blob: 83e51497f410eee90060113ac1dd3d851e7f2abb (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
|
chapter \<open>Lists\<close>
theory List
imports Maybe
begin
(*TODO: Inductive type and recursive function definitions. The ad-hoc
axiomatization below should be subsumed once general inductive types are
properly implemented.*)
axiomatization
List :: \<open>o \<Rightarrow> o\<close> and
nil :: \<open>o \<Rightarrow> o\<close> and
cons :: \<open>o \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close> and
ListInd :: \<open>o \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> (o \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> o\<close>
where
ListF: "A: U i \<Longrightarrow> List A: U i" and
List_nil: "A: U i \<Longrightarrow> nil A: List A" and
List_cons: "\<lbrakk>x: A; xs: List A\<rbrakk> \<Longrightarrow> cons A x xs: List A" and
ListE: "\<lbrakk>
xs: List A;
c\<^sub>0: C (nil A);
\<And>x xs rec. \<lbrakk>x: A; xs: List A; rec: C xs\<rbrakk> \<Longrightarrow> f x xs rec: C (cons A x xs);
\<And>xs. xs: List A \<Longrightarrow> C xs: U i
\<rbrakk> \<Longrightarrow> ListInd A (fn xs. C xs) c\<^sub>0 (fn x xs rec. f x xs rec) xs: C xs" and
List_comp_nil: "\<lbrakk>
c\<^sub>0: C (nil A);
\<And>x xs rec. \<lbrakk>x: A; xs: List A; rec: C xs\<rbrakk> \<Longrightarrow> f x xs rec: C (cons A x xs);
\<And>xs. xs: List A \<Longrightarrow> C xs: U i
\<rbrakk> \<Longrightarrow> ListInd A (fn xs. C xs) c\<^sub>0 (fn x xs rec. f x xs rec) (nil A) \<equiv> c\<^sub>0" and
List_comp_cons: "\<lbrakk>
xs: List A;
c\<^sub>0: C (nil A);
\<And>x xs rec. \<lbrakk>x: A; xs: List A; rec: C xs\<rbrakk> \<Longrightarrow> f x xs rec: C (cons A x xs);
\<And>xs. xs: List A \<Longrightarrow> C xs: U i
\<rbrakk> \<Longrightarrow>
ListInd A (fn xs. C xs) c\<^sub>0 (fn x xs rec. f x xs rec) (cons A x xs) \<equiv>
f x xs (ListInd A (fn xs. C xs) c\<^sub>0 (fn x xs rec. f x xs rec) xs)"
lemmas
[form] = ListF and
[intr, intro] = List_nil List_cons and
[elim "?xs"] = ListE and
[comp] = List_comp_nil List_comp_cons
abbreviation "ListRec A C \<equiv> ListInd A (fn _. C)"
Lemma list_cases [cases]:
assumes
"xs: List A" and
nil_case: "c\<^sub>0: C (nil A)" and
cons_case: "\<And>x xs. \<lbrakk>x: A; xs: List A\<rbrakk> \<Longrightarrow> f x xs: C (cons A x xs)" and
"\<And>xs. xs: List A \<Longrightarrow> C xs: U i"
shows "C xs"
by (elim xs) (fact nil_case, rule cons_case)
section \<open>Notation\<close>
definition nil_i ("[]")
where [implicit]: "[] \<equiv> nil ?"
definition cons_i (infixr "#" 120)
where [implicit]: "x # xs \<equiv> cons ? x xs"
translations
"[]" \<leftharpoondown> "CONST List.nil A"
"x # xs" \<leftharpoondown> "CONST List.cons A x xs"
syntax
"_list" :: \<open>args \<Rightarrow> o\<close> ("[_]")
translations
"[x, xs]" \<rightleftharpoons> "x # [xs]"
"[x]" \<rightleftharpoons> "x # []"
section \<open>Standard functions\<close>
subsection \<open>Head and tail\<close>
Definition head:
assumes "A: U i" "xs: List A"
shows "Maybe A"
proof (cases xs)
show "none: Maybe A" by intro
show "\<And>x. x: A \<Longrightarrow> some x: Maybe A" by intro
qed
Definition tail:
assumes "A: U i" "xs: List A"
shows "List A"
proof (cases xs)
show "[]: List A" by intro
show "\<And>xs. xs: List A \<Longrightarrow> xs: List A" .
qed
definition head_i ("head") where [implicit]: "head xs \<equiv> List.head ? xs"
definition tail_i ("tail") where [implicit]: "tail xs \<equiv> List.tail ? xs"
translations
"head" \<leftharpoondown> "CONST List.head A"
"tail" \<leftharpoondown> "CONST List.tail A"
Lemma head_type [type]:
assumes "A: U i" "xs: List A"
shows "head xs: Maybe A"
unfolding head_def by typechk
Lemma head_of_cons [comp]:
assumes "A: U i" "x: A" "xs: List A"
shows "head (x # xs) \<equiv> some x"
unfolding head_def by reduce
Lemma tail_type [type]:
assumes "A: U i" "xs: List A"
shows "tail xs: List A"
unfolding tail_def by typechk
Lemma tail_of_cons [comp]:
assumes "A: U i" "x: A" "xs: List A"
shows "tail (x # xs) \<equiv> xs"
unfolding tail_def by reduce
subsection \<open>Append\<close>
Definition app:
assumes "A: U i" "xs: List A" "ys: List A"
shows "List A"
apply (elim xs)
\<^item> by (fact \<open>ys:_\<close>)
\<^item> vars x _ rec
proof - show "x # rec: List A" by typechk qed
done
definition app_i ("app") where [implicit]: "app xs ys \<equiv> List.app ? xs ys"
translations "app" \<leftharpoondown> "CONST List.app A"
subsection \<open>Map\<close>
Definition map:
assumes "A: U i" "B: U i" "f: A \<rightarrow> B" "xs: List A"
shows "List B"
proof (elim xs)
show "[]: List B" by intro
next fix x ys
assuming "x: A" "ys: List B"
show "f x # ys: List B" by typechk
qed
definition map_i ("map") where [implicit]: "map \<equiv> List.map ? ?"
translations "map" \<leftharpoondown> "CONST List.map A B"
Lemma map_type [type]:
assumes "A: U i" "B: U i" "f: A \<rightarrow> B" "xs: List A"
shows "map f xs: List B"
unfolding map_def by typechk
subsection \<open>Reverse\<close>
Definition rev:
assumes "A: U i" "xs: List A"
shows "List A"
apply (elim xs)
\<^item> by (rule List_nil)
\<^item> vars x _ rec proof - show "app rec [x]: List A" by typechk qed
done
definition rev_i ("rev") where [implicit]: "rev \<equiv> List.rev ?"
translations "rev" \<leftharpoondown> "CONST List.rev A"
Lemma rev_type [type]:
assumes "A: U i" "xs: List A"
shows "rev xs: List A"
unfolding rev_def by typechk
Lemma rev_nil [comp]:
assumes "A: U i"
shows "rev (nil A) \<equiv> nil A"
unfolding rev_def by reduce
end
|