blob: a053a536542aed98772e886434e2080455b28e46 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
|
chapter \<open>Lists\<close>
theory List
imports Maybe
begin
(*TODO: Inductive type and recursive function definitions. The ad-hoc
axiomatization below should be subsumed once general inductive types are
properly implemented.*)
axiomatization
List :: \<open>o \<Rightarrow> o\<close> and
nil :: \<open>o \<Rightarrow> o\<close> and
cons :: \<open>o \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close> and
ListInd :: \<open>o \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> (o \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> o\<close>
where
ListF: "A: U i \<Longrightarrow> List A: U i" and
List_nil: "A: U i \<Longrightarrow> nil A: List A" and
List_cons: "\<lbrakk>x: A; xs: List A\<rbrakk> \<Longrightarrow> cons A x xs: List A" and
ListE: "\<lbrakk>
xs: List A;
c\<^sub>0: C (nil A);
\<And>x xs rec. \<lbrakk>x: A; xs: List A; rec: C xs\<rbrakk> \<Longrightarrow> f x xs rec: C (cons A x xs);
\<And>xs. xs: List A \<Longrightarrow> C xs: U i
\<rbrakk> \<Longrightarrow> ListInd A (\<lambda>xs. C xs) c\<^sub>0 (\<lambda>x xs rec. f x xs rec) xs: C xs" and
List_comp_nil: "\<lbrakk>
c\<^sub>0: C (nil A);
\<And>x xs rec. \<lbrakk>x: A; xs: List A; rec: C xs\<rbrakk> \<Longrightarrow> f x xs rec: C (cons A x xs);
\<And>xs. xs: List A \<Longrightarrow> C xs: U i
\<rbrakk> \<Longrightarrow> ListInd A (\<lambda>xs. C xs) c\<^sub>0 (\<lambda>x xs rec. f x xs rec) (nil A) \<equiv> c\<^sub>0" and
List_comp_cons: "\<lbrakk>
xs: List A;
c\<^sub>0: C (nil A);
\<And>x xs rec. \<lbrakk>x: A; xs: List A; rec: C xs\<rbrakk> \<Longrightarrow> f x xs rec: C (cons A x xs);
\<And>xs. xs: List A \<Longrightarrow> C xs: U i
\<rbrakk> \<Longrightarrow>
ListInd A (\<lambda>xs. C xs) c\<^sub>0 (\<lambda>x xs rec. f x xs rec) (cons A x xs) \<equiv>
f x xs (ListInd A (\<lambda>xs. C xs) c\<^sub>0 (\<lambda>x xs rec. f x xs rec) xs)"
lemmas
[intros] = ListF List_nil List_cons and
[elims "?xs"] = ListE and
[comps] = List_comp_nil List_comp_cons
abbreviation "ListRec A C \<equiv> ListInd A (\<lambda>_. C)"
Lemma (derive) ListCase:
assumes
"A: U i" "\<And>xs. xs: List A \<Longrightarrow> C xs: U i" and
nil_case: "c\<^sub>0: C (nil A)" and
cons_case: "\<And>x xs. \<lbrakk>x: A; xs: List A\<rbrakk> \<Longrightarrow> f x xs: C (cons A x xs)" and
"xs: List A"
shows "?List_cases A (\<lambda>xs. C xs) c\<^sub>0 (\<lambda>x xs. f x xs) xs: C xs"
by (elim xs) (fact nil_case, rule cons_case)
lemmas List_cases [cases] = ListCase[rotated 4]
section \<open>Notation\<close>
definition nil_i ("[]")
where [implicit]: "[] \<equiv> nil ?"
definition cons_i (infixr "#" 120)
where [implicit]: "x # xs \<equiv> cons ? x xs"
translations
"[]" \<leftharpoondown> "CONST List.nil A"
"x # xs" \<leftharpoondown> "CONST List.cons A x xs"
syntax
"_list" :: \<open>args \<Rightarrow> o\<close> ("[_]")
translations
"[x, xs]" \<rightleftharpoons> "x # [xs]"
"[x]" \<rightleftharpoons> "x # []"
section \<open>Standard functions\<close>
Lemma (derive) head:
assumes "A: U i" "xs: List A"
shows "Maybe A"
proof (cases xs)
show "none: Maybe A" by intro
show "\<And>x. x: A \<Longrightarrow> some x: Maybe A" by intro
qed
Lemma (derive) tail:
assumes "A: U i" "xs: List A"
shows "List A"
proof (cases xs)
show "[]: List A" by intro
show "\<And>xs. xs: List A \<Longrightarrow> xs: List A" .
qed
Lemma (derive) map:
assumes "A: U i" "B: U i" "f: A \<rightarrow> B" "xs: List A"
shows "List B"
proof (elim xs)
show "[]: List B" by intro
next fix x ys
assume "x: A" "ys: List B"
show "f x # ys: List B" by typechk
qed
thm map_def
\<comment> \<open>map ?A ?B ?f ?xs \<equiv> ListRec ?A (List ?B) [] (\<lambda>x xs. cons ?B (?f x)) ?xs\<close>
definition head_i ("head")
where [implicit]: "head xs \<equiv> List.head ? xs"
definition tail_i ("tail")
where [implicit]: "tail xs \<equiv> List.tail ? xs"
definition map_i ("map")
where [implicit]: "map \<equiv> List.map ? ?"
translations
"head" \<leftharpoondown> "CONST List.head A"
"tail" \<leftharpoondown> "CONST List.tail A"
"map" \<leftharpoondown> "CONST List.map A B"
Lemma head_type [typechk]:
assumes "A: U i" "xs: List A"
shows "head xs: Maybe A"
unfolding head_def by typechk
Lemma head_of_cons [comps]:
assumes "A: U i" "x: A" "xs: List A"
shows "head (x # xs) \<equiv> some x"
unfolding head_def ListCase_def by reduce
Lemma tail_type [typechk]:
assumes "A: U i" "xs: List A"
shows "tail xs: List A"
unfolding tail_def by typechk
Lemma tail_of_cons [comps]:
assumes "A: U i" "x: A" "xs: List A"
shows "tail (x # xs) \<equiv> xs"
unfolding tail_def ListCase_def by reduce
Lemma map_type [typechk]:
assumes "A: U i" "B: U i" "f: A \<rightarrow> B" "xs: List A"
shows "map f xs: List B"
unfolding map_def by typechk
end
|