1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
|
(* Title: goals.ML
Author: Joshua Chen
Goal statements and proof term export.
Modified from code contained in ~~/Pure/Isar/specification.ML.
*)
local
val long_keyword =
Parse_Spec.includes >> K "" ||
Parse_Spec.long_statement_keyword
val long_statement =
Scan.optional
(Parse_Spec.opt_thm_name ":" --| Scan.ahead long_keyword)
Binding.empty_atts
-- Scan.optional Parse_Spec.includes []
-- Parse_Spec.long_statement >>
(fn ((binding, includes), (elems, concl)) =>
(true, binding, includes, elems, concl))
val short_statement =
Parse_Spec.statement -- Parse_Spec.if_statement -- Parse.for_fixes >>
(fn ((shows, assumes), fixes) =>
(false, Binding.empty_atts, [],
[Element.Fixes fixes, Element.Assumes assumes], Element.Shows shows)
)
fun prep_statement prep_att prep_stmt raw_elems raw_stmt ctxt =
let
val (stmt, elems_ctxt) = prep_stmt raw_elems raw_stmt ctxt
val prems = Assumption.local_prems_of elems_ctxt ctxt
val stmt_ctxt =
fold (fold (Proof_Context.augment o fst) o snd) stmt elems_ctxt
in case raw_stmt
of Element.Shows _ =>
let val stmt' = Attrib.map_specs (map prep_att) stmt
in (([], prems, stmt', NONE), stmt_ctxt) end
| Element.Obtains raw_obtains =>
let
val asms_ctxt = stmt_ctxt
|> fold (fn ((name, _), asm) =>
snd o Proof_Context.add_assms Assumption.assume_export
[((name, [Context_Rules.intro_query NONE]), asm)]) stmt
val that = Assumption.local_prems_of asms_ctxt stmt_ctxt
val ([(_, that')], that_ctxt) = asms_ctxt
|> Proof_Context.set_stmt true
|> Proof_Context.note_thmss ""
[((Binding.name Auto_Bind.thatN, []), [(that, [])])]
||> Proof_Context.restore_stmt asms_ctxt
val stmt' =
[(Binding.empty_atts, [(#2 (#1 (Obtain.obtain_thesis ctxt)), [])])]
in
((Obtain.obtains_attribs raw_obtains, prems, stmt', SOME that'),
that_ctxt)
end
end
fun define_proof_term name (local_name, [th]) lthy =
let
fun make_name_binding suffix local_name =
let val base_local_name = Long_Name.base_name local_name
in Binding.qualified_name
((case base_local_name of "" => name | _ => base_local_name) ^
(case suffix
of SOME "prf" => "_prf"
| SOME "def" => "_def"
| _ => ""))
end
val (prems, concl) =
(Logic.strip_assums_hyp (Thm.prop_of th),
Logic.strip_assums_concl (Thm.prop_of th))
in
if not (Lib.is_typing concl) then ([], lthy)
else let
val prems_vars = distinct Term.aconv (flat
(map (Lib.collect_subterms is_Var) prems))
val concl_vars = Lib.collect_subterms is_Var
(Lib.term_of_typing concl)
val params = inter Term.aconv concl_vars prems_vars
val prf_tm = fold_rev lambda params (Lib.term_of_typing concl)
val ((_, (_, raw_def)), lthy') = Local_Theory.define
((make_name_binding NONE local_name, Mixfix.NoSyn),
((make_name_binding (SOME "prf") local_name, []), prf_tm)) lthy
val def = fold
(fn th1 => fn th2 => Thm.combination th2 th1)
(map (Thm.reflexive o Thm.cterm_of lthy) params)
raw_def
val ((_, def'), lthy'') = Local_Theory.note
((make_name_binding (SOME "def") local_name, []), [def])
lthy'
in
(def', lthy'')
end
end
| define_proof_term _ _ _ = error
("Unimplemented: proof terms for multiple facts in one statement")
fun gen_schematic_theorem
bundle_includes prep_att prep_stmt
gen_prf_tm long kind
before_qed after_qed
(name, raw_atts) raw_includes raw_elems raw_concl
do_print lthy
=
let
val _ = Local_Theory.assert lthy
val elems = raw_elems |> map (Element.map_ctxt_attrib (prep_att lthy))
val ((more_atts, prems, stmt, facts), goal_ctxt) = lthy
|> bundle_includes raw_includes
|> prep_statement (prep_att lthy) prep_stmt elems raw_concl
val atts = more_atts @ map (prep_att lthy) raw_atts
val pos = Position.thread_data ()
val prems_name = if long then Auto_Bind.assmsN else Auto_Bind.thatN
fun gen_and_after_qed results goal_ctxt' =
let
val results' = burrow
(map (Goal.norm_result lthy) o Proof_Context.export goal_ctxt' lthy)
results
val ((res, lthy'), substmts) =
if forall (Binding.is_empty_atts o fst) stmt
then ((map (pair "") results', lthy), false)
else
(Local_Theory.notes_kind kind
(map2 (fn (b, _) => fn ths => (b, [(ths, [])])) stmt results')
lthy,
true)
val (res', lthy'') =
if gen_prf_tm
then
let
val (prf_tm_defs, new_lthy) = fold
(fn result => fn (defs, lthy) =>
apfst (fn new_defs => defs @ new_defs)
(define_proof_term (Binding.name_of name) result lthy))
res
([], lthy')
val res_folded =
map (apsnd (map (Local_Defs.fold new_lthy prf_tm_defs))) res
in
Local_Theory.notes_kind kind
[((name, @{attributes [type]} @ atts),
[(maps #2 res_folded, [])])]
new_lthy
end
else
Local_Theory.notes_kind kind
[((name, atts), [(maps #2 res, [])])]
lthy'
val _ = Proof_Display.print_results do_print pos lthy''
((kind, Binding.name_of name), map (fn (_, ths) => ("", ths)) res')
val _ =
if substmts then map
(fn (name, ths) => Proof_Display.print_results do_print pos lthy''
(("and", name), [("", ths)]))
res
else []
in
after_qed results' lthy''
end
in
goal_ctxt
|> not (null prems) ?
(Proof_Context.note_thmss "" [((Binding.name prems_name, []), [(prems, [])])]
#> snd #> Context_Facts.register_facts prems)
|> Proof.theorem before_qed gen_and_after_qed (map snd stmt)
|> (case facts of NONE => I | SOME ths => Proof.refine_insert ths)
end
val schematic_theorem_cmd =
gen_schematic_theorem
Bundle.includes_cmd
Attrib.check_src
Elaborated_Statement.read_goal_statement
fun theorem spec descr =
Outer_Syntax.local_theory_to_proof' spec ("state " ^ descr)
(Scan.option (Args.parens (Args.$$$ "def"))
-- (long_statement || short_statement) >>
(fn (opt_derive, (long, binding, includes, elems, concl)) =>
schematic_theorem_cmd
(case opt_derive of SOME "def" => true | _ => false)
long descr NONE (K I) binding includes elems concl))
fun definition spec descr =
Outer_Syntax.local_theory_to_proof' spec "definition via proof"
((long_statement || short_statement) >>
(fn (long, binding, includes, elems, concl) => schematic_theorem_cmd
true long descr NONE (K I) binding includes elems concl))
in
val _ = theorem \<^command_keyword>\<open>Theorem\<close> "Theorem"
val _ = theorem \<^command_keyword>\<open>Lemma\<close> "Lemma"
val _ = theorem \<^command_keyword>\<open>Corollary\<close> "Corollary"
val _ = theorem \<^command_keyword>\<open>Proposition\<close> "Proposition"
val _ = definition \<^command_keyword>\<open>Definition\<close> "Definition"
end
|