_shared_loop_pair - (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) : result (t & t) = - list_nth_shared_loop_pair_loop t ls0 ls1 i - -(** [loops::list_nth_mut_loop_pair_merge]: loop 0: forward function - Source: 'src/loops.rs', lines 233:0-248:1 *) -let rec list_nth_mut_loop_pair_merge_loop - (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) : - Tot (result (t & t)) - (decreases (list_nth_mut_loop_pair_merge_loop_decreases t ls0 ls1 i)) - = - begin match ls0 with - | List_Cons x0 tl0 -> - begin match ls1 with - | List_Cons x1 tl1 -> - if i = 0 - then Return (x0, x1) - else - let* i1 = u32_sub i 1 in list_nth_mut_loop_pair_merge_loop t tl0 tl1 i1 - | List_Nil -> Fail Failure - end - | List_Nil -> Fail Failure - end - -(** [loops::list_nth_mut_loop_pair_merge]: forward function - Source: 'src/loops.rs', lines 233:0-237:27 *) -let list_nth_mut_loop_pair_merge - (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) : result (t & t) = - list_nth_mut_loop_pair_merge_loop t ls0 ls1 i - -(** [loops::list_nth_mut_loop_pair_merge]: loop 0: backward function 0 - Source: 'src/loops.rs', lines 233:0-248:1 *) -let rec list_nth_mut_loop_pair_merge_loop_back - (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) (ret : (t & t)) : - Tot (result ((list_t t) & (list_t t))) - (decreases (list_nth_mut_loop_pair_merge_loop_decreases t ls0 ls1 i)) - = - begin match ls0 with - | List_Cons x0 tl0 -> - begin match ls1 with - | List_Cons x1 tl1 -> - if i = 0 - then let (x, x2) = ret in Return (List_Cons x tl0, List_Cons x2 tl1) - else - let* i1 = u32_sub i 1 in - let* (tl01, tl11) = - list_nth_mut_loop_pair_merge_loop_back t tl0 tl1 i1 ret in - Return (List_Cons x0 tl01, List_Cons x1 tl11) - | List_Nil -> Fail Failure - end - | List_Nil -> Fail Failure - end - -(** [loops::list_nth_mut_loop_pair_merge]: backward function 0 - Source: 'src/loops.rs', lines 233:0-237:27 *) -let list_nth_mut_loop_pair_merge_back - (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) (ret : (t & t)) : - result ((list_t t) & (list_t t)) - = - list_nth_mut_loop_pair_merge_loop_back t ls0 ls1 i ret - -(** [loops::list_nth_shared_loop_pair_merge]: loop 0: forward function - Source: 'src/loops.rs', lines 251:0-266:1 *) -let rec list_nth_shared_loop_pair_merge_loop - (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) : - Tot (result (t & t)) - (decreases (list_nth_shared_loop_pair_merge_loop_decreases t ls0 ls1 i)) - = - begin match ls0 with - | List_Cons x0 tl0 -> - begin match ls1 with - | List_Cons x1 tl1 -> - if i = 0 - then Return (x0, x1) - else - let* i1 = u32_sub i 1 in - list_nth_shared_loop_pair_merge_loop t tl0 tl1 i1 - | List_Nil -> Fail Failure - end - | List_Nil -> Fail Failure - end - -(** [loops::list_nth_shared_loop_pair_merge]: forward function - Source: 'src/loops.rs', lines 251:0-255:19 *) -let list_nth_shared_loop_pair_merge - (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) : result (t & t) = - list_nth_shared_loop_pair_merge_loop t ls0 ls1 i - -(** [loops::list_nth_mut_shared_loop_pair]: loop 0: forward function - Source: 'src/loops.rs', lines 269:0-284:1 *) -let rec list_nth_mut_shared_loop_pair_loop - (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) : - Tot (result (t & t)) - (decreases (list_nth_mut_shared_loop_pair_loop_decreases t ls0 ls1 i)) - = - begin match ls0 with - | List_Cons x0 tl0 -> - begin match ls1 with - | List_Cons x1 tl1 -> - if i = 0 - then Return (x0, x1) - else - let* i1 = u32_sub i 1 in - list_nth_mut_shared_loop_pair_loop t tl0 tl1 i1 - | List_Nil -> Fail Failure - end - | List_Nil -> Fail Failure - end - -(** [loops::list_nth_mut_shared_loop_pair]: forward function - Source: 'src/loops.rs', lines 269:0-273:23 *) -let list_nth_mut_shared_loop_pair - (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) : result (t & t) = - list_nth_mut_shared_loop_pair_loop t ls0 ls1 i - -(** [loops::list_nth_mut_shared_loop_pair]: loop 0: backward function 0 - Source: 'src/loops.rs', lines 269:0-284:1 *) -let rec list_nth_mut_shared_loop_pair_loop_back - (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) (ret : t) : - Tot (result (list_t t)) - (decreases (list_nth_mut_shared_loop_pair_loop_decreases t ls0 ls1 i)) - = - begin match ls0 with - | List_Cons x0 tl0 -> - begin match ls1 with - | List_Cons _ tl1 -> - if i = 0 - then Return (List_Cons ret tl0) - else - let* i1 = u32_sub i 1 in - let* tl01 = list_nth_mut_shared_loop_pair_loop_back t tl0 tl1 i1 ret in - Return (List_Cons x0 tl01) - | List_Nil -> Fail Failure - end - | List_Nil -> Fail Failure - end - -(** [loops::list_nth_mut_shared_loop_pair]: backward function 0 - Source: 'src/loops.rs', lines 269:0-273:23 *) -let list_nth_mut_shared_loop_pair_back - (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) (ret : t) : - result (list_t t) - = - list_nth_mut_shared_loop_pair_loop_back t ls0 ls1 i ret - -(** [loops::list_nth_mut_shared_loop_pair_merge]: loop 0: forward function - Source: 'src/loops.rs', lines 288:0-303:1 *) -let rec list_nth_mut_shared_loop_pair_merge_loop - (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) : - Tot (result (t & t)) - (decreases (list_nth_mut_shared_loop_pair_merge_loop_decreases t ls0 ls1 i)) - = - begin match ls0 with - | List_Cons x0 tl0 -> - begin match ls1 with - | List_Cons x1 tl1 -> - if i = 0 - then Return (x0, x1) - else - let* i1 = u32_sub i 1 in - list_nth_mut_shared_loop_pair_merge_loop t tl0 tl1 i1 - | List_Nil -> Fail Failure - end - | List_Nil -> Fail Failure - end - -(** [loops::list_nth_mut_shared_loop_pair_merge]: forward function - Source: 'src/loops.rs', lines 288:0-292:23 *) -let list_nth_mut_shared_loop_pair_merge - (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) : result (t & t) = - list_nth_mut_shared_loop_pair_merge_loop t ls0 ls1 i - -(** [loops::list_nth_mut_shared_loop_pair_merge]: loop 0: backward function 0 - Source: 'src/loops.rs', lines 288:0-303:1 *) -let rec list_nth_mut_shared_loop_pair_merge_loop_back - (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) (ret : t) : - Tot (result (list_t t)) - (decreases (list_nth_mut_shared_loop_pair_merge_loop_decreases t ls0 ls1 i)) - = - begin match ls0 with - | List_Cons x0 tl0 -> - begin match ls1 with - | List_Cons _ tl1 -> - if i = 0 - then Return (List_Cons ret tl0) - else - let* i1 = u32_sub i 1 in - let* tl01 = - list_nth_mut_shared_loop_pair_merge_loop_back t tl0 tl1 i1 ret in - Return (List_Cons x0 tl01) - | List_Nil -> Fail Failure - end - | List_Nil -> Fail Failure - end - -(** [loops::list_nth_mut_shared_loop_pair_merge]: backward function 0 - Source: 'src/loops.rs', lines 288:0-292:23 *) -let list_nth_mut_shared_loop_pair_merge_back - (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) (ret : t) : - result (list_t t) - = - list_nth_mut_shared_loop_pair_merge_loop_back t ls0 ls1 i ret - -(** [loops::list_nth_shared_mut_loop_pair]: loop 0: forward function - Source: 'src/loops.rs', lines 307:0-322:1 *) -let rec list_nth_shared_mut_loop_pair_loop - (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) : - Tot (result (t & t)) - (decreases (list_nth_shared_mut_loop_pair_loop_decreases t ls0 ls1 i)) - = - begin match ls0 with - | List_Cons x0 tl0 -> - begin match ls1 with - | List_Cons x1 tl1 -> - if i = 0 - then Return (x0, x1) - else - let* i1 = u32_sub i 1 in - list_nth_shared_mut_loop_pair_loop t tl0 tl1 i1 - | List_Nil -> Fail Failure - end - | List_Nil -> Fail Failure - end - -(** [loops::list_nth_shared_mut_loop_pair]: forward function - Source: 'src/loops.rs', lines 307:0-311:23 *) -let list_nth_shared_mut_loop_pair - (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) : result (t & t) = - list_nth_shared_mut_loop_pair_loop t ls0 ls1 i - -(** [loops::list_nth_shared_mut_loop_pair]: loop 0: backward function 1 - Source: 'src/loops.rs', lines 307:0-322:1 *) -let rec list_nth_shared_mut_loop_pair_loop_back - (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) (ret : t) : - Tot (result (list_t t)) - (decreases (list_nth_shared_mut_loop_pair_loop_decreases t ls0 ls1 i)) - = - begin match ls0 with - | List_Cons _ tl0 -> - begin match ls1 with - | List_Cons x1 tl1 -> - if i = 0 - then Return (List_Cons ret tl1) - else - let* i1 = u32_sub i 1 in - let* tl11 = list_nth_shared_mut_loop_pair_loop_back t tl0 tl1 i1 ret in - Return (List_Cons x1 tl11) - | List_Nil -> Fail Failure - end - | List_Nil -> Fail Failure - end - -(** [loops::list_nth_shared_mut_loop_pair]: backward function 1 - Source: 'src/loops.rs', lines 307:0-311:23 *) -let list_nth_shared_mut_loop_pair_back - (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) (ret : t) : - result (list_t t) - = - list_nth_shared_mut_loop_pair_loop_back t ls0 ls1 i ret - -(** [loops::list_nth_shared_mut_loop_pair_merge]: loop 0: forward function - Source: 'src/loops.rs', lines 326:0-341:1 *) -let rec list_nth_shared_mut_loop_pair_merge_loop - (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) : - Tot (result (t & t)) - (decreases (list_nth_shared_mut_loop_pair_merge_loop_decreases t ls0 ls1 i)) - = - begin match ls0 with - | List_Cons x0 tl0 -> - begin match ls1 with - | List_Cons x1 tl1 -> - if i = 0 - then Return (x0, x1) - else - let* i1 = u32_sub i 1 in - list_nth_shared_mut_loop_pair_merge_loop t tl0 tl1 i1 - | List_Nil -> Fail Failure - end - | List_Nil -> Fail Failure - end - -(** [loops::list_nth_shared_mut_loop_pair_merge]: forward function - Source: 'src/loops.rs', lines 326:0-330:23 *) -let list_nth_shared_mut_loop_pair_merge - (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) : result (t & t) = - list_nth_shared_mut_loop_pair_merge_loop t ls0 ls1 i - -(** [loops::list_nth_shared_mut_loop_pair_merge]: loop 0: backward function 0 - Source: 'src/loops.rs', lines 326:0-341:1 *) -let rec list_nth_shared_mut_loop_pair_merge_loop_back - (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) (ret : t) : - Tot (result (list_t t)) - (decreases (list_nth_shared_mut_loop_pair_merge_loop_decreases t ls0 ls1 i)) - = - begin match ls0 with - | List_Cons _ tl0 -> - begin match ls1 with - | List_Cons x1 tl1 -> - if i = 0 - then Return (List_Cons ret tl1) - else - let* i1 = u32_sub i 1 in - let* tl11 = - list_nth_shared_mut_loop_pair_merge_loop_back t tl0 tl1 i1 ret in - Return (List_Cons x1 tl11) - | List_Nil -> Fail Failure - end - | List_Nil -> Fail Failure - end - -(** [loops::list_nth_shared_mut_loop_pair_merge]: backward function 0 - Source: 'src/loops.rs', lines 326:0-330:23 *) -let list_nth_shared_mut_loop_pair_merge_back - (t : Type0) (ls0 : list_t t) (ls1 : list_t t) (i : u32) (ret : t) : - result (list_t t) - = - list_nth_shared_mut_loop_pair_merge_loop_back t ls0 ls1 i ret - diff --git a/tests/fstar-split/misc/Loops.Types.fst b/tests/fstar-split/misc/Loops.Types.fst deleted file mode 100644 index 29f56e1b..00000000 --- a/tests/fstar-split/misc/Loops.Types.fst +++ /dev/null @@ -1,13 +0,0 @@ -(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *) -(** [loops]: type definitions *) -module Loops.Types -open Primitives - -#set-options "--z3rlimit 50 --fuel 1 --ifuel 1" - -(** [loops::List] - Source: 'src/loops.rs', lines 70:0-70:16 *) -type list_t (t : Type0) = -| List_Cons : t -> list_t t -> list_t t -| List_Nil : list_t t - diff --git a/tests/fstar-split/misc/Makefile b/tests/fstar-split/misc/Makefile deleted file mode 100644 index fa7d1f36..00000000 --- a/tests/fstar-split/misc/Makefile +++ /dev/null @@ -1,49 +0,0 @@ -# This file was automatically generated - modify ../Makefile.template instead -INCLUDE_DIRS = . - -FSTAR_INCLUDES = $(addprefix --include ,$(INCLUDE_DIRS)) - -FSTAR_HINTS ?= --use_hints --use_hint_hashes --record_hints - -FSTAR_OPTIONS = $(FSTAR_HINTS) \ - --cache_checked_modules $(FSTAR_INCLUDES) --cmi \ - --warn_error '+241@247+285-274' \ - -FSTAR_EXE ?= fstar.exe -FSTAR_NO_FLAGS = $(FSTAR_EXE) --already_cached 'Prims FStar LowStar Steel' --odir obj --cache_dir obj - -FSTAR = $(FSTAR_NO_FLAGS) $(FSTAR_OPTIONS) - -# The F* roots are used to compute the dependency graph, and generate the .depend file -FSTAR_ROOTS ?= $(wildcard *.fst *.fsti) - -# Build all the files -all: $(addprefix obj/,$(addsuffix .checked,$(FSTAR_ROOTS))) - -# This is the right way to ensure the .depend file always gets re-built. -ifeq (,$(filter %-in,$(MAKECMDGOALS))) -ifndef NODEPEND -ifndef MAKE_RESTARTS -.depend: .FORCE - $(FSTAR_NO_FLAGS) --dep full $(notdir $(FSTAR_ROOTS)) > $@ - -.PHONY: .FORCE -.FORCE: -endif -endif - -include .depend -endif - -# For the interactive mode -%.fst-in %.fsti-in: - @echo $(FSTAR_OPTIONS) - -# Generete the .checked files in batch mode -%.checked: - $(FSTAR) $(FSTAR_OPTIONS) $< && \ - touch -c $@ - -.PHONY: clean -clean: - rm -f obj/* diff --git a/tests/fstar-split/misc/NoNestedBorrows.fst b/tests/fstar-split/misc/NoNestedBorrows.fst deleted file mode 100644 index 53e1d300..00000000 --- a/tests/fstar-split/misc/NoNestedBorrows.fst +++ /dev/null @@ -1,618 +0,0 @@ -(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *) -(** [no_nested_borrows] *) -module NoNestedBorrows -open Primitives - -#set-options "--z3rlimit 50 --fuel 1 --ifuel 1" - -(** [no_nested_borrows::Pair] - Source: 'src/no_nested_borrows.rs', lines 4:0-4:23 *) -type pair_t (t1 t2 : Type0) = { x : t1; y : t2; } - -(** [no_nested_borrows::List] - Source: 'src/no_nested_borrows.rs', lines 9:0-9:16 *) -type list_t (t : Type0) = -| List_Cons : t -> list_t t -> list_t t -| List_Nil : list_t t - -(** [no_nested_borrows::One] - Source: 'src/no_nested_borrows.rs', lines 20:0-20:16 *) -type one_t (t1 : Type0) = | One_One : t1 -> one_t t1 - -(** [no_nested_borrows::EmptyEnum] - Source: 'src/no_nested_borrows.rs', lines 26:0-26:18 *) -type emptyEnum_t = | EmptyEnum_Empty : emptyEnum_t - -(** [no_nested_borrows::Enum] - Source: 'src/no_nested_borrows.rs', lines 32:0-32:13 *) -type enum_t = | Enum_Variant1 : enum_t | Enum_Variant2 : enum_t - -(** [no_nested_borrows::EmptyStruct] - Source: 'src/no_nested_borrows.rs', lines 39:0-39:22 *) -type emptyStruct_t = unit - -(** [no_nested_borrows::Sum] - Source: 'src/no_nested_borrows.rs', lines 41:0-41:20 *) -type sum_t (t1 t2 : Type0) = -| Sum_Left : t1 -> sum_t t1 t2 -| Sum_Right : t2 -> sum_t t1 t2 - -(** [no_nested_borrows::neg_test]: forward function - Source: 'src/no_nested_borrows.rs', lines 48:0-48:30 *) -let neg_test (x : i32) : result i32 = - i32_neg x - -(** [no_nested_borrows::add_u32]: forward function - Source: 'src/no_nested_borrows.rs', lines 54:0-54:37 *) -let add_u32 (x : u32) (y : u32) : result u32 = - u32_add x y - -(** [no_nested_borrows::subs_u32]: forward function - Source: 'src/no_nested_borrows.rs', lines 60:0-60:38 *) -let subs_u32 (x : u32) (y : u32) : result u32 = - u32_sub x y - -(** [no_nested_borrows::div_u32]: forward function - Source: 'src/no_nested_borrows.rs', lines 66:0-66:37 *) -let div_u32 (x : u32) (y : u32) : result u32 = - u32_div x y - -(** [no_nested_borrows::div_u32_const]: forward function - Source: 'src/no_nested_borrows.rs', lines 73:0-73:35 *) -let div_u32_const (x : u32) : result u32 = - u32_div x 2 - -(** [no_nested_borrows::rem_u32]: forward function - Source: 'src/no_nested_borrows.rs', lines 78:0-78:37 *) -let rem_u32 (x : u32) (y : u32) : result u32 = - u32_rem x y - -(** [no_nested_borrows::mul_u32]: forward function - Source: 'src/no_nested_borrows.rs', lines 82:0-82:37 *) -let mul_u32 (x : u32) (y : u32) : result u32 = - u32_mul x y - -(** [no_nested_borrows::add_i32]: forward function - Source: 'src/no_nested_borrows.rs', lines 88:0-88:37 *) -let add_i32 (x : i32) (y : i32) : result i32 = - i32_add x y - -(** [no_nested_borrows::subs_i32]: forward function - Source: 'src/no_nested_borrows.rs', lines 92:0-92:38 *) -let subs_i32 (x : i32) (y : i32) : result i32 = - i32_sub x y - -(** [no_nested_borrows::div_i32]: forward function - Source: 'src/no_nested_borrows.rs', lines 96:0-96:37 *) -let div_i32 (x : i32) (y : i32) : result i32 = - i32_div x y - -(** [no_nested_borrows::div_i32_const]: forward function - Source: 'src/no_nested_borrows.rs', lines 100:0-100:35 *) -let div_i32_const (x : i32) : result i32 = - i32_div x 2 - -(** [no_nested_borrows::rem_i32]: forward function - Source: 'src/no_nested_borrows.rs', lines 104:0-104:37 *) -let rem_i32 (x : i32) (y : i32) : result i32 = - i32_rem x y - -(** [no_nested_borrows::mul_i32]: forward function - Source: 'src/no_nested_borrows.rs', lines 108:0-108:37 *) -let mul_i32 (x : i32) (y : i32) : result i32 = - i32_mul x y - -(** [no_nested_borrows::mix_arith_u32]: forward function - Source: 'src/no_nested_borrows.rs', lines 112:0-112:51 *) -let mix_arith_u32 (x : u32) (y : u32) (z : u32) : result u32 = - let* i = u32_add x y in - let* i1 = u32_div x y in - let* i2 = u32_mul i i1 in - let* i3 = u32_rem z y in - let* i4 = u32_sub x i3 in - let* i5 = u32_add i2 i4 in - let* i6 = u32_add x y in - let* i7 = u32_add i6 z in - u32_rem i5 i7 - -(** [no_nested_borrows::mix_arith_i32]: forward function - Source: 'src/no_nested_borrows.rs', lines 116:0-116:51 *) -let mix_arith_i32 (x : i32) (y : i32) (z : i32) : result i32 = - let* i = i32_add x y in - let* i1 = i32_div x y in - let* i2 = i32_mul i i1 in - let* i3 = i32_rem z y in - let* i4 = i32_sub x i3 in - let* i5 = i32_add i2 i4 in - let* i6 = i32_add x y in - let* i7 = i32_add i6 z in - i32_rem i5 i7 - -(** [no_nested_borrows::CONST0] - Source: 'src/no_nested_borrows.rs', lines 125:0-125:23 *) -let const0_body : result usize = usize_add 1 1 -let const0_c : usize = eval_global const0_body - -(** [no_nested_borrows::CONST1] - Source: 'src/no_nested_borrows.rs', lines 126:0-126:23 *) -let const1_body : result usize = usize_mul 2 2 -let const1_c : usize = eval_global const1_body - -(** [no_nested_borrows::cast_u32_to_i32]: forward function - Source: 'src/no_nested_borrows.rs', lines 128:0-128:37 *) -let cast_u32_to_i32 (x : u32) : result i32 = - scalar_cast U32 I32 x - -(** [no_nested_borrows::cast_bool_to_i32]: forward function - Source: 'src/no_nested_borrows.rs', lines 132:0-132:39 *) -let cast_bool_to_i32 (x : bool) : result i32 = - scalar_cast_bool I32 x - -(** [no_nested_borrows::cast_bool_to_bool]: forward function - Source: 'src/no_nested_borrows.rs', lines 137:0-137:41 *) -let cast_bool_to_bool (x : bool) : result bool = - Return x - -(** [no_nested_borrows::test2]: forward function - Source: 'src/no_nested_borrows.rs', lines 142:0-142:14 *) -let test2 : result unit = - let* _ = u32_add 23 44 in Return () - -(** Unit test for [no_nested_borrows::test2] *) -let _ = assert_norm (test2 = Return ()) - -(** [no_nested_borrows::get_max]: forward function - Source: 'src/no_nested_borrows.rs', lines 154:0-154:37 *) -let get_max (x : u32) (y : u32) : result u32 = - if x >= y then Return x else Return y - -(** [no_nested_borrows::test3]: forward function - Source: 'src/no_nested_borrows.rs', lines 162:0-162:14 *) -let test3 : result unit = - let* x = get_max 4 3 in - let* y = get_max 10 11 in - let* z = u32_add x y in - if not (z = 15) then Fail Failure else Return () - -(** Unit test for [no_nested_borrows::test3] *) -let _ = assert_norm (test3 = Return ()) - -(** [no_nested_borrows::test_neg1]: forward function - Source: 'src/no_nested_borrows.rs', lines 169:0-169:18 *) -let test_neg1 : result unit = - let* y = i32_neg 3 in if not (y = -3) then Fail Failure else Return () - -(** Unit test for [no_nested_borrows::test_neg1] *) -let _ = assert_norm (test_neg1 = Return ()) - -(** [no_nested_borrows::refs_test1]: forward function - Source: 'src/no_nested_borrows.rs', lines 176:0-176:19 *) -let refs_test1 : result unit = - if not (1 = 1) then Fail Failure else Return () - -(** Unit test for [no_nested_borrows::refs_test1] *) -let _ = assert_norm (refs_test1 = Return ()) - -(** [no_nested_borrows::refs_test2]: forward function - Source: 'src/no_nested_borrows.rs', lines 187:0-187:19 *) -let refs_test2 : result unit = - if not (2 = 2) - then Fail Failure - else - if not (0 = 0) - then Fail Failure - else - if not (2 = 2) - then Fail Failure - else if not (2 = 2) then Fail Failure else Return () - -(** Unit test for [no_nested_borrows::refs_test2] *) -let _ = assert_norm (refs_test2 = Return ()) - -(** [no_nested_borrows::test_list1]: forward function - Source: 'src/no_nested_borrows.rs', lines 203:0-203:19 *) -let test_list1 : result unit = - Return () - -(** Unit test for [no_nested_borrows::test_list1] *) -let _ = assert_norm (test_list1 = Return ()) - -(** [no_nested_borrows::test_box1]: forward function - Source: 'src/no_nested_borrows.rs', lines 208:0-208:18 *) -let test_box1 : result unit = - let* b = alloc_boxed_Box_deref_mut_back i32 0 1 in - let* x = alloc_boxed_Box_deref i32 b in - if not (x = 1) then Fail Failure else Return () - -(** Unit test for [no_nested_borrows::test_box1] *) -let _ = assert_norm (test_box1 = Return ()) - -(** [no_nested_borrows::copy_int]: forward function - Source: 'src/no_nested_borrows.rs', lines 218:0-218:30 *) -let copy_int (x : i32) : result i32 = - Return x - -(** [no_nested_borrows::test_unreachable]: forward function - Source: 'src/no_nested_borrows.rs', lines 224:0-224:32 *) -let test_unreachable (b : bool) : result unit = - if b then Fail Failure else Return () - -(** [no_nested_borrows::test_panic]: forward function - Source: 'src/no_nested_borrows.rs', lines 232:0-232:26 *) -let test_panic (b : bool) : result unit = - if b then Fail Failure else Return () - -(** [no_nested_borrows::test_copy_int]: forward function - Source: 'src/no_nested_borrows.rs', lines 239:0-239:22 *) -let test_copy_int : result unit = - let* y = copy_int 0 in if not (0 = y) then Fail Failure else Return () - -(** Unit test for [no_nested_borrows::test_copy_int] *) -let _ = assert_norm (test_copy_int = Return ()) - -(** [no_nested_borrows::is_cons]: forward function - Source: 'src/no_nested_borrows.rs', lines 246:0-246:38 *) -let is_cons (t : Type0) (l : list_t t) : result bool = - begin match l with - | List_Cons _ _ -> Return true - | List_Nil -> Return false - end - -(** [no_nested_borrows::test_is_cons]: forward function - Source: 'src/no_nested_borrows.rs', lines 253:0-253:21 *) -let test_is_cons : result unit = - let* b = is_cons i32 (List_Cons 0 List_Nil) in - if not b then Fail Failure else Return () - -(** Unit test for [no_nested_borrows::test_is_cons] *) -let _ = assert_norm (test_is_cons = Return ()) - -(** [no_nested_borrows::split_list]: forward function - Source: 'src/no_nested_borrows.rs', lines 259:0-259:48 *) -let split_list (t : Type0) (l : list_t t) : result (t & (list_t t)) = - begin match l with - | List_Cons hd tl -> Return (hd, tl) - | List_Nil -> Fail Failure - end - -(** [no_nested_borrows::test_split_list]: forward function - Source: 'src/no_nested_borrows.rs', lines 267:0-267:24 *) -let test_split_list : result unit = - let* p = split_list i32 (List_Cons 0 List_Nil) in - let (hd, _) = p in - if not (hd = 0) then Fail Failure else Return () - -(** Unit test for [no_nested_borrows::test_split_list] *) -let _ = assert_norm (test_split_list = Return ()) - -(** [no_nested_borrows::choose]: forward function - Source: 'src/no_nested_borrows.rs', lines 274:0-274:70 *) -let choose (t : Type0) (b : bool) (x : t) (y : t) : result t = - if b then Return x else Return y - -(** [no_nested_borrows::choose]: backward function 0 - Source: 'src/no_nested_borrows.rs', lines 274:0-274:70 *) -let choose_back - (t : Type0) (b : bool) (x : t) (y : t) (ret : t) : result (t & t) = - if b then Return (ret, y) else Return (x, ret) - -(** [no_nested_borrows::choose_test]: forward function - Source: 'src/no_nested_borrows.rs', lines 282:0-282:20 *) -let choose_test : result unit = - let* z = choose i32 true 0 0 in - let* z1 = i32_add z 1 in - if not (z1 = 1) - then Fail Failure - else - let* (x, y) = choose_back i32 true 0 0 z1 in - if not (x = 1) - then Fail Failure - else if not (y = 0) then Fail Failure else Return () - -(** Unit test for [no_nested_borrows::choose_test] *) -let _ = assert_norm (choose_test = Return ()) - -(** [no_nested_borrows::test_char]: forward function - Source: 'src/no_nested_borrows.rs', lines 294:0-294:26 *) -let test_char : result char = - Return 'a' - -(** [no_nested_borrows::Tree] - Source: 'src/no_nested_borrows.rs', lines 299:0-299:16 *) -type tree_t (t : Type0) = -| Tree_Leaf : t -> tree_t t -| Tree_Node : t -> nodeElem_t t -> tree_t t -> tree_t t - -(** [no_nested_borrows::NodeElem] - Source: 'src/no_nested_borrows.rs', lines 304:0-304:20 *) -and nodeElem_t (t : Type0) = -| NodeElem_Cons : tree_t t -> nodeElem_t t -> nodeElem_t t -| NodeElem_Nil : nodeElem_t t - -(** [no_nested_borrows::list_length]: forward function - Source: 'src/no_nested_borrows.rs', lines 339:0-339:48 *) -let rec list_length (t : Type0) (l : list_t t) : result u32 = - begin match l with - | List_Cons _ l1 -> let* i = list_length t l1 in u32_add 1 i - | List_Nil -> Return 0 - end - -(** [no_nested_borrows::list_nth_shared]: forward function - Source: 'src/no_nested_borrows.rs', lines 347:0-347:62 *) -let rec list_nth_shared (t : Type0) (l : list_t t) (i : u32) : result t = - begin match l with - | List_Cons x tl -> - if i = 0 - then Return x - else let* i1 = u32_sub i 1 in list_nth_shared t tl i1 - | List_Nil -> Fail Failure - end - -(** [no_nested_borrows::list_nth_mut]: forward function - Source: 'src/no_nested_borrows.rs', lines 363:0-363:67 *) -let rec list_nth_mut (t : Type0) (l : list_t t) (i : u32) : result t = - begin match l with - | List_Cons x tl -> - if i = 0 then Return x else let* i1 = u32_sub i 1 in list_nth_mut t tl i1 - | List_Nil -> Fail Failure - end - -(** [no_nested_borrows::list_nth_mut]: backward function 0 - Source: 'src/no_nested_borrows.rs', lines 363:0-363:67 *) -let rec list_nth_mut_back - (t : Type0) (l : list_t t) (i : u32) (ret : t) : result (list_t t) = - begin match l with - | List_Cons x tl -> - if i = 0 - then Return (List_Cons ret tl) - else - let* i1 = u32_sub i 1 in - let* tl1 = list_nth_mut_back t tl i1 ret in - Return (List_Cons x tl1) - | List_Nil -> Fail Failure - end - -(** [no_nested_borrows::list_rev_aux]: forward function - Source: 'src/no_nested_borrows.rs', lines 379:0-379:63 *) -let rec list_rev_aux - (t : Type0) (li : list_t t) (lo : list_t t) : result (list_t t) = - begin match li with - | List_Cons hd tl -> list_rev_aux t tl (List_Cons hd lo) - | List_Nil -> Return lo - end - -(** [no_nested_borrows::list_rev]: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/no_nested_borrows.rs', lines 393:0-393:42 *) -let list_rev (t : Type0) (l : list_t t) : result (list_t t) = - let li = core_mem_replace (list_t t) l List_Nil in list_rev_aux t li List_Nil - -(** [no_nested_borrows::test_list_functions]: forward function - Source: 'src/no_nested_borrows.rs', lines 398:0-398:28 *) -let test_list_functions : result unit = - let l = List_Cons 2 List_Nil in - let l1 = List_Cons 1 l in - let* i = list_length i32 (List_Cons 0 l1) in - if not (i = 3) - then Fail Failure - else - let* i1 = list_nth_shared i32 (List_Cons 0 l1) 0 in - if not (i1 = 0) - then Fail Failure - else - let* i2 = list_nth_shared i32 (List_Cons 0 l1) 1 in - if not (i2 = 1) - then Fail Failure - else - let* i3 = list_nth_shared i32 (List_Cons 0 l1) 2 in - if not (i3 = 2) - then Fail Failure - else - let* ls = list_nth_mut_back i32 (List_Cons 0 l1) 1 3 in - let* i4 = list_nth_shared i32 ls 0 in - if not (i4 = 0) - then Fail Failure - else - let* i5 = list_nth_shared i32 ls 1 in - if not (i5 = 3) - then Fail Failure - else - let* i6 = list_nth_shared i32 ls 2 in - if not (i6 = 2) then Fail Failure else Return () - -(** Unit test for [no_nested_borrows::test_list_functions] *) -let _ = assert_norm (test_list_functions = Return ()) - -(** [no_nested_borrows::id_mut_pair1]: forward function - Source: 'src/no_nested_borrows.rs', lines 414:0-414:89 *) -let id_mut_pair1 (t1 t2 : Type0) (x : t1) (y : t2) : result (t1 & t2) = - Return (x, y) - -(** [no_nested_borrows::id_mut_pair1]: backward function 0 - Source: 'src/no_nested_borrows.rs', lines 414:0-414:89 *) -let id_mut_pair1_back - (t1 t2 : Type0) (x : t1) (y : t2) (ret : (t1 & t2)) : result (t1 & t2) = - let (x1, x2) = ret in Return (x1, x2) - -(** [no_nested_borrows::id_mut_pair2]: forward function - Source: 'src/no_nested_borrows.rs', lines 418:0-418:88 *) -let id_mut_pair2 (t1 t2 : Type0) (p : (t1 & t2)) : result (t1 & t2) = - let (x, x1) = p in Return (x, x1) - -(** [no_nested_borrows::id_mut_pair2]: backward function 0 - Source: 'src/no_nested_borrows.rs', lines 418:0-418:88 *) -let id_mut_pair2_back - (t1 t2 : Type0) (p : (t1 & t2)) (ret : (t1 & t2)) : result (t1 & t2) = - let (x, x1) = ret in Return (x, x1) - -(** [no_nested_borrows::id_mut_pair3]: forward function - Source: 'src/no_nested_borrows.rs', lines 422:0-422:93 *) -let id_mut_pair3 (t1 t2 : Type0) (x : t1) (y : t2) : result (t1 & t2) = - Return (x, y) - -(** [no_nested_borrows::id_mut_pair3]: backward function 0 - Source: 'src/no_nested_borrows.rs', lines 422:0-422:93 *) -let id_mut_pair3_back'a - (t1 t2 : Type0) (x : t1) (y : t2) (ret : t1) : result t1 = - Return ret - -(** [no_nested_borrows::id_mut_pair3]: backward function 1 - Source: 'src/no_nested_borrows.rs', lines 422:0-422:93 *) -let id_mut_pair3_back'b - (t1 t2 : Type0) (x : t1) (y : t2) (ret : t2) : result t2 = - Return ret - -(** [no_nested_borrows::id_mut_pair4]: forward function - Source: 'src/no_nested_borrows.rs', lines 426:0-426:92 *) -let id_mut_pair4 (t1 t2 : Type0) (p : (t1 & t2)) : result (t1 & t2) = - let (x, x1) = p in Return (x, x1) - -(** [no_nested_borrows::id_mut_pair4]: backward function 0 - Source: 'src/no_nested_borrows.rs', lines 426:0-426:92 *) -let id_mut_pair4_back'a - (t1 t2 : Type0) (p : (t1 & t2)) (ret : t1) : result t1 = - Return ret - -(** [no_nested_borrows::id_mut_pair4]: backward function 1 - Source: 'src/no_nested_borrows.rs', lines 426:0-426:92 *) -let id_mut_pair4_back'b - (t1 t2 : Type0) (p : (t1 & t2)) (ret : t2) : result t2 = - Return ret - -(** [no_nested_borrows::StructWithTuple] - Source: 'src/no_nested_borrows.rs', lines 433:0-433:34 *) -type structWithTuple_t (t1 t2 : Type0) = { p : (t1 & t2); } - -(** [no_nested_borrows::new_tuple1]: forward function - Source: 'src/no_nested_borrows.rs', lines 437:0-437:48 *) -let new_tuple1 : result (structWithTuple_t u32 u32) = - Return { p = (1, 2) } - -(** [no_nested_borrows::new_tuple2]: forward function - Source: 'src/no_nested_borrows.rs', lines 441:0-441:48 *) -let new_tuple2 : result (structWithTuple_t i16 i16) = - Return { p = (1, 2) } - -(** [no_nested_borrows::new_tuple3]: forward function - Source: 'src/no_nested_borrows.rs', lines 445:0-445:48 *) -let new_tuple3 : result (structWithTuple_t u64 i64) = - Return { p = (1, 2) } - -(** [no_nested_borrows::StructWithPair] - Source: 'src/no_nested_borrows.rs', lines 450:0-450:33 *) -type structWithPair_t (t1 t2 : Type0) = { p : pair_t t1 t2; } - -(** [no_nested_borrows::new_pair1]: forward function - Source: 'src/no_nested_borrows.rs', lines 454:0-454:46 *) -let new_pair1 : result (structWithPair_t u32 u32) = - Return { p = { x = 1; y = 2 } } - -(** [no_nested_borrows::test_constants]: forward function - Source: 'src/no_nested_borrows.rs', lines 462:0-462:23 *) -let test_constants : result unit = - let* swt = new_tuple1 in - let (i, _) = swt.p in - if not (i = 1) - then Fail Failure - else - let* swt1 = new_tuple2 in - let (i1, _) = swt1.p in - if not (i1 = 1) - then Fail Failure - else - let* swt2 = new_tuple3 in - let (i2, _) = swt2.p in - if not (i2 = 1) - then Fail Failure - else - let* swp = new_pair1 in - if not (swp.p.x = 1) then Fail Failure else Return () - -(** Unit test for [no_nested_borrows::test_constants] *) -let _ = assert_norm (test_constants = Return ()) - -(** [no_nested_borrows::test_weird_borrows1]: forward function - Source: 'src/no_nested_borrows.rs', lines 471:0-471:28 *) -let test_weird_borrows1 : result unit = - Return () - -(** Unit test for [no_nested_borrows::test_weird_borrows1] *) -let _ = assert_norm (test_weird_borrows1 = Return ()) - -(** [no_nested_borrows::test_mem_replace]: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/no_nested_borrows.rs', lines 481:0-481:37 *) -let test_mem_replace (px : u32) : result u32 = - let y = core_mem_replace u32 px 1 in - if not (y = 0) then Fail Failure else Return 2 - -(** [no_nested_borrows::test_shared_borrow_bool1]: forward function - Source: 'src/no_nested_borrows.rs', lines 488:0-488:47 *) -let test_shared_borrow_bool1 (b : bool) : result u32 = - if b then Return 0 else Return 1 - -(** [no_nested_borrows::test_shared_borrow_bool2]: forward function - Source: 'src/no_nested_borrows.rs', lines 501:0-501:40 *) -let test_shared_borrow_bool2 : result u32 = - Return 0 - -(** [no_nested_borrows::test_shared_borrow_enum1]: forward function - Source: 'src/no_nested_borrows.rs', lines 516:0-516:52 *) -let test_shared_borrow_enum1 (l : list_t u32) : result u32 = - begin match l with | List_Cons _ _ -> Return 1 | List_Nil -> Return 0 end - -(** [no_nested_borrows::test_shared_borrow_enum2]: forward function - Source: 'src/no_nested_borrows.rs', lines 528:0-528:40 *) -let test_shared_borrow_enum2 : result u32 = - Return 0 - -(** [no_nested_borrows::incr]: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/no_nested_borrows.rs', lines 539:0-539:24 *) -let incr (x : u32) : result u32 = - u32_add x 1 - -(** [no_nested_borrows::call_incr]: forward function - Source: 'src/no_nested_borrows.rs', lines 543:0-543:35 *) -let call_incr (x : u32) : result u32 = - incr x - -(** [no_nested_borrows::read_then_incr]: forward function - Source: 'src/no_nested_borrows.rs', lines 548:0-548:41 *) -let read_then_incr (x : u32) : result u32 = - let* _ = u32_add x 1 in Return x - -(** [no_nested_borrows::read_then_incr]: backward function 0 - Source: 'src/no_nested_borrows.rs', lines 548:0-548:41 *) -let read_then_incr_back (x : u32) : result u32 = - u32_add x 1 - -(** [no_nested_borrows::Tuple] - Source: 'src/no_nested_borrows.rs', lines 554:0-554:24 *) -type tuple_t (t1 t2 : Type0) = t1 * t2 - -(** [no_nested_borrows::use_tuple_struct]: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/no_nested_borrows.rs', lines 556:0-556:48 *) -let use_tuple_struct (x : tuple_t u32 u32) : result (tuple_t u32 u32) = - let (_, i) = x in Return (1, i) - -(** [no_nested_borrows::create_tuple_struct]: forward function - Source: 'src/no_nested_borrows.rs', lines 560:0-560:61 *) -let create_tuple_struct (x : u32) (y : u64) : result (tuple_t u32 u64) = - Return (x, y) - -(** [no_nested_borrows::IdType] - Source: 'src/no_nested_borrows.rs', lines 565:0-565:20 *) -type idType_t (t : Type0) = t - -(** [no_nested_borrows::use_id_type]: forward function - Source: 'src/no_nested_borrows.rs', lines 567:0-567:40 *) -let use_id_type (t : Type0) (x : idType_t t) : result t = - Return x - -(** [no_nested_borrows::create_id_type]: forward function - Source: 'src/no_nested_borrows.rs', lines 571:0-571:43 *) -let create_id_type (t : Type0) (x : t) : result (idType_t t) = - Return x - diff --git a/tests/fstar-split/misc/Paper.fst b/tests/fstar-split/misc/Paper.fst deleted file mode 100644 index 0c44d78b..00000000 --- a/tests/fstar-split/misc/Paper.fst +++ /dev/null @@ -1,109 +0,0 @@ -(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *) -(** [paper] *) -module Paper -open Primitives - -#set-options "--z3rlimit 50 --fuel 1 --ifuel 1" - -(** [paper::ref_incr]: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/paper.rs', lines 4:0-4:28 *) -let ref_incr (x : i32) : result i32 = - i32_add x 1 - -(** [paper::test_incr]: forward function - Source: 'src/paper.rs', lines 8:0-8:18 *) -let test_incr : result unit = - let* x = ref_incr 0 in if not (x = 1) then Fail Failure else Return () - -(** Unit test for [paper::test_incr] *) -let _ = assert_norm (test_incr = Return ()) - -(** [paper::choose]: forward function - Source: 'src/paper.rs', lines 15:0-15:70 *) -let choose (t : Type0) (b : bool) (x : t) (y : t) : result t = - if b then Return x else Return y - -(** [paper::choose]: backward function 0 - Source: 'src/paper.rs', lines 15:0-15:70 *) -let choose_back - (t : Type0) (b : bool) (x : t) (y : t) (ret : t) : result (t & t) = - if b then Return (ret, y) else Return (x, ret) - -(** [paper::test_choose]: forward function - Source: 'src/paper.rs', lines 23:0-23:20 *) -let test_choose : result unit = - let* z = choose i32 true 0 0 in - let* z1 = i32_add z 1 in - if not (z1 = 1) - then Fail Failure - else - let* (x, y) = choose_back i32 true 0 0 z1 in - if not (x = 1) - then Fail Failure - else if not (y = 0) then Fail Failure else Return () - -(** Unit test for [paper::test_choose] *) -let _ = assert_norm (test_choose = Return ()) - -(** [paper::List] - Source: 'src/paper.rs', lines 35:0-35:16 *) -type list_t (t : Type0) = -| List_Cons : t -> list_t t -> list_t t -| List_Nil : list_t t - -(** [paper::list_nth_mut]: forward function - Source: 'src/paper.rs', lines 42:0-42:67 *) -let rec list_nth_mut (t : Type0) (l : list_t t) (i : u32) : result t = - begin match l with - | List_Cons x tl -> - if i = 0 then Return x else let* i1 = u32_sub i 1 in list_nth_mut t tl i1 - | List_Nil -> Fail Failure - end - -(** [paper::list_nth_mut]: backward function 0 - Source: 'src/paper.rs', lines 42:0-42:67 *) -let rec list_nth_mut_back - (t : Type0) (l : list_t t) (i : u32) (ret : t) : result (list_t t) = - begin match l with - | List_Cons x tl -> - if i = 0 - then Return (List_Cons ret tl) - else - let* i1 = u32_sub i 1 in - let* tl1 = list_nth_mut_back t tl i1 ret in - Return (List_Cons x tl1) - | List_Nil -> Fail Failure - end - -(** [paper::sum]: forward function - Source: 'src/paper.rs', lines 57:0-57:32 *) -let rec sum (l : list_t i32) : result i32 = - begin match l with - | List_Cons x tl -> let* i = sum tl in i32_add x i - | List_Nil -> Return 0 - end - -(** [paper::test_nth]: forward function - Source: 'src/paper.rs', lines 68:0-68:17 *) -let test_nth : result unit = - let l = List_Cons 3 List_Nil in - let l1 = List_Cons 2 l in - let* x = list_nth_mut i32 (List_Cons 1 l1) 2 in - let* x1 = i32_add x 1 in - let* l2 = list_nth_mut_back i32 (List_Cons 1 l1) 2 x1 in - let* i = sum l2 in - if not (i = 7) then Fail Failure else Return () - -(** Unit test for [paper::test_nth] *) -let _ = assert_norm (test_nth = Return ()) - -(** [paper::call_choose]: forward function - Source: 'src/paper.rs', lines 76:0-76:44 *) -let call_choose (p : (u32 & u32)) : result u32 = - let (px, py) = p in - let* pz = choose u32 true px py in - let* pz1 = u32_add pz 1 in - let* (px1, _) = choose_back u32 true px py pz1 in - Return px1 - diff --git a/tests/fstar-split/misc/PoloniusList.fst b/tests/fstar-split/misc/PoloniusList.fst deleted file mode 100644 index 8a8b7ae3..00000000 --- a/tests/fstar-split/misc/PoloniusList.fst +++ /dev/null @@ -1,34 +0,0 @@ -(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *) -(** [polonius_list] *) -module PoloniusList -open Primitives - -#set-options "--z3rlimit 50 --fuel 1 --ifuel 1" - -(** [polonius_list::List] - Source: 'src/polonius_list.rs', lines 3:0-3:16 *) -type list_t (t : Type0) = -| List_Cons : t -> list_t t -> list_t t -| List_Nil : list_t t - -(** [polonius_list::get_list_at_x]: forward function - Source: 'src/polonius_list.rs', lines 13:0-13:76 *) -let rec get_list_at_x (ls : list_t u32) (x : u32) : result (list_t u32) = - begin match ls with - | List_Cons hd tl -> - if hd = x then Return (List_Cons hd tl) else get_list_at_x tl x - | List_Nil -> Return List_Nil - end - -(** [polonius_list::get_list_at_x]: backward function 0 - Source: 'src/polonius_list.rs', lines 13:0-13:76 *) -let rec get_list_at_x_back - (ls : list_t u32) (x : u32) (ret : list_t u32) : result (list_t u32) = - begin match ls with - | List_Cons hd tl -> - if hd = x - then Return ret - else let* tl1 = get_list_at_x_back tl x ret in Return (List_Cons hd tl1) - | List_Nil -> Return ret - end - diff --git a/tests/fstar-split/misc/Primitives.fst b/tests/fstar-split/misc/Primitives.fst deleted file mode 100644 index a3ffbde4..00000000 --- a/tests/fstar-split/misc/Primitives.fst +++ /dev/null @@ -1,884 +0,0 @@ -/// This file lists primitive and assumed functions and types -module Primitives -open FStar.Mul -open FStar.List.Tot - -#set-options "--z3rlimit 15 --fuel 0 --ifuel 1" - -(*** Utilities *) -val list_update (#a : Type0) (ls : list a) (i : nat{i < length ls}) (x : a) : - ls':list a{ - length ls' = length ls /\ - index ls' i == x - } -#push-options "--fuel 1" -let rec list_update #a ls i x = - match ls with - | x' :: ls -> if i = 0 then x :: ls else x' :: list_update ls (i-1) x -#pop-options - -(*** Result *) -type error : Type0 = -| Failure -| OutOfFuel - -type result (a : Type0) : Type0 = -| Return : v:a -> result a -| Fail : e:error -> result a - -// Monadic return operator -unfold let return (#a : Type0) (x : a) : result a = Return x - -// Monadic bind operator. -// Allows to use the notation: -// ``` -// let* x = y in -// ... -// ``` -unfold let (let*) (#a #b : Type0) (m: result a) - (f: (x:a) -> Pure (result b) (requires (m == Return x)) (ensures fun _ -> True)) : - result b = - match m with - | Return x -> f x - | Fail e -> Fail e - -// Monadic assert(...) -let massert (b:bool) : result unit = if b then Return () else Fail Failure - -// Normalize and unwrap a successful result (used for globals). -let eval_global (#a : Type0) (x : result a{Return? (normalize_term x)}) : a = Return?.v x - -(*** Misc *) -type char = FStar.Char.char -type string = string - -let is_zero (n: nat) : bool = n = 0 -let decrease (n: nat{n > 0}) : nat = n - 1 - -let core_mem_replace (a : Type0) (x : a) (y : a) : a = x -let core_mem_replace_back (a : Type0) (x : a) (y : a) : a = y - -// We don't really use raw pointers for now -type mut_raw_ptr (t : Type0) = { v : t } -type const_raw_ptr (t : Type0) = { v : t } - -(*** Scalars *) -/// Rem.: most of the following code was partially generated - -assume val size_numbits : pos - -// TODO: we could use FStar.Int.int_t and FStar.UInt.int_t - -let isize_min : int = -9223372036854775808 // TODO: should be opaque -let isize_max : int = 9223372036854775807 // TODO: should be opaque -let i8_min : int = -128 -let i8_max : int = 127 -let i16_min : int = -32768 -let i16_max : int = 32767 -let i32_min : int = -2147483648 -let i32_max : int = 2147483647 -let i64_min : int = -9223372036854775808 -let i64_max : int = 9223372036854775807 -let i128_min : int = -170141183460469231731687303715884105728 -let i128_max : int = 170141183460469231731687303715884105727 -let usize_min : int = 0 -let usize_max : int = 4294967295 // TODO: should be opaque -let u8_min : int = 0 -let u8_max : int = 255 -let u16_min : int = 0 -let u16_max : int = 65535 -let u32_min : int = 0 -let u32_max : int = 4294967295 -let u64_min : int = 0 -let u64_max : int = 18446744073709551615 -let u128_min : int = 0 -let u128_max : int = 340282366920938463463374607431768211455 - -type scalar_ty = -| Isize -| I8 -| I16 -| I32 -| I64 -| I128 -| Usize -| U8 -| U16 -| U32 -| U64 -| U128 - -let is_unsigned = function - | Isize | I8 | I16 | I32 | I64 | I128 -> false - | Usize | U8 | U16 | U32 | U64 | U128 -> true - -let scalar_min (ty : scalar_ty) : int = - match ty with - | Isize -> isize_min - | I8 -> i8_min - | I16 -> i16_min - | I32 -> i32_min - | I64 -> i64_min - | I128 -> i128_min - | Usize -> usize_min - | U8 -> u8_min - | U16 -> u16_min - | U32 -> u32_min - | U64 -> u64_min - | U128 -> u128_min - -let scalar_max (ty : scalar_ty) : int = - match ty with - | Isize -> isize_max - | I8 -> i8_max - | I16 -> i16_max - | I32 -> i32_max - | I64 -> i64_max - | I128 -> i128_max - | Usize -> usize_max - | U8 -> u8_max - | U16 -> u16_max - | U32 -> u32_max - | U64 -> u64_max - | U128 -> u128_max - -type scalar (ty : scalar_ty) : eqtype = x:int{scalar_min ty <= x && x <= scalar_max ty} - -let mk_scalar (ty : scalar_ty) (x : int) : result (scalar ty) = - if scalar_min ty <= x && scalar_max ty >= x then Return x else Fail Failure - -let scalar_neg (#ty : scalar_ty) (x : scalar ty) : result (scalar ty) = mk_scalar ty (-x) - -let scalar_div (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - if y <> 0 then mk_scalar ty (x / y) else Fail Failure - -/// The remainder operation -let int_rem (x : int) (y : int{y <> 0}) : int = - if x >= 0 then (x % y) else -(x % y) - -(* Checking consistency with Rust *) -let _ = assert_norm(int_rem 1 2 = 1) -let _ = assert_norm(int_rem (-1) 2 = -1) -let _ = assert_norm(int_rem 1 (-2) = 1) -let _ = assert_norm(int_rem (-1) (-2) = -1) - -let scalar_rem (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - if y <> 0 then mk_scalar ty (int_rem x y) else Fail Failure - -let scalar_add (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - mk_scalar ty (x + y) - -let scalar_sub (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - mk_scalar ty (x - y) - -let scalar_mul (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - mk_scalar ty (x * y) - -let scalar_xor (#ty : scalar_ty) - (x : scalar ty) (y : scalar ty) : scalar ty = - match ty with - | U8 -> FStar.UInt.logxor #8 x y - | U16 -> FStar.UInt.logxor #16 x y - | U32 -> FStar.UInt.logxor #32 x y - | U64 -> FStar.UInt.logxor #64 x y - | U128 -> FStar.UInt.logxor #128 x y - | Usize -> admit() // TODO - | I8 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 8); - normalize_spec (scalar I8); - FStar.Int.logxor #8 x y - | I16 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 16); - normalize_spec (scalar I16); - FStar.Int.logxor #16 x y - | I32 -> FStar.Int.logxor #32 x y - | I64 -> FStar.Int.logxor #64 x y - | I128 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 128); - normalize_spec (scalar I128); - FStar.Int.logxor #128 x y - | Isize -> admit() // TODO - -let scalar_or (#ty : scalar_ty) - (x : scalar ty) (y : scalar ty) : scalar ty = - match ty with - | U8 -> FStar.UInt.logor #8 x y - | U16 -> FStar.UInt.logor #16 x y - | U32 -> FStar.UInt.logor #32 x y - | U64 -> FStar.UInt.logor #64 x y - | U128 -> FStar.UInt.logor #128 x y - | Usize -> admit() // TODO - | I8 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 8); - normalize_spec (scalar I8); - FStar.Int.logor #8 x y - | I16 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 16); - normalize_spec (scalar I16); - FStar.Int.logor #16 x y - | I32 -> FStar.Int.logor #32 x y - | I64 -> FStar.Int.logor #64 x y - | I128 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 128); - normalize_spec (scalar I128); - FStar.Int.logor #128 x y - | Isize -> admit() // TODO - -let scalar_and (#ty : scalar_ty) - (x : scalar ty) (y : scalar ty) : scalar ty = - match ty with - | U8 -> FStar.UInt.logand #8 x y - | U16 -> FStar.UInt.logand #16 x y - | U32 -> FStar.UInt.logand #32 x y - | U64 -> FStar.UInt.logand #64 x y - | U128 -> FStar.UInt.logand #128 x y - | Usize -> admit() // TODO - | I8 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 8); - normalize_spec (scalar I8); - FStar.Int.logand #8 x y - | I16 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 16); - normalize_spec (scalar I16); - FStar.Int.logand #16 x y - | I32 -> FStar.Int.logand #32 x y - | I64 -> FStar.Int.logand #64 x y - | I128 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 128); - normalize_spec (scalar I128); - FStar.Int.logand #128 x y - | Isize -> admit() // TODO - -// Shift left -let scalar_shl (#ty0 #ty1 : scalar_ty) - (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) = - admit() - -// Shift right -let scalar_shr (#ty0 #ty1 : scalar_ty) - (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) = - admit() - -(** Cast an integer from a [src_ty] to a [tgt_ty] *) -// TODO: check the semantics of casts in Rust -let scalar_cast (src_ty : scalar_ty) (tgt_ty : scalar_ty) (x : scalar src_ty) : result (scalar tgt_ty) = - mk_scalar tgt_ty x - -// This can't fail, but for now we make all casts faillible (easier for the translation) -let scalar_cast_bool (tgt_ty : scalar_ty) (x : bool) : result (scalar tgt_ty) = - mk_scalar tgt_ty (if x then 1 else 0) - -/// The scalar types -type isize : eqtype = scalar Isize -type i8 : eqtype = scalar I8 -type i16 : eqtype = scalar I16 -type i32 : eqtype = scalar I32 -type i64 : eqtype = scalar I64 -type i128 : eqtype = scalar I128 -type usize : eqtype = scalar Usize -type u8 : eqtype = scalar U8 -type u16 : eqtype = scalar U16 -type u32 : eqtype = scalar U32 -type u64 : eqtype = scalar U64 -type u128 : eqtype = scalar U128 - - -let core_isize_min : isize = isize_min -let core_isize_max : isize = isize_max -let core_i8_min : i8 = i8_min -let core_i8_max : i8 = i8_max -let core_i16_min : i16 = i16_min -let core_i16_max : i16 = i16_max -let core_i32_min : i32 = i32_min -let core_i32_max : i32 = i32_max -let core_i64_min : i64 = i64_min -let core_i64_max : i64 = i64_max -let core_i128_min : i128 = i128_min -let core_i128_max : i128 = i128_max - -let core_usize_min : usize = usize_min -let core_usize_max : usize = usize_max -let core_u8_min : u8 = u8_min -let core_u8_max : u8 = u8_max -let core_u16_min : u16 = u16_min -let core_u16_max : u16 = u16_max -let core_u32_min : u32 = u32_min -let core_u32_max : u32 = u32_max -let core_u64_min : u64 = u64_min -let core_u64_max : u64 = u64_max -let core_u128_min : u128 = u128_min -let core_u128_max : u128 = u128_max - -/// Negation -let isize_neg = scalar_neg #Isize -let i8_neg = scalar_neg #I8 -let i16_neg = scalar_neg #I16 -let i32_neg = scalar_neg #I32 -let i64_neg = scalar_neg #I64 -let i128_neg = scalar_neg #I128 - -/// Division -let isize_div = scalar_div #Isize -let i8_div = scalar_div #I8 -let i16_div = scalar_div #I16 -let i32_div = scalar_div #I32 -let i64_div = scalar_div #I64 -let i128_div = scalar_div #I128 -let usize_div = scalar_div #Usize -let u8_div = scalar_div #U8 -let u16_div = scalar_div #U16 -let u32_div = scalar_div #U32 -let u64_div = scalar_div #U64 -let u128_div = scalar_div #U128 - -/// Remainder -let isize_rem = scalar_rem #Isize -let i8_rem = scalar_rem #I8 -let i16_rem = scalar_rem #I16 -let i32_rem = scalar_rem #I32 -let i64_rem = scalar_rem #I64 -let i128_rem = scalar_rem #I128 -let usize_rem = scalar_rem #Usize -let u8_rem = scalar_rem #U8 -let u16_rem = scalar_rem #U16 -let u32_rem = scalar_rem #U32 -let u64_rem = scalar_rem #U64 -let u128_rem = scalar_rem #U128 - -/// Addition -let isize_add = scalar_add #Isize -let i8_add = scalar_add #I8 -let i16_add = scalar_add #I16 -let i32_add = scalar_add #I32 -let i64_add = scalar_add #I64 -let i128_add = scalar_add #I128 -let usize_add = scalar_add #Usize -let u8_add = scalar_add #U8 -let u16_add = scalar_add #U16 -let u32_add = scalar_add #U32 -let u64_add = scalar_add #U64 -let u128_add = scalar_add #U128 - -/// Subtraction -let isize_sub = scalar_sub #Isize -let i8_sub = scalar_sub #I8 -let i16_sub = scalar_sub #I16 -let i32_sub = scalar_sub #I32 -let i64_sub = scalar_sub #I64 -let i128_sub = scalar_sub #I128 -let usize_sub = scalar_sub #Usize -let u8_sub = scalar_sub #U8 -let u16_sub = scalar_sub #U16 -let u32_sub = scalar_sub #U32 -let u64_sub = scalar_sub #U64 -let u128_sub = scalar_sub #U128 - -/// Multiplication -let isize_mul = scalar_mul #Isize -let i8_mul = scalar_mul #I8 -let i16_mul = scalar_mul #I16 -let i32_mul = scalar_mul #I32 -let i64_mul = scalar_mul #I64 -let i128_mul = scalar_mul #I128 -let usize_mul = scalar_mul #Usize -let u8_mul = scalar_mul #U8 -let u16_mul = scalar_mul #U16 -let u32_mul = scalar_mul #U32 -let u64_mul = scalar_mul #U64 -let u128_mul = scalar_mul #U128 - -/// Xor -let u8_xor = scalar_xor #U8 -let u16_xor = scalar_xor #U16 -let u32_xor = scalar_xor #U32 -let u64_xor = scalar_xor #U64 -let u128_xor = scalar_xor #U128 -let usize_xor = scalar_xor #Usize -let i8_xor = scalar_xor #I8 -let i16_xor = scalar_xor #I16 -let i32_xor = scalar_xor #I32 -let i64_xor = scalar_xor #I64 -let i128_xor = scalar_xor #I128 -let isize_xor = scalar_xor #Isize - -/// Or -let u8_or = scalar_or #U8 -let u16_or = scalar_or #U16 -let u32_or = scalar_or #U32 -let u64_or = scalar_or #U64 -let u128_or = scalar_or #U128 -let usize_or = scalar_or #Usize -let i8_or = scalar_or #I8 -let i16_or = scalar_or #I16 -let i32_or = scalar_or #I32 -let i64_or = scalar_or #I64 -let i128_or = scalar_or #I128 -let isize_or = scalar_or #Isize - -/// And -let u8_and = scalar_and #U8 -let u16_and = scalar_and #U16 -let u32_and = scalar_and #U32 -let u64_and = scalar_and #U64 -let u128_and = scalar_and #U128 -let usize_and = scalar_and #Usize -let i8_and = scalar_and #I8 -let i16_and = scalar_and #I16 -let i32_and = scalar_and #I32 -let i64_and = scalar_and #I64 -let i128_and = scalar_and #I128 -let isize_and = scalar_and #Isize - -/// Shift left -let u8_shl #ty = scalar_shl #U8 #ty -let u16_shl #ty = scalar_shl #U16 #ty -let u32_shl #ty = scalar_shl #U32 #ty -let u64_shl #ty = scalar_shl #U64 #ty -let u128_shl #ty = scalar_shl #U128 #ty -let usize_shl #ty = scalar_shl #Usize #ty -let i8_shl #ty = scalar_shl #I8 #ty -let i16_shl #ty = scalar_shl #I16 #ty -let i32_shl #ty = scalar_shl #I32 #ty -let i64_shl #ty = scalar_shl #I64 #ty -let i128_shl #ty = scalar_shl #I128 #ty -let isize_shl #ty = scalar_shl #Isize #ty - -/// Shift right -let u8_shr #ty = scalar_shr #U8 #ty -let u16_shr #ty = scalar_shr #U16 #ty -let u32_shr #ty = scalar_shr #U32 #ty -let u64_shr #ty = scalar_shr #U64 #ty -let u128_shr #ty = scalar_shr #U128 #ty -let usize_shr #ty = scalar_shr #Usize #ty -let i8_shr #ty = scalar_shr #I8 #ty -let i16_shr #ty = scalar_shr #I16 #ty -let i32_shr #ty = scalar_shr #I32 #ty -let i64_shr #ty = scalar_shr #I64 #ty -let i128_shr #ty = scalar_shr #I128 #ty -let isize_shr #ty = scalar_shr #Isize #ty - -(*** core::ops *) - -// Trait declaration: [core::ops::index::Index] -noeq type core_ops_index_Index (self idx : Type0) = { - output : Type0; - index : self → idx → result output -} - -// Trait declaration: [core::ops::index::IndexMut] -noeq type core_ops_index_IndexMut (self idx : Type0) = { - indexInst : core_ops_index_Index self idx; - index_mut : self → idx → result indexInst.output; - index_mut_back : self → idx → indexInst.output → result self; -} - -// Trait declaration [core::ops::deref::Deref] -noeq type core_ops_deref_Deref (self : Type0) = { - target : Type0; - deref : self → result target; -} - -// Trait declaration [core::ops::deref::DerefMut] -noeq type core_ops_deref_DerefMut (self : Type0) = { - derefInst : core_ops_deref_Deref self; - deref_mut : self → result derefInst.target; - deref_mut_back : self → derefInst.target → result self; -} - -type core_ops_range_Range (a : Type0) = { - start : a; - end_ : a; -} - -(*** [alloc] *) - -let alloc_boxed_Box_deref (t : Type0) (x : t) : result t = Return x -let alloc_boxed_Box_deref_mut (t : Type0) (x : t) : result t = Return x -let alloc_boxed_Box_deref_mut_back (t : Type) (_ : t) (x : t) : result t = Return x - -// Trait instance -let alloc_boxed_Box_coreopsDerefInst (self : Type0) : core_ops_deref_Deref self = { - target = self; - deref = alloc_boxed_Box_deref self; -} - -// Trait instance -let alloc_boxed_Box_coreopsDerefMutInst (self : Type0) : core_ops_deref_DerefMut self = { - derefInst = alloc_boxed_Box_coreopsDerefInst self; - deref_mut = alloc_boxed_Box_deref_mut self; - deref_mut_back = alloc_boxed_Box_deref_mut_back self; -} - -(*** Array *) -type array (a : Type0) (n : usize) = s:list a{length s = n} - -// We tried putting the normalize_term condition as a refinement on the list -// but it didn't work. It works with the requires clause. -let mk_array (a : Type0) (n : usize) - (l : list a) : - Pure (array a n) - (requires (normalize_term(FStar.List.Tot.length l) = n)) - (ensures (fun _ -> True)) = - normalize_term_spec (FStar.List.Tot.length l); - l - -let array_index_usize (a : Type0) (n : usize) (x : array a n) (i : usize) : result a = - if i < length x then Return (index x i) - else Fail Failure - -let array_update_usize (a : Type0) (n : usize) (x : array a n) (i : usize) (nx : a) : result (array a n) = - if i < length x then Return (list_update x i nx) - else Fail Failure - -(*** Slice *) -type slice (a : Type0) = s:list a{length s <= usize_max} - -let slice_len (a : Type0) (s : slice a) : usize = length s - -let slice_index_usize (a : Type0) (x : slice a) (i : usize) : result a = - if i < length x then Return (index x i) - else Fail Failure - -let slice_update_usize (a : Type0) (x : slice a) (i : usize) (nx : a) : result (slice a) = - if i < length x then Return (list_update x i nx) - else Fail Failure - -(*** Subslices *) - -let array_to_slice (a : Type0) (n : usize) (x : array a n) : result (slice a) = Return x -let array_from_slice (a : Type0) (n : usize) (x : array a n) (s : slice a) : result (array a n) = - if length s = n then Return s - else Fail Failure - -// TODO: finish the definitions below (there lacks [List.drop] and [List.take] in the standard library *) -let array_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) : result (slice a) = - admit() - -let array_update_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) (ns : slice a) : result (array a n) = - admit() - -let array_repeat (a : Type0) (n : usize) (x : a) : array a n = - admit() - -let slice_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) : result (slice a) = - admit() - -let slice_update_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) (ns : slice a) : result (slice a) = - admit() - -(*** Vector *) -type alloc_vec_Vec (a : Type0) = v:list a{length v <= usize_max} - -let alloc_vec_Vec_new (a : Type0) : alloc_vec_Vec a = assert_norm(length #a [] == 0); [] -let alloc_vec_Vec_len (a : Type0) (v : alloc_vec_Vec a) : usize = length v - -// Helper -let alloc_vec_Vec_index_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : result a = - if i < length v then Return (index v i) else Fail Failure -// Helper -let alloc_vec_Vec_update_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) = - if i < length v then Return (list_update v i x) else Fail Failure - -// The **forward** function shouldn't be used -let alloc_vec_Vec_push_fwd (a : Type0) (v : alloc_vec_Vec a) (x : a) : unit = () -let alloc_vec_Vec_push (a : Type0) (v : alloc_vec_Vec a) (x : a) : - Pure (result (alloc_vec_Vec a)) - (requires True) - (ensures (fun res -> - match res with - | Fail e -> e == Failure - | Return v' -> length v' = length v + 1)) = - if length v < usize_max then begin - (**) assert_norm(length [x] == 1); - (**) append_length v [x]; - (**) assert(length (append v [x]) = length v + 1); - Return (append v [x]) - end - else Fail Failure - -// The **forward** function shouldn't be used -let alloc_vec_Vec_insert_fwd (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result unit = - if i < length v then Return () else Fail Failure -let alloc_vec_Vec_insert (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) = - if i < length v then Return (list_update v i x) else Fail Failure - -// Trait declaration: [core::slice::index::private_slice_index::Sealed] -type core_slice_index_private_slice_index_Sealed (self : Type0) = unit - -// Trait declaration: [core::slice::index::SliceIndex] -noeq type core_slice_index_SliceIndex (self t : Type0) = { - sealedInst : core_slice_index_private_slice_index_Sealed self; - output : Type0; - get : self → t → result (option output); - get_mut : self → t → result (option output); - get_mut_back : self → t → option output → result t; - get_unchecked : self → const_raw_ptr t → result (const_raw_ptr output); - get_unchecked_mut : self → mut_raw_ptr t → result (mut_raw_ptr output); - index : self → t → result output; - index_mut : self → t → result output; - index_mut_back : self → t → output → result t; -} - -// [core::slice::index::[T]::index]: forward function -let core_slice_index_Slice_index - (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (s : slice t) (i : idx) : result inst.output = - let* x = inst.get i s in - match x with - | None -> Fail Failure - | Some x -> Return x - -// [core::slice::index::Range:::get]: forward function -let core_slice_index_RangeUsize_get (t : Type0) (i : core_ops_range_Range usize) (s : slice t) : - result (option (slice t)) = - admit () // TODO - -// [core::slice::index::Range::get_mut]: forward function -let core_slice_index_RangeUsize_get_mut - (t : Type0) : core_ops_range_Range usize → slice t → result (option (slice t)) = - admit () // TODO - -// [core::slice::index::Range::get_mut]: backward function 0 -let core_slice_index_RangeUsize_get_mut_back - (t : Type0) : - core_ops_range_Range usize → slice t → option (slice t) → result (slice t) = - admit () // TODO - -// [core::slice::index::Range::get_unchecked]: forward function -let core_slice_index_RangeUsize_get_unchecked - (t : Type0) : - core_ops_range_Range usize → const_raw_ptr (slice t) → result (const_raw_ptr (slice t)) = - // Don't know what the model should be - for now we always fail to make - // sure code which uses it fails - fun _ _ -> Fail Failure - -// [core::slice::index::Range::get_unchecked_mut]: forward function -let core_slice_index_RangeUsize_get_unchecked_mut - (t : Type0) : - core_ops_range_Range usize → mut_raw_ptr (slice t) → result (mut_raw_ptr (slice t)) = - // Don't know what the model should be - for now we always fail to make - // sure code which uses it fails - fun _ _ -> Fail Failure - -// [core::slice::index::Range::index]: forward function -let core_slice_index_RangeUsize_index - (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) = - admit () // TODO - -// [core::slice::index::Range::index_mut]: forward function -let core_slice_index_RangeUsize_index_mut - (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) = - admit () // TODO - -// [core::slice::index::Range::index_mut]: backward function 0 -let core_slice_index_RangeUsize_index_mut_back - (t : Type0) : core_ops_range_Range usize → slice t → slice t → result (slice t) = - admit () // TODO - -// [core::slice::index::[T]::index_mut]: forward function -let core_slice_index_Slice_index_mut - (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) : - slice t → idx → result inst.output = - admit () // - -// [core::slice::index::[T]::index_mut]: backward function 0 -let core_slice_index_Slice_index_mut_back - (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) : - slice t → idx → inst.output → result (slice t) = - admit () // TODO - -// [core::array::[T; N]::index]: forward function -let core_array_Array_index - (t idx : Type0) (n : usize) (inst : core_ops_index_Index (slice t) idx) - (a : array t n) (i : idx) : result inst.output = - admit () // TODO - -// [core::array::[T; N]::index_mut]: forward function -let core_array_Array_index_mut - (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx) - (a : array t n) (i : idx) : result inst.indexInst.output = - admit () // TODO - -// [core::array::[T; N]::index_mut]: backward function 0 -let core_array_Array_index_mut_back - (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx) - (a : array t n) (i : idx) (x : inst.indexInst.output) : result (array t n) = - admit () // TODO - -// Trait implementation: [core::slice::index::private_slice_index::Range] -let core_slice_index_private_slice_index_SealedRangeUsizeInst - : core_slice_index_private_slice_index_Sealed (core_ops_range_Range usize) = () - -// Trait implementation: [core::slice::index::Range] -let core_slice_index_SliceIndexRangeUsizeSliceTInst (t : Type0) : - core_slice_index_SliceIndex (core_ops_range_Range usize) (slice t) = { - sealedInst = core_slice_index_private_slice_index_SealedRangeUsizeInst; - output = slice t; - get = core_slice_index_RangeUsize_get t; - get_mut = core_slice_index_RangeUsize_get_mut t; - get_mut_back = core_slice_index_RangeUsize_get_mut_back t; - get_unchecked = core_slice_index_RangeUsize_get_unchecked t; - get_unchecked_mut = core_slice_index_RangeUsize_get_unchecked_mut t; - index = core_slice_index_RangeUsize_index t; - index_mut = core_slice_index_RangeUsize_index_mut t; - index_mut_back = core_slice_index_RangeUsize_index_mut_back t; -} - -// Trait implementation: [core::slice::index::[T]] -let core_ops_index_IndexSliceTIInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_Index (slice t) idx = { - output = inst.output; - index = core_slice_index_Slice_index t idx inst; -} - -// Trait implementation: [core::slice::index::[T]] -let core_ops_index_IndexMutSliceTIInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_IndexMut (slice t) idx = { - indexInst = core_ops_index_IndexSliceTIInst t idx inst; - index_mut = core_slice_index_Slice_index_mut t idx inst; - index_mut_back = core_slice_index_Slice_index_mut_back t idx inst; -} - -// Trait implementation: [core::array::[T; N]] -let core_ops_index_IndexArrayInst (t idx : Type0) (n : usize) - (inst : core_ops_index_Index (slice t) idx) : - core_ops_index_Index (array t n) idx = { - output = inst.output; - index = core_array_Array_index t idx n inst; -} - -// Trait implementation: [core::array::[T; N]] -let core_ops_index_IndexMutArrayIInst (t idx : Type0) (n : usize) - (inst : core_ops_index_IndexMut (slice t) idx) : - core_ops_index_IndexMut (array t n) idx = { - indexInst = core_ops_index_IndexArrayInst t idx n inst.indexInst; - index_mut = core_array_Array_index_mut t idx n inst; - index_mut_back = core_array_Array_index_mut_back t idx n inst; -} - -// [core::slice::index::usize::get]: forward function -let core_slice_index_usize_get - (t : Type0) : usize → slice t → result (option t) = - admit () // TODO - -// [core::slice::index::usize::get_mut]: forward function -let core_slice_index_usize_get_mut - (t : Type0) : usize → slice t → result (option t) = - admit () // TODO - -// [core::slice::index::usize::get_mut]: backward function 0 -let core_slice_index_usize_get_mut_back - (t : Type0) : usize → slice t → option t → result (slice t) = - admit () // TODO - -// [core::slice::index::usize::get_unchecked]: forward function -let core_slice_index_usize_get_unchecked - (t : Type0) : usize → const_raw_ptr (slice t) → result (const_raw_ptr t) = - admit () // TODO - -// [core::slice::index::usize::get_unchecked_mut]: forward function -let core_slice_index_usize_get_unchecked_mut - (t : Type0) : usize → mut_raw_ptr (slice t) → result (mut_raw_ptr t) = - admit () // TODO - -// [core::slice::index::usize::index]: forward function -let core_slice_index_usize_index (t : Type0) : usize → slice t → result t = - admit () // TODO - -// [core::slice::index::usize::index_mut]: forward function -let core_slice_index_usize_index_mut (t : Type0) : usize → slice t → result t = - admit () // TODO - -// [core::slice::index::usize::index_mut]: backward function 0 -let core_slice_index_usize_index_mut_back - (t : Type0) : usize → slice t → t → result (slice t) = - admit () // TODO - -// Trait implementation: [core::slice::index::private_slice_index::usize] -let core_slice_index_private_slice_index_SealedUsizeInst - : core_slice_index_private_slice_index_Sealed usize = () - -// Trait implementation: [core::slice::index::usize] -let core_slice_index_SliceIndexUsizeSliceTInst (t : Type0) : - core_slice_index_SliceIndex usize (slice t) = { - sealedInst = core_slice_index_private_slice_index_SealedUsizeInst; - output = t; - get = core_slice_index_usize_get t; - get_mut = core_slice_index_usize_get_mut t; - get_mut_back = core_slice_index_usize_get_mut_back t; - get_unchecked = core_slice_index_usize_get_unchecked t; - get_unchecked_mut = core_slice_index_usize_get_unchecked_mut t; - index = core_slice_index_usize_index t; - index_mut = core_slice_index_usize_index_mut t; - index_mut_back = core_slice_index_usize_index_mut_back t; -} - -// [alloc::vec::Vec::index]: forward function -let alloc_vec_Vec_index (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (self : alloc_vec_Vec t) (i : idx) : result inst.output = - admit () // TODO - -// [alloc::vec::Vec::index_mut]: forward function -let alloc_vec_Vec_index_mut (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (self : alloc_vec_Vec t) (i : idx) : result inst.output = - admit () // TODO - -// [alloc::vec::Vec::index_mut]: backward function 0 -let alloc_vec_Vec_index_mut_back - (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (self : alloc_vec_Vec t) (i : idx) (x : inst.output) : result (alloc_vec_Vec t) = - admit () // TODO - -// Trait implementation: [alloc::vec::Vec] -let alloc_vec_Vec_coreopsindexIndexInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_Index (alloc_vec_Vec t) idx = { - output = inst.output; - index = alloc_vec_Vec_index t idx inst; -} - -// Trait implementation: [alloc::vec::Vec] -let alloc_vec_Vec_coreopsindexIndexMutInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_IndexMut (alloc_vec_Vec t) idx = { - indexInst = alloc_vec_Vec_coreopsindexIndexInst t idx inst; - index_mut = alloc_vec_Vec_index_mut t idx inst; - index_mut_back = alloc_vec_Vec_index_mut_back t idx inst; -} - -(*** Theorems *) - -let alloc_vec_Vec_index_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : - Lemma ( - alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i == - alloc_vec_Vec_index_usize v i) - [SMTPat (alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)] - = - admit() - -let alloc_vec_Vec_index_mut_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : - Lemma ( - alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i == - alloc_vec_Vec_index_usize v i) - [SMTPat (alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)] - = - admit() - -let alloc_vec_Vec_index_mut_back_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : - Lemma ( - alloc_vec_Vec_index_mut_back a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i x == - alloc_vec_Vec_update_usize v i x) - [SMTPat (alloc_vec_Vec_index_mut_back a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i x)] - = - admit() diff --git a/tests/fstar-split/traits/Makefile b/tests/fstar-split/traits/Makefile deleted file mode 100644 index fa7d1f36..00000000 --- a/tests/fstar-split/traits/Makefile +++ /dev/null @@ -1,49 +0,0 @@ -# This file was automatically generated - modify ../Makefile.template instead -INCLUDE_DIRS = . - -FSTAR_INCLUDES = $(addprefix --include ,$(INCLUDE_DIRS)) - -FSTAR_HINTS ?= --use_hints --use_hint_hashes --record_hints - -FSTAR_OPTIONS = $(FSTAR_HINTS) \ - --cache_checked_modules $(FSTAR_INCLUDES) --cmi \ - --warn_error '+241@247+285-274' \ - -FSTAR_EXE ?= fstar.exe -FSTAR_NO_FLAGS = $(FSTAR_EXE) --already_cached 'Prims FStar LowStar Steel' --odir obj --cache_dir obj - -FSTAR = $(FSTAR_NO_FLAGS) $(FSTAR_OPTIONS) - -# The F* roots are used to compute the dependency graph, and generate the .depend file -FSTAR_ROOTS ?= $(wildcard *.fst *.fsti) - -# Build all the files -all: $(addprefix obj/,$(addsuffix .checked,$(FSTAR_ROOTS))) - -# This is the right way to ensure the .depend file always gets re-built. -ifeq (,$(filter %-in,$(MAKECMDGOALS))) -ifndef NODEPEND -ifndef MAKE_RESTARTS -.depend: .FORCE - $(FSTAR_NO_FLAGS) --dep full $(notdir $(FSTAR_ROOTS)) > $@ - -.PHONY: .FORCE -.FORCE: -endif -endif - -include .depend -endif - -# For the interactive mode -%.fst-in %.fsti-in: - @echo $(FSTAR_OPTIONS) - -# Generete the .checked files in batch mode -%.checked: - $(FSTAR) $(FSTAR_OPTIONS) $< && \ - touch -c $@ - -.PHONY: clean -clean: - rm -f obj/* diff --git a/tests/fstar-split/traits/Primitives.fst b/tests/fstar-split/traits/Primitives.fst deleted file mode 100644 index a3ffbde4..00000000 --- a/tests/fstar-split/traits/Primitives.fst +++ /dev/null @@ -1,884 +0,0 @@ -/// This file lists primitive and assumed functions and types -module Primitives -open FStar.Mul -open FStar.List.Tot - -#set-options "--z3rlimit 15 --fuel 0 --ifuel 1" - -(*** Utilities *) -val list_update (#a : Type0) (ls : list a) (i : nat{i < length ls}) (x : a) : - ls':list a{ - length ls' = length ls /\ - index ls' i == x - } -#push-options "--fuel 1" -let rec list_update #a ls i x = - match ls with - | x' :: ls -> if i = 0 then x :: ls else x' :: list_update ls (i-1) x -#pop-options - -(*** Result *) -type error : Type0 = -| Failure -| OutOfFuel - -type result (a : Type0) : Type0 = -| Return : v:a -> result a -| Fail : e:error -> result a - -// Monadic return operator -unfold let return (#a : Type0) (x : a) : result a = Return x - -// Monadic bind operator. -// Allows to use the notation: -// ``` -// let* x = y in -// ... -// ``` -unfold let (let*) (#a #b : Type0) (m: result a) - (f: (x:a) -> Pure (result b) (requires (m == Return x)) (ensures fun _ -> True)) : - result b = - match m with - | Return x -> f x - | Fail e -> Fail e - -// Monadic assert(...) -let massert (b:bool) : result unit = if b then Return () else Fail Failure - -// Normalize and unwrap a successful result (used for globals). -let eval_global (#a : Type0) (x : result a{Return? (normalize_term x)}) : a = Return?.v x - -(*** Misc *) -type char = FStar.Char.char -type string = string - -let is_zero (n: nat) : bool = n = 0 -let decrease (n: nat{n > 0}) : nat = n - 1 - -let core_mem_replace (a : Type0) (x : a) (y : a) : a = x -let core_mem_replace_back (a : Type0) (x : a) (y : a) : a = y - -// We don't really use raw pointers for now -type mut_raw_ptr (t : Type0) = { v : t } -type const_raw_ptr (t : Type0) = { v : t } - -(*** Scalars *) -/// Rem.: most of the following code was partially generated - -assume val size_numbits : pos - -// TODO: we could use FStar.Int.int_t and FStar.UInt.int_t - -let isize_min : int = -9223372036854775808 // TODO: should be opaque -let isize_max : int = 9223372036854775807 // TODO: should be opaque -let i8_min : int = -128 -let i8_max : int = 127 -let i16_min : int = -32768 -let i16_max : int = 32767 -let i32_min : int = -2147483648 -let i32_max : int = 2147483647 -let i64_min : int = -9223372036854775808 -let i64_max : int = 9223372036854775807 -let i128_min : int = -170141183460469231731687303715884105728 -let i128_max : int = 170141183460469231731687303715884105727 -let usize_min : int = 0 -let usize_max : int = 4294967295 // TODO: should be opaque -let u8_min : int = 0 -let u8_max : int = 255 -let u16_min : int = 0 -let u16_max : int = 65535 -let u32_min : int = 0 -let u32_max : int = 4294967295 -let u64_min : int = 0 -let u64_max : int = 18446744073709551615 -let u128_min : int = 0 -let u128_max : int = 340282366920938463463374607431768211455 - -type scalar_ty = -| Isize -| I8 -| I16 -| I32 -| I64 -| I128 -| Usize -| U8 -| U16 -| U32 -| U64 -| U128 - -let is_unsigned = function - | Isize | I8 | I16 | I32 | I64 | I128 -> false - | Usize | U8 | U16 | U32 | U64 | U128 -> true - -let scalar_min (ty : scalar_ty) : int = - match ty with - | Isize -> isize_min - | I8 -> i8_min - | I16 -> i16_min - | I32 -> i32_min - | I64 -> i64_min - | I128 -> i128_min - | Usize -> usize_min - | U8 -> u8_min - | U16 -> u16_min - | U32 -> u32_min - | U64 -> u64_min - | U128 -> u128_min - -let scalar_max (ty : scalar_ty) : int = - match ty with - | Isize -> isize_max - | I8 -> i8_max - | I16 -> i16_max - | I32 -> i32_max - | I64 -> i64_max - | I128 -> i128_max - | Usize -> usize_max - | U8 -> u8_max - | U16 -> u16_max - | U32 -> u32_max - | U64 -> u64_max - | U128 -> u128_max - -type scalar (ty : scalar_ty) : eqtype = x:int{scalar_min ty <= x && x <= scalar_max ty} - -let mk_scalar (ty : scalar_ty) (x : int) : result (scalar ty) = - if scalar_min ty <= x && scalar_max ty >= x then Return x else Fail Failure - -let scalar_neg (#ty : scalar_ty) (x : scalar ty) : result (scalar ty) = mk_scalar ty (-x) - -let scalar_div (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - if y <> 0 then mk_scalar ty (x / y) else Fail Failure - -/// The remainder operation -let int_rem (x : int) (y : int{y <> 0}) : int = - if x >= 0 then (x % y) else -(x % y) - -(* Checking consistency with Rust *) -let _ = assert_norm(int_rem 1 2 = 1) -let _ = assert_norm(int_rem (-1) 2 = -1) -let _ = assert_norm(int_rem 1 (-2) = 1) -let _ = assert_norm(int_rem (-1) (-2) = -1) - -let scalar_rem (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - if y <> 0 then mk_scalar ty (int_rem x y) else Fail Failure - -let scalar_add (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - mk_scalar ty (x + y) - -let scalar_sub (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - mk_scalar ty (x - y) - -let scalar_mul (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = - mk_scalar ty (x * y) - -let scalar_xor (#ty : scalar_ty) - (x : scalar ty) (y : scalar ty) : scalar ty = - match ty with - | U8 -> FStar.UInt.logxor #8 x y - | U16 -> FStar.UInt.logxor #16 x y - | U32 -> FStar.UInt.logxor #32 x y - | U64 -> FStar.UInt.logxor #64 x y - | U128 -> FStar.UInt.logxor #128 x y - | Usize -> admit() // TODO - | I8 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 8); - normalize_spec (scalar I8); - FStar.Int.logxor #8 x y - | I16 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 16); - normalize_spec (scalar I16); - FStar.Int.logxor #16 x y - | I32 -> FStar.Int.logxor #32 x y - | I64 -> FStar.Int.logxor #64 x y - | I128 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 128); - normalize_spec (scalar I128); - FStar.Int.logxor #128 x y - | Isize -> admit() // TODO - -let scalar_or (#ty : scalar_ty) - (x : scalar ty) (y : scalar ty) : scalar ty = - match ty with - | U8 -> FStar.UInt.logor #8 x y - | U16 -> FStar.UInt.logor #16 x y - | U32 -> FStar.UInt.logor #32 x y - | U64 -> FStar.UInt.logor #64 x y - | U128 -> FStar.UInt.logor #128 x y - | Usize -> admit() // TODO - | I8 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 8); - normalize_spec (scalar I8); - FStar.Int.logor #8 x y - | I16 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 16); - normalize_spec (scalar I16); - FStar.Int.logor #16 x y - | I32 -> FStar.Int.logor #32 x y - | I64 -> FStar.Int.logor #64 x y - | I128 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 128); - normalize_spec (scalar I128); - FStar.Int.logor #128 x y - | Isize -> admit() // TODO - -let scalar_and (#ty : scalar_ty) - (x : scalar ty) (y : scalar ty) : scalar ty = - match ty with - | U8 -> FStar.UInt.logand #8 x y - | U16 -> FStar.UInt.logand #16 x y - | U32 -> FStar.UInt.logand #32 x y - | U64 -> FStar.UInt.logand #64 x y - | U128 -> FStar.UInt.logand #128 x y - | Usize -> admit() // TODO - | I8 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 8); - normalize_spec (scalar I8); - FStar.Int.logand #8 x y - | I16 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 16); - normalize_spec (scalar I16); - FStar.Int.logand #16 x y - | I32 -> FStar.Int.logand #32 x y - | I64 -> FStar.Int.logand #64 x y - | I128 -> - // Encoding issues... - normalize_spec (FStar.Int.int_t 128); - normalize_spec (scalar I128); - FStar.Int.logand #128 x y - | Isize -> admit() // TODO - -// Shift left -let scalar_shl (#ty0 #ty1 : scalar_ty) - (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) = - admit() - -// Shift right -let scalar_shr (#ty0 #ty1 : scalar_ty) - (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) = - admit() - -(** Cast an integer from a [src_ty] to a [tgt_ty] *) -// TODO: check the semantics of casts in Rust -let scalar_cast (src_ty : scalar_ty) (tgt_ty : scalar_ty) (x : scalar src_ty) : result (scalar tgt_ty) = - mk_scalar tgt_ty x - -// This can't fail, but for now we make all casts faillible (easier for the translation) -let scalar_cast_bool (tgt_ty : scalar_ty) (x : bool) : result (scalar tgt_ty) = - mk_scalar tgt_ty (if x then 1 else 0) - -/// The scalar types -type isize : eqtype = scalar Isize -type i8 : eqtype = scalar I8 -type i16 : eqtype = scalar I16 -type i32 : eqtype = scalar I32 -type i64 : eqtype = scalar I64 -type i128 : eqtype = scalar I128 -type usize : eqtype = scalar Usize -type u8 : eqtype = scalar U8 -type u16 : eqtype = scalar U16 -type u32 : eqtype = scalar U32 -type u64 : eqtype = scalar U64 -type u128 : eqtype = scalar U128 - - -let core_isize_min : isize = isize_min -let core_isize_max : isize = isize_max -let core_i8_min : i8 = i8_min -let core_i8_max : i8 = i8_max -let core_i16_min : i16 = i16_min -let core_i16_max : i16 = i16_max -let core_i32_min : i32 = i32_min -let core_i32_max : i32 = i32_max -let core_i64_min : i64 = i64_min -let core_i64_max : i64 = i64_max -let core_i128_min : i128 = i128_min -let core_i128_max : i128 = i128_max - -let core_usize_min : usize = usize_min -let core_usize_max : usize = usize_max -let core_u8_min : u8 = u8_min -let core_u8_max : u8 = u8_max -let core_u16_min : u16 = u16_min -let core_u16_max : u16 = u16_max -let core_u32_min : u32 = u32_min -let core_u32_max : u32 = u32_max -let core_u64_min : u64 = u64_min -let core_u64_max : u64 = u64_max -let core_u128_min : u128 = u128_min -let core_u128_max : u128 = u128_max - -/// Negation -let isize_neg = scalar_neg #Isize -let i8_neg = scalar_neg #I8 -let i16_neg = scalar_neg #I16 -let i32_neg = scalar_neg #I32 -let i64_neg = scalar_neg #I64 -let i128_neg = scalar_neg #I128 - -/// Division -let isize_div = scalar_div #Isize -let i8_div = scalar_div #I8 -let i16_div = scalar_div #I16 -let i32_div = scalar_div #I32 -let i64_div = scalar_div #I64 -let i128_div = scalar_div #I128 -let usize_div = scalar_div #Usize -let u8_div = scalar_div #U8 -let u16_div = scalar_div #U16 -let u32_div = scalar_div #U32 -let u64_div = scalar_div #U64 -let u128_div = scalar_div #U128 - -/// Remainder -let isize_rem = scalar_rem #Isize -let i8_rem = scalar_rem #I8 -let i16_rem = scalar_rem #I16 -let i32_rem = scalar_rem #I32 -let i64_rem = scalar_rem #I64 -let i128_rem = scalar_rem #I128 -let usize_rem = scalar_rem #Usize -let u8_rem = scalar_rem #U8 -let u16_rem = scalar_rem #U16 -let u32_rem = scalar_rem #U32 -let u64_rem = scalar_rem #U64 -let u128_rem = scalar_rem #U128 - -/// Addition -let isize_add = scalar_add #Isize -let i8_add = scalar_add #I8 -let i16_add = scalar_add #I16 -let i32_add = scalar_add #I32 -let i64_add = scalar_add #I64 -let i128_add = scalar_add #I128 -let usize_add = scalar_add #Usize -let u8_add = scalar_add #U8 -let u16_add = scalar_add #U16 -let u32_add = scalar_add #U32 -let u64_add = scalar_add #U64 -let u128_add = scalar_add #U128 - -/// Subtraction -let isize_sub = scalar_sub #Isize -let i8_sub = scalar_sub #I8 -let i16_sub = scalar_sub #I16 -let i32_sub = scalar_sub #I32 -let i64_sub = scalar_sub #I64 -let i128_sub = scalar_sub #I128 -let usize_sub = scalar_sub #Usize -let u8_sub = scalar_sub #U8 -let u16_sub = scalar_sub #U16 -let u32_sub = scalar_sub #U32 -let u64_sub = scalar_sub #U64 -let u128_sub = scalar_sub #U128 - -/// Multiplication -let isize_mul = scalar_mul #Isize -let i8_mul = scalar_mul #I8 -let i16_mul = scalar_mul #I16 -let i32_mul = scalar_mul #I32 -let i64_mul = scalar_mul #I64 -let i128_mul = scalar_mul #I128 -let usize_mul = scalar_mul #Usize -let u8_mul = scalar_mul #U8 -let u16_mul = scalar_mul #U16 -let u32_mul = scalar_mul #U32 -let u64_mul = scalar_mul #U64 -let u128_mul = scalar_mul #U128 - -/// Xor -let u8_xor = scalar_xor #U8 -let u16_xor = scalar_xor #U16 -let u32_xor = scalar_xor #U32 -let u64_xor = scalar_xor #U64 -let u128_xor = scalar_xor #U128 -let usize_xor = scalar_xor #Usize -let i8_xor = scalar_xor #I8 -let i16_xor = scalar_xor #I16 -let i32_xor = scalar_xor #I32 -let i64_xor = scalar_xor #I64 -let i128_xor = scalar_xor #I128 -let isize_xor = scalar_xor #Isize - -/// Or -let u8_or = scalar_or #U8 -let u16_or = scalar_or #U16 -let u32_or = scalar_or #U32 -let u64_or = scalar_or #U64 -let u128_or = scalar_or #U128 -let usize_or = scalar_or #Usize -let i8_or = scalar_or #I8 -let i16_or = scalar_or #I16 -let i32_or = scalar_or #I32 -let i64_or = scalar_or #I64 -let i128_or = scalar_or #I128 -let isize_or = scalar_or #Isize - -/// And -let u8_and = scalar_and #U8 -let u16_and = scalar_and #U16 -let u32_and = scalar_and #U32 -let u64_and = scalar_and #U64 -let u128_and = scalar_and #U128 -let usize_and = scalar_and #Usize -let i8_and = scalar_and #I8 -let i16_and = scalar_and #I16 -let i32_and = scalar_and #I32 -let i64_and = scalar_and #I64 -let i128_and = scalar_and #I128 -let isize_and = scalar_and #Isize - -/// Shift left -let u8_shl #ty = scalar_shl #U8 #ty -let u16_shl #ty = scalar_shl #U16 #ty -let u32_shl #ty = scalar_shl #U32 #ty -let u64_shl #ty = scalar_shl #U64 #ty -let u128_shl #ty = scalar_shl #U128 #ty -let usize_shl #ty = scalar_shl #Usize #ty -let i8_shl #ty = scalar_shl #I8 #ty -let i16_shl #ty = scalar_shl #I16 #ty -let i32_shl #ty = scalar_shl #I32 #ty -let i64_shl #ty = scalar_shl #I64 #ty -let i128_shl #ty = scalar_shl #I128 #ty -let isize_shl #ty = scalar_shl #Isize #ty - -/// Shift right -let u8_shr #ty = scalar_shr #U8 #ty -let u16_shr #ty = scalar_shr #U16 #ty -let u32_shr #ty = scalar_shr #U32 #ty -let u64_shr #ty = scalar_shr #U64 #ty -let u128_shr #ty = scalar_shr #U128 #ty -let usize_shr #ty = scalar_shr #Usize #ty -let i8_shr #ty = scalar_shr #I8 #ty -let i16_shr #ty = scalar_shr #I16 #ty -let i32_shr #ty = scalar_shr #I32 #ty -let i64_shr #ty = scalar_shr #I64 #ty -let i128_shr #ty = scalar_shr #I128 #ty -let isize_shr #ty = scalar_shr #Isize #ty - -(*** core::ops *) - -// Trait declaration: [core::ops::index::Index] -noeq type core_ops_index_Index (self idx : Type0) = { - output : Type0; - index : self → idx → result output -} - -// Trait declaration: [core::ops::index::IndexMut] -noeq type core_ops_index_IndexMut (self idx : Type0) = { - indexInst : core_ops_index_Index self idx; - index_mut : self → idx → result indexInst.output; - index_mut_back : self → idx → indexInst.output → result self; -} - -// Trait declaration [core::ops::deref::Deref] -noeq type core_ops_deref_Deref (self : Type0) = { - target : Type0; - deref : self → result target; -} - -// Trait declaration [core::ops::deref::DerefMut] -noeq type core_ops_deref_DerefMut (self : Type0) = { - derefInst : core_ops_deref_Deref self; - deref_mut : self → result derefInst.target; - deref_mut_back : self → derefInst.target → result self; -} - -type core_ops_range_Range (a : Type0) = { - start : a; - end_ : a; -} - -(*** [alloc] *) - -let alloc_boxed_Box_deref (t : Type0) (x : t) : result t = Return x -let alloc_boxed_Box_deref_mut (t : Type0) (x : t) : result t = Return x -let alloc_boxed_Box_deref_mut_back (t : Type) (_ : t) (x : t) : result t = Return x - -// Trait instance -let alloc_boxed_Box_coreopsDerefInst (self : Type0) : core_ops_deref_Deref self = { - target = self; - deref = alloc_boxed_Box_deref self; -} - -// Trait instance -let alloc_boxed_Box_coreopsDerefMutInst (self : Type0) : core_ops_deref_DerefMut self = { - derefInst = alloc_boxed_Box_coreopsDerefInst self; - deref_mut = alloc_boxed_Box_deref_mut self; - deref_mut_back = alloc_boxed_Box_deref_mut_back self; -} - -(*** Array *) -type array (a : Type0) (n : usize) = s:list a{length s = n} - -// We tried putting the normalize_term condition as a refinement on the list -// but it didn't work. It works with the requires clause. -let mk_array (a : Type0) (n : usize) - (l : list a) : - Pure (array a n) - (requires (normalize_term(FStar.List.Tot.length l) = n)) - (ensures (fun _ -> True)) = - normalize_term_spec (FStar.List.Tot.length l); - l - -let array_index_usize (a : Type0) (n : usize) (x : array a n) (i : usize) : result a = - if i < length x then Return (index x i) - else Fail Failure - -let array_update_usize (a : Type0) (n : usize) (x : array a n) (i : usize) (nx : a) : result (array a n) = - if i < length x then Return (list_update x i nx) - else Fail Failure - -(*** Slice *) -type slice (a : Type0) = s:list a{length s <= usize_max} - -let slice_len (a : Type0) (s : slice a) : usize = length s - -let slice_index_usize (a : Type0) (x : slice a) (i : usize) : result a = - if i < length x then Return (index x i) - else Fail Failure - -let slice_update_usize (a : Type0) (x : slice a) (i : usize) (nx : a) : result (slice a) = - if i < length x then Return (list_update x i nx) - else Fail Failure - -(*** Subslices *) - -let array_to_slice (a : Type0) (n : usize) (x : array a n) : result (slice a) = Return x -let array_from_slice (a : Type0) (n : usize) (x : array a n) (s : slice a) : result (array a n) = - if length s = n then Return s - else Fail Failure - -// TODO: finish the definitions below (there lacks [List.drop] and [List.take] in the standard library *) -let array_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) : result (slice a) = - admit() - -let array_update_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) (ns : slice a) : result (array a n) = - admit() - -let array_repeat (a : Type0) (n : usize) (x : a) : array a n = - admit() - -let slice_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) : result (slice a) = - admit() - -let slice_update_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) (ns : slice a) : result (slice a) = - admit() - -(*** Vector *) -type alloc_vec_Vec (a : Type0) = v:list a{length v <= usize_max} - -let alloc_vec_Vec_new (a : Type0) : alloc_vec_Vec a = assert_norm(length #a [] == 0); [] -let alloc_vec_Vec_len (a : Type0) (v : alloc_vec_Vec a) : usize = length v - -// Helper -let alloc_vec_Vec_index_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : result a = - if i < length v then Return (index v i) else Fail Failure -// Helper -let alloc_vec_Vec_update_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) = - if i < length v then Return (list_update v i x) else Fail Failure - -// The **forward** function shouldn't be used -let alloc_vec_Vec_push_fwd (a : Type0) (v : alloc_vec_Vec a) (x : a) : unit = () -let alloc_vec_Vec_push (a : Type0) (v : alloc_vec_Vec a) (x : a) : - Pure (result (alloc_vec_Vec a)) - (requires True) - (ensures (fun res -> - match res with - | Fail e -> e == Failure - | Return v' -> length v' = length v + 1)) = - if length v < usize_max then begin - (**) assert_norm(length [x] == 1); - (**) append_length v [x]; - (**) assert(length (append v [x]) = length v + 1); - Return (append v [x]) - end - else Fail Failure - -// The **forward** function shouldn't be used -let alloc_vec_Vec_insert_fwd (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result unit = - if i < length v then Return () else Fail Failure -let alloc_vec_Vec_insert (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) = - if i < length v then Return (list_update v i x) else Fail Failure - -// Trait declaration: [core::slice::index::private_slice_index::Sealed] -type core_slice_index_private_slice_index_Sealed (self : Type0) = unit - -// Trait declaration: [core::slice::index::SliceIndex] -noeq type core_slice_index_SliceIndex (self t : Type0) = { - sealedInst : core_slice_index_private_slice_index_Sealed self; - output : Type0; - get : self → t → result (option output); - get_mut : self → t → result (option output); - get_mut_back : self → t → option output → result t; - get_unchecked : self → const_raw_ptr t → result (const_raw_ptr output); - get_unchecked_mut : self → mut_raw_ptr t → result (mut_raw_ptr output); - index : self → t → result output; - index_mut : self → t → result output; - index_mut_back : self → t → output → result t; -} - -// [core::slice::index::[T]::index]: forward function -let core_slice_index_Slice_index - (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (s : slice t) (i : idx) : result inst.output = - let* x = inst.get i s in - match x with - | None -> Fail Failure - | Some x -> Return x - -// [core::slice::index::Range:::get]: forward function -let core_slice_index_RangeUsize_get (t : Type0) (i : core_ops_range_Range usize) (s : slice t) : - result (option (slice t)) = - admit () // TODO - -// [core::slice::index::Range::get_mut]: forward function -let core_slice_index_RangeUsize_get_mut - (t : Type0) : core_ops_range_Range usize → slice t → result (option (slice t)) = - admit () // TODO - -// [core::slice::index::Range::get_mut]: backward function 0 -let core_slice_index_RangeUsize_get_mut_back - (t : Type0) : - core_ops_range_Range usize → slice t → option (slice t) → result (slice t) = - admit () // TODO - -// [core::slice::index::Range::get_unchecked]: forward function -let core_slice_index_RangeUsize_get_unchecked - (t : Type0) : - core_ops_range_Range usize → const_raw_ptr (slice t) → result (const_raw_ptr (slice t)) = - // Don't know what the model should be - for now we always fail to make - // sure code which uses it fails - fun _ _ -> Fail Failure - -// [core::slice::index::Range::get_unchecked_mut]: forward function -let core_slice_index_RangeUsize_get_unchecked_mut - (t : Type0) : - core_ops_range_Range usize → mut_raw_ptr (slice t) → result (mut_raw_ptr (slice t)) = - // Don't know what the model should be - for now we always fail to make - // sure code which uses it fails - fun _ _ -> Fail Failure - -// [core::slice::index::Range::index]: forward function -let core_slice_index_RangeUsize_index - (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) = - admit () // TODO - -// [core::slice::index::Range::index_mut]: forward function -let core_slice_index_RangeUsize_index_mut - (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) = - admit () // TODO - -// [core::slice::index::Range::index_mut]: backward function 0 -let core_slice_index_RangeUsize_index_mut_back - (t : Type0) : core_ops_range_Range usize → slice t → slice t → result (slice t) = - admit () // TODO - -// [core::slice::index::[T]::index_mut]: forward function -let core_slice_index_Slice_index_mut - (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) : - slice t → idx → result inst.output = - admit () // - -// [core::slice::index::[T]::index_mut]: backward function 0 -let core_slice_index_Slice_index_mut_back - (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) : - slice t → idx → inst.output → result (slice t) = - admit () // TODO - -// [core::array::[T; N]::index]: forward function -let core_array_Array_index - (t idx : Type0) (n : usize) (inst : core_ops_index_Index (slice t) idx) - (a : array t n) (i : idx) : result inst.output = - admit () // TODO - -// [core::array::[T; N]::index_mut]: forward function -let core_array_Array_index_mut - (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx) - (a : array t n) (i : idx) : result inst.indexInst.output = - admit () // TODO - -// [core::array::[T; N]::index_mut]: backward function 0 -let core_array_Array_index_mut_back - (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx) - (a : array t n) (i : idx) (x : inst.indexInst.output) : result (array t n) = - admit () // TODO - -// Trait implementation: [core::slice::index::private_slice_index::Range] -let core_slice_index_private_slice_index_SealedRangeUsizeInst - : core_slice_index_private_slice_index_Sealed (core_ops_range_Range usize) = () - -// Trait implementation: [core::slice::index::Range] -let core_slice_index_SliceIndexRangeUsizeSliceTInst (t : Type0) : - core_slice_index_SliceIndex (core_ops_range_Range usize) (slice t) = { - sealedInst = core_slice_index_private_slice_index_SealedRangeUsizeInst; - output = slice t; - get = core_slice_index_RangeUsize_get t; - get_mut = core_slice_index_RangeUsize_get_mut t; - get_mut_back = core_slice_index_RangeUsize_get_mut_back t; - get_unchecked = core_slice_index_RangeUsize_get_unchecked t; - get_unchecked_mut = core_slice_index_RangeUsize_get_unchecked_mut t; - index = core_slice_index_RangeUsize_index t; - index_mut = core_slice_index_RangeUsize_index_mut t; - index_mut_back = core_slice_index_RangeUsize_index_mut_back t; -} - -// Trait implementation: [core::slice::index::[T]] -let core_ops_index_IndexSliceTIInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_Index (slice t) idx = { - output = inst.output; - index = core_slice_index_Slice_index t idx inst; -} - -// Trait implementation: [core::slice::index::[T]] -let core_ops_index_IndexMutSliceTIInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_IndexMut (slice t) idx = { - indexInst = core_ops_index_IndexSliceTIInst t idx inst; - index_mut = core_slice_index_Slice_index_mut t idx inst; - index_mut_back = core_slice_index_Slice_index_mut_back t idx inst; -} - -// Trait implementation: [core::array::[T; N]] -let core_ops_index_IndexArrayInst (t idx : Type0) (n : usize) - (inst : core_ops_index_Index (slice t) idx) : - core_ops_index_Index (array t n) idx = { - output = inst.output; - index = core_array_Array_index t idx n inst; -} - -// Trait implementation: [core::array::[T; N]] -let core_ops_index_IndexMutArrayIInst (t idx : Type0) (n : usize) - (inst : core_ops_index_IndexMut (slice t) idx) : - core_ops_index_IndexMut (array t n) idx = { - indexInst = core_ops_index_IndexArrayInst t idx n inst.indexInst; - index_mut = core_array_Array_index_mut t idx n inst; - index_mut_back = core_array_Array_index_mut_back t idx n inst; -} - -// [core::slice::index::usize::get]: forward function -let core_slice_index_usize_get - (t : Type0) : usize → slice t → result (option t) = - admit () // TODO - -// [core::slice::index::usize::get_mut]: forward function -let core_slice_index_usize_get_mut - (t : Type0) : usize → slice t → result (option t) = - admit () // TODO - -// [core::slice::index::usize::get_mut]: backward function 0 -let core_slice_index_usize_get_mut_back - (t : Type0) : usize → slice t → option t → result (slice t) = - admit () // TODO - -// [core::slice::index::usize::get_unchecked]: forward function -let core_slice_index_usize_get_unchecked - (t : Type0) : usize → const_raw_ptr (slice t) → result (const_raw_ptr t) = - admit () // TODO - -// [core::slice::index::usize::get_unchecked_mut]: forward function -let core_slice_index_usize_get_unchecked_mut - (t : Type0) : usize → mut_raw_ptr (slice t) → result (mut_raw_ptr t) = - admit () // TODO - -// [core::slice::index::usize::index]: forward function -let core_slice_index_usize_index (t : Type0) : usize → slice t → result t = - admit () // TODO - -// [core::slice::index::usize::index_mut]: forward function -let core_slice_index_usize_index_mut (t : Type0) : usize → slice t → result t = - admit () // TODO - -// [core::slice::index::usize::index_mut]: backward function 0 -let core_slice_index_usize_index_mut_back - (t : Type0) : usize → slice t → t → result (slice t) = - admit () // TODO - -// Trait implementation: [core::slice::index::private_slice_index::usize] -let core_slice_index_private_slice_index_SealedUsizeInst - : core_slice_index_private_slice_index_Sealed usize = () - -// Trait implementation: [core::slice::index::usize] -let core_slice_index_SliceIndexUsizeSliceTInst (t : Type0) : - core_slice_index_SliceIndex usize (slice t) = { - sealedInst = core_slice_index_private_slice_index_SealedUsizeInst; - output = t; - get = core_slice_index_usize_get t; - get_mut = core_slice_index_usize_get_mut t; - get_mut_back = core_slice_index_usize_get_mut_back t; - get_unchecked = core_slice_index_usize_get_unchecked t; - get_unchecked_mut = core_slice_index_usize_get_unchecked_mut t; - index = core_slice_index_usize_index t; - index_mut = core_slice_index_usize_index_mut t; - index_mut_back = core_slice_index_usize_index_mut_back t; -} - -// [alloc::vec::Vec::index]: forward function -let alloc_vec_Vec_index (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (self : alloc_vec_Vec t) (i : idx) : result inst.output = - admit () // TODO - -// [alloc::vec::Vec::index_mut]: forward function -let alloc_vec_Vec_index_mut (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (self : alloc_vec_Vec t) (i : idx) : result inst.output = - admit () // TODO - -// [alloc::vec::Vec::index_mut]: backward function 0 -let alloc_vec_Vec_index_mut_back - (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) - (self : alloc_vec_Vec t) (i : idx) (x : inst.output) : result (alloc_vec_Vec t) = - admit () // TODO - -// Trait implementation: [alloc::vec::Vec] -let alloc_vec_Vec_coreopsindexIndexInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_Index (alloc_vec_Vec t) idx = { - output = inst.output; - index = alloc_vec_Vec_index t idx inst; -} - -// Trait implementation: [alloc::vec::Vec] -let alloc_vec_Vec_coreopsindexIndexMutInst (t idx : Type0) - (inst : core_slice_index_SliceIndex idx (slice t)) : - core_ops_index_IndexMut (alloc_vec_Vec t) idx = { - indexInst = alloc_vec_Vec_coreopsindexIndexInst t idx inst; - index_mut = alloc_vec_Vec_index_mut t idx inst; - index_mut_back = alloc_vec_Vec_index_mut_back t idx inst; -} - -(*** Theorems *) - -let alloc_vec_Vec_index_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : - Lemma ( - alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i == - alloc_vec_Vec_index_usize v i) - [SMTPat (alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)] - = - admit() - -let alloc_vec_Vec_index_mut_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : - Lemma ( - alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i == - alloc_vec_Vec_index_usize v i) - [SMTPat (alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)] - = - admit() - -let alloc_vec_Vec_index_mut_back_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : - Lemma ( - alloc_vec_Vec_index_mut_back a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i x == - alloc_vec_Vec_update_usize v i x) - [SMTPat (alloc_vec_Vec_index_mut_back a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i x)] - = - admit() diff --git a/tests/fstar-split/traits/Traits.fst b/tests/fstar-split/traits/Traits.fst deleted file mode 100644 index a815406f..00000000 --- a/tests/fstar-split/traits/Traits.fst +++ /dev/null @@ -1,468 +0,0 @@ -(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *) -(** [traits] *) -module Traits -open Primitives - -#set-options "--z3rlimit 50 --fuel 1 --ifuel 1" - -(** Trait declaration: [traits::BoolTrait] - Source: 'src/traits.rs', lines 1:0-1:19 *) -noeq type boolTrait_t (self : Type0) = { get_bool : self -> result bool; } - -(** [traits::{bool}::get_bool]: forward function - Source: 'src/traits.rs', lines 12:4-12:30 *) -let bool_get_bool (self : bool) : result bool = - Return self - -(** Trait implementation: [traits::{bool}] - Source: 'src/traits.rs', lines 11:0-11:23 *) -let traits_BoolTraitBoolInst : boolTrait_t bool = { get_bool = bool_get_bool; } - -(** [traits::BoolTrait::ret_true]: forward function - Source: 'src/traits.rs', lines 6:4-6:30 *) -let boolTrait_ret_true - (#self : Type0) (self_clause : boolTrait_t self) (self1 : self) : - result bool - = - Return true - -(** [traits::test_bool_trait_bool]: forward function - Source: 'src/traits.rs', lines 17:0-17:44 *) -let test_bool_trait_bool (x : bool) : result bool = - let* b = bool_get_bool x in - if b then boolTrait_ret_true traits_BoolTraitBoolInst x else Return false - -(** [traits::{core::option::Option#1}::get_bool]: forward function - Source: 'src/traits.rs', lines 23:4-23:30 *) -let option_get_bool (t : Type0) (self : option t) : result bool = - begin match self with | None -> Return false | Some _ -> Return true end - -(** Trait implementation: [traits::{core::option::Option#1}] - Source: 'src/traits.rs', lines 22:0-22:31 *) -let traits_BoolTraitcoreoptionOptionTInst (t : Type0) : boolTrait_t (option t) - = { - get_bool = option_get_bool t; -} - -(** [traits::test_bool_trait_option]: forward function - Source: 'src/traits.rs', lines 31:0-31:54 *) -let test_bool_trait_option (t : Type0) (x : option t) : result bool = - let* b = option_get_bool t x in - if b - then boolTrait_ret_true (traits_BoolTraitcoreoptionOptionTInst t) x - else Return false - -(** [traits::test_bool_trait]: forward function - Source: 'src/traits.rs', lines 35:0-35:50 *) -let test_bool_trait - (t : Type0) (boolTraitTInst : boolTrait_t t) (x : t) : result bool = - boolTraitTInst.get_bool x - -(** Trait declaration: [traits::ToU64] - Source: 'src/traits.rs', lines 39:0-39:15 *) -noeq type toU64_t (self : Type0) = { to_u64 : self -> result u64; } - -(** [traits::{u64#2}::to_u64]: forward function - Source: 'src/traits.rs', lines 44:4-44:26 *) -let u64_to_u64 (self : u64) : result u64 = - Return self - -(** Trait implementation: [traits::{u64#2}] - Source: 'src/traits.rs', lines 43:0-43:18 *) -let traits_ToU64U64Inst : toU64_t u64 = { to_u64 = u64_to_u64; } - -(** [traits::{(A, A)#3}::to_u64]: forward function - Source: 'src/traits.rs', lines 50:4-50:26 *) -let pair_to_u64 - (a : Type0) (toU64AInst : toU64_t a) (self : (a & a)) : result u64 = - let (x, x1) = self in - let* i = toU64AInst.to_u64 x in - let* i1 = toU64AInst.to_u64 x1 in - u64_add i i1 - -(** Trait implementation: [traits::{(A, A)#3}] - Source: 'src/traits.rs', lines 49:0-49:31 *) -let traits_ToU64TupleAAInst (a : Type0) (toU64AInst : toU64_t a) : toU64_t (a & - a) = { - to_u64 = pair_to_u64 a toU64AInst; -} - -(** [traits::f]: forward function - Source: 'src/traits.rs', lines 55:0-55:36 *) -let f (t : Type0) (toU64TInst : toU64_t t) (x : (t & t)) : result u64 = - pair_to_u64 t toU64TInst x - -(** [traits::g]: forward function - Source: 'src/traits.rs', lines 59:0-61:18 *) -let g - (t : Type0) (toU64TupleTTInst : toU64_t (t & t)) (x : (t & t)) : result u64 = - toU64TupleTTInst.to_u64 x - -(** [traits::h0]: forward function - Source: 'src/traits.rs', lines 66:0-66:24 *) -let h0 (x : u64) : result u64 = - u64_to_u64 x - -(** [traits::Wrapper] - Source: 'src/traits.rs', lines 70:0-70:21 *) -type wrapper_t (t : Type0) = { x : t; } - -(** [traits::{traits::Wrapper#4}::to_u64]: forward function - Source: 'src/traits.rs', lines 75:4-75:26 *) -let wrapper_to_u64 - (t : Type0) (toU64TInst : toU64_t t) (self : wrapper_t t) : result u64 = - toU64TInst.to_u64 self.x - -(** Trait implementation: [traits::{traits::Wrapper#4}] - Source: 'src/traits.rs', lines 74:0-74:35 *) -let traits_ToU64traitsWrapperTInst (t : Type0) (toU64TInst : toU64_t t) : - toU64_t (wrapper_t t) = { - to_u64 = wrapper_to_u64 t toU64TInst; -} - -(** [traits::h1]: forward function - Source: 'src/traits.rs', lines 80:0-80:33 *) -let h1 (x : wrapper_t u64) : result u64 = - wrapper_to_u64 u64 traits_ToU64U64Inst x - -(** [traits::h2]: forward function - Source: 'src/traits.rs', lines 84:0-84:41 *) -let h2 (t : Type0) (toU64TInst : toU64_t t) (x : wrapper_t t) : result u64 = - wrapper_to_u64 t toU64TInst x - -(** Trait declaration: [traits::ToType] - Source: 'src/traits.rs', lines 88:0-88:19 *) -noeq type toType_t (self t : Type0) = { to_type : self -> result t; } - -(** [traits::{u64#5}::to_type]: forward function - Source: 'src/traits.rs', lines 93:4-93:28 *) -let u64_to_type (self : u64) : result bool = - Return (self > 0) - -(** Trait implementation: [traits::{u64#5}] - Source: 'src/traits.rs', lines 92:0-92:25 *) -let traits_ToTypeU64BoolInst : toType_t u64 bool = { to_type = u64_to_type; } - -(** Trait declaration: [traits::OfType] - Source: 'src/traits.rs', lines 98:0-98:16 *) -noeq type ofType_t (self : Type0) = { - of_type : (t : Type0) -> (toTypeTSelfInst : toType_t t self) -> t -> result - self; -} - -(** [traits::h3]: forward function - Source: 'src/traits.rs', lines 104:0-104:50 *) -let h3 - (t1 t2 : Type0) (ofTypeT1Inst : ofType_t t1) (toTypeT2T1Inst : toType_t t2 - t1) (y : t2) : - result t1 - = - ofTypeT1Inst.of_type t2 toTypeT2T1Inst y - -(** Trait declaration: [traits::OfTypeBis] - Source: 'src/traits.rs', lines 109:0-109:36 *) -noeq type ofTypeBis_t (self t : Type0) = { - toTypeTSelfInst : toType_t t self; - of_type : t -> result self; -} - -(** [traits::h4]: forward function - Source: 'src/traits.rs', lines 118:0-118:57 *) -let h4 - (t1 t2 : Type0) (ofTypeBisT1T2Inst : ofTypeBis_t t1 t2) (toTypeT2T1Inst : - toType_t t2 t1) (y : t2) : - result t1 - = - ofTypeBisT1T2Inst.of_type y - -(** [traits::TestType] - Source: 'src/traits.rs', lines 122:0-122:22 *) -type testType_t (t : Type0) = t - -(** [traits::{traits::TestType#6}::test::TestType1] - Source: 'src/traits.rs', lines 127:8-127:24 *) -type testType_test_TestType1_t = u64 - -(** Trait declaration: [traits::{traits::TestType#6}::test::TestTrait] - Source: 'src/traits.rs', lines 128:8-128:23 *) -noeq type testType_test_TestTrait_t (self : Type0) = { - test : self -> result bool; -} - -(** [traits::{traits::TestType#6}::test::{traits::{traits::TestType#6}::test::TestType1}::test]: forward function - Source: 'src/traits.rs', lines 139:12-139:34 *) -let testType_test_TestType1_test - (self : testType_test_TestType1_t) : result bool = - Return (self > 1) - -(** Trait implementation: [traits::{traits::TestType#6}::test::{traits::{traits::TestType#6}::test::TestType1}] - Source: 'src/traits.rs', lines 138:8-138:36 *) -let traits_TestType_test_TestTraittraitstraitsTestTypeTtestTestType1Inst : - testType_test_TestTrait_t testType_test_TestType1_t = { - test = testType_test_TestType1_test; -} - -(** [traits::{traits::TestType#6}::test]: forward function - Source: 'src/traits.rs', lines 126:4-126:36 *) -let testType_test - (t : Type0) (toU64TInst : toU64_t t) (self : testType_t t) (x : t) : - result bool - = - let* x1 = toU64TInst.to_u64 x in - if x1 > 0 then testType_test_TestType1_test 0 else Return false - -(** [traits::BoolWrapper] - Source: 'src/traits.rs', lines 150:0-150:22 *) -type boolWrapper_t = bool - -(** [traits::{traits::BoolWrapper#7}::to_type]: forward function - Source: 'src/traits.rs', lines 156:4-156:25 *) -let boolWrapper_to_type - (t : Type0) (toTypeBoolTInst : toType_t bool t) (self : boolWrapper_t) : - result t - = - toTypeBoolTInst.to_type self - -(** Trait implementation: [traits::{traits::BoolWrapper#7}] - Source: 'src/traits.rs', lines 152:0-152:33 *) -let traits_ToTypetraitsBoolWrapperTInst (t : Type0) (toTypeBoolTInst : toType_t - bool t) : toType_t boolWrapper_t t = { - to_type = boolWrapper_to_type t toTypeBoolTInst; -} - -(** [traits::WithConstTy::LEN2] - Source: 'src/traits.rs', lines 164:4-164:21 *) -let with_const_ty_len2_body : result usize = Return 32 -let with_const_ty_len2_c : usize = eval_global with_const_ty_len2_body - -(** Trait declaration: [traits::WithConstTy] - Source: 'src/traits.rs', lines 161:0-161:39 *) -noeq type withConstTy_t (self : Type0) (len : usize) = { - cLEN1 : usize; - cLEN2 : usize; - tV : Type0; - tW : Type0; - tW_clause_0 : toU64_t tW; - f : tW -> array u8 len -> result tW; -} - -(** [traits::{bool#8}::LEN1] - Source: 'src/traits.rs', lines 175:4-175:21 *) -let bool_len1_body : result usize = Return 12 -let bool_len1_c : usize = eval_global bool_len1_body - -(** [traits::{bool#8}::f]: merged forward/backward function - (there is a single backward function, and the forward function returns ()) - Source: 'src/traits.rs', lines 180:4-180:39 *) -let bool_f (i : u64) (a : array u8 32) : result u64 = - Return i - -(** Trait implementation: [traits::{bool#8}] - Source: 'src/traits.rs', lines 174:0-174:29 *) -let traits_WithConstTyBool32Inst : withConstTy_t bool 32 = { - cLEN1 = bool_len1_c; - cLEN2 = with_const_ty_len2_c; - tV = u8; - tW = u64; - tW_clause_0 = traits_ToU64U64Inst; - f = bool_f; -} - -(** [traits::use_with_const_ty1]: forward function - Source: 'src/traits.rs', lines 183:0-183:75 *) -let use_with_const_ty1 - (h : Type0) (len : usize) (withConstTyHLENInst : withConstTy_t h len) : - result usize - = - Return withConstTyHLENInst.cLEN1 - -(** [traits::use_with_const_ty2]: forward function - Source: 'src/traits.rs', lines 187:0-187:73 *) -let use_with_const_ty2 - (h : Type0) (len : usize) (withConstTyHLENInst : withConstTy_t h len) - (w : withConstTyHLENInst.tW) : - result unit - = - Return () - -(** [traits::use_with_const_ty3]: forward function - Source: 'src/traits.rs', lines 189:0-189:80 *) -let use_with_const_ty3 - (h : Type0) (len : usize) (withConstTyHLENInst : withConstTy_t h len) - (x : withConstTyHLENInst.tW) : - result u64 - = - withConstTyHLENInst.tW_clause_0.to_u64 x - -(** [traits::test_where1]: forward function - Source: 'src/traits.rs', lines 193:0-193:40 *) -let test_where1 (t : Type0) (_x : t) : result unit = - Return () - -(** [traits::test_where2]: forward function - Source: 'src/traits.rs', lines 194:0-194:57 *) -let test_where2 - (t : Type0) (withConstTyT32Inst : withConstTy_t t 32) (_x : u32) : - result unit - = - Return () - -(** Trait declaration: [traits::ParentTrait0] - Source: 'src/traits.rs', lines 200:0-200:22 *) -noeq type parentTrait0_t (self : Type0) = { - tW : Type0; - get_name : self -> result string; - get_w : self -> result tW; -} - -(** Trait declaration: [traits::ParentTrait1] - Source: 'src/traits.rs', lines 205:0-205:22 *) -type parentTrait1_t (self : Type0) = unit - -(** Trait declaration: [traits::ChildTrait] - Source: 'src/traits.rs', lines 206:0-206:49 *) -noeq type childTrait_t (self : Type0) = { - parentTrait0SelfInst : parentTrait0_t self; - parentTrait1SelfInst : parentTrait1_t self; -} - -(** [traits::test_child_trait1]: forward function - Source: 'src/traits.rs', lines 209:0-209:56 *) -let test_child_trait1 - (t : Type0) (childTraitTInst : childTrait_t t) (x : t) : result string = - childTraitTInst.parentTrait0SelfInst.get_name x - -(** [traits::test_child_trait2]: forward function - Source: 'src/traits.rs', lines 213:0-213:54 *) -let test_child_trait2 - (t : Type0) (childTraitTInst : childTrait_t t) (x : t) : - result childTraitTInst.parentTrait0SelfInst.tW - = - childTraitTInst.parentTrait0SelfInst.get_w x - -(** [traits::order1]: forward function - Source: 'src/traits.rs', lines 219:0-219:59 *) -let order1 - (t u : Type0) (parentTrait0TInst : parentTrait0_t t) (parentTrait0UInst : - parentTrait0_t u) : - result unit - = - Return () - -(** Trait declaration: [traits::ChildTrait1] - Source: 'src/traits.rs', lines 222:0-222:35 *) -noeq type childTrait1_t (self : Type0) = { - parentTrait1SelfInst : parentTrait1_t self; -} - -(** Trait implementation: [traits::{usize#9}] - Source: 'src/traits.rs', lines 224:0-224:27 *) -let traits_ParentTrait1UsizeInst : parentTrait1_t usize = () - -(** Trait implementation: [traits::{usize#10}] - Source: 'src/traits.rs', lines 225:0-225:26 *) -let traits_ChildTrait1UsizeInst : childTrait1_t usize = { - parentTrait1SelfInst = traits_ParentTrait1UsizeInst; -} - -(** Trait declaration: [traits::Iterator] - Source: 'src/traits.rs', lines 229:0-229:18 *) -noeq type iterator_t (self : Type0) = { tItem : Type0; } - -(** Trait declaration: [traits::IntoIterator] - Source: 'src/traits.rs', lines 233:0-233:22 *) -noeq type intoIterator_t (self : Type0) = { - tItem : Type0; - tIntoIter : Type0; - tIntoIter_clause_0 : iterator_t tIntoIter; - into_iter : self -> result tIntoIter; -} - -(** Trait declaration: [traits::FromResidual] - Source: 'src/traits.rs', lines 250:0-250:21 *) -type fromResidual_t (self t : Type0) = unit - -(** Trait declaration: [traits::Try] - Source: 'src/traits.rs', lines 246:0-246:48 *) -noeq type try_t (self : Type0) = { - tResidual : Type0; - fromResidualSelftraitsTrySelfResidualInst : fromResidual_t self tResidual; -} - -(** Trait declaration: [traits::WithTarget] - Source: 'src/traits.rs', lines 252:0-252:20 *) -noeq type withTarget_t (self : Type0) = { tTarget : Type0; } - -(** Trait declaration: [traits::ParentTrait2] - Source: 'src/traits.rs', lines 256:0-256:22 *) -noeq type parentTrait2_t (self : Type0) = { - tU : Type0; - tU_clause_0 : withTarget_t tU; -} - -(** Trait declaration: [traits::ChildTrait2] - Source: 'src/traits.rs', lines 260:0-260:35 *) -noeq type childTrait2_t (self : Type0) = { - parentTrait2SelfInst : parentTrait2_t self; - convert : parentTrait2SelfInst.tU -> result - parentTrait2SelfInst.tU_clause_0.tTarget; -} - -(** Trait implementation: [traits::{u32#11}] - Source: 'src/traits.rs', lines 264:0-264:23 *) -let traits_WithTargetU32Inst : withTarget_t u32 = { tTarget = u32; } - -(** Trait implementation: [traits::{u32#12}] - Source: 'src/traits.rs', lines 268:0-268:25 *) -let traits_ParentTrait2U32Inst : parentTrait2_t u32 = { - tU = u32; - tU_clause_0 = traits_WithTargetU32Inst; -} - -(** [traits::{u32#13}::convert]: forward function - Source: 'src/traits.rs', lines 273:4-273:29 *) -let u32_convert (x : u32) : result u32 = - Return x - -(** Trait implementation: [traits::{u32#13}] - Source: 'src/traits.rs', lines 272:0-272:24 *) -let traits_ChildTrait2U32Inst : childTrait2_t u32 = { - parentTrait2SelfInst = traits_ParentTrait2U32Inst; - convert = u32_convert; -} - -(** Trait declaration: [traits::CFnOnce] - Source: 'src/traits.rs', lines 286:0-286:23 *) -noeq type cFnOnce_t (self args : Type0) = { - tOutput : Type0; - call_once : self -> args -> result tOutput; -} - -(** Trait declaration: [traits::CFnMut] - Source: 'src/traits.rs', lines 292:0-292:37 *) -noeq type cFnMut_t (self args : Type0) = { - cFnOnceSelfArgsInst : cFnOnce_t self args; - call_mut : self -> args -> result cFnOnceSelfArgsInst.tOutput; - call_mut_back : self -> args -> result self; -} - -(** Trait declaration: [traits::CFn] - Source: 'src/traits.rs', lines 296:0-296:33 *) -noeq type cFn_t (self args : Type0) = { - cFnMutSelfArgsInst : cFnMut_t self args; - call : self -> args -> result cFnMutSelfArgsInst.cFnOnceSelfArgsInst.tOutput; -} - -(** Trait declaration: [traits::GetTrait] - Source: 'src/traits.rs', lines 300:0-300:18 *) -noeq type getTrait_t (self : Type0) = { tW : Type0; get_w : self -> result tW; -} - -(** [traits::test_get_trait]: forward function - Source: 'src/traits.rs', lines 305:0-305:49 *) -let test_get_trait - (t : Type0) (getTraitTInst : getTrait_t t) (x : t) : - result getTraitTInst.tW - = - getTraitTInst.get_w x - -- cgit v1.2.3 From 4ca3f4dd129a228cbb9eb7ab5cfd609be4483db8 Mon Sep 17 00:00:00 2001 From: Son Ho Date: Fri, 8 Mar 2024 16:41:05 +0100 Subject: Update the flake.nix --- flake.nix | 19 +++++-------------- 1 file changed, 5 insertions(+), 14 deletions(-) diff --git a/flake.nix b/flake.nix index 82179fcb..cfeb5188 100644 --- a/flake.nix +++ b/flake.nix @@ -114,18 +114,6 @@ # The tests don't generate anything - TODO: actually they do installPhase = "touch $out"; }; - # Replay the F* proofs for the cases where we split the fwd/back functions. - aeneas-verify-fstar-split = pkgs.stdenv.mkDerivation { - name = "aeneas_verify_fstar_split"; - src = ./tests/fstar-split; - FSTAR_EXE = "${hacl-nix.packages.${system}.fstar}/bin/fstar.exe"; - buildPhase= '' - make prepare-projects - make verify -j $NIX_BUILD_CORES - ''; - # The tests don't generate anything - TODO: actually they do - installPhase = "touch $out"; - }; # Replay the Coq proofs. aeneas-verify-coq = pkgs.stdenv.mkDerivation { name = "aeneas_verify_coq"; @@ -183,7 +171,10 @@ default = aeneas; }; checks = { - inherit aeneas aeneas-tests aeneas-verify-fstar aeneas-verify-fstar-split - aeneas-verify-coq aeneas-verify-lean aeneas-verify-hol4; }; + inherit aeneas aeneas-tests + aeneas-verify-fstar + aeneas-verify-coq + aeneas-verify-lean + aeneas-verify-hol4; }; }); } -- cgit v1.2.3 From 873deb005b394aca3090497e6c21ab9f8c2676be Mon Sep 17 00:00:00 2001 From: Son Ho Date: Fri, 8 Mar 2024 16:42:12 +0100 Subject: Update the workers --- .github/workflows/ci.yml | 1 - 1 file changed, 1 deletion(-) diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml index 2039e65d..6b5aacf0 100644 --- a/.github/workflows/ci.yml +++ b/.github/workflows/ci.yml @@ -14,7 +14,6 @@ jobs: - run: nix build -L .#aeneas - run: nix build -L .#checks.x86_64-linux.aeneas-tests - run: nix build -L .#checks.x86_64-linux.aeneas-verify-fstar - - run: nix build -L .#checks.x86_64-linux.aeneas-verify-fstar-split - run: nix build -L .#checks.x86_64-linux.aeneas-verify-coq - run: nix build -L .#checks.x86_64-linux.aeneas-verify-hol4 # Lean doesn't work with Nix -- cgit v1.2.3