blob: 1c921bd28dcb76303860e0df410a54dffb83b0af (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
|
theory scratch
imports HoTT
begin
(* Typechecking *)
schematic_goal "\<lbrakk>a : A; b : B\<rbrakk> \<Longrightarrow> (a,b) : ?A" by simple
(* Simplification *)
notepad begin
assume asm:
"f`a \<equiv> g"
"g`b \<equiv> \<^bold>\<lambda>x:A. d"
"c : A"
"d : B"
have "f`a`b`c \<equiv> d" by (simp add: asm | rule comp | derive lems: asm)+
end
lemma "a : A \<Longrightarrow> indEqual[A] (\<lambda>x y _. y =\<^sub>A x) (\<lambda>x. refl(x)) a a refl(a) \<equiv> refl(a)"
by verify_simp
lemma "\<lbrakk>a : A; \<And>x. x : A \<Longrightarrow> b x : X\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x:A. b x)`a \<equiv> b a"
by verify_simp
lemma
assumes "a : A" and "\<And>x. x : A \<Longrightarrow> b x : B x"
shows "(\<^bold>\<lambda>x:A. b x)`a \<equiv> b a"
by (verify_simp lems: assms)
lemma "\<lbrakk>a : A; b : B a; B: A \<rightarrow> U\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B x. c x y)`a`b \<equiv> c a b"
oops
lemma
assumes
"(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B x. c x y)`a \<equiv> \<^bold>\<lambda>y:B a. c a y"
"(\<^bold>\<lambda>y:B a. c a y)`b \<equiv> c a b"
shows "(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B x. c x y)`a`b \<equiv> c a b"
apply (simp add: assms)
done
lemmas lems =
Prod_comp[where ?A = "B a" and ?b = "\<lambda>b. c a b" and ?a = b]
Prod_comp[where ?A = A and ?b = "\<lambda>x. \<^bold>\<lambda>y:B x. c x y" and ?a = a]
lemma
assumes
"a : A"
"b : B a"
"B: A \<rightarrow> U"
"\<And>x y. \<lbrakk>x : A; y : B x\<rbrakk> \<Longrightarrow> c x y : D x y"
shows "(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B x. c x y)`a`b \<equiv> c a b"
apply (verify_simp lems: assms)
end
|