blob: 0393968e544a947b30adf89e0f9a1d84ca90594d (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
|
theory Prelude
imports MLTT
begin
section \<open>Sum type\<close>
axiomatization
Sum :: \<open>o \<Rightarrow> o \<Rightarrow> o\<close> and
inl :: \<open>o \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close> and
inr :: \<open>o \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close> and
SumInd :: \<open>o \<Rightarrow> o \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> o\<close>
notation Sum (infixl "\<or>" 50)
axiomatization where
SumF: "\<lbrakk>A: U i; B: U i\<rbrakk> \<Longrightarrow> A \<or> B: U i" and
Sum_inl: "\<lbrakk>B: U i; a: A\<rbrakk> \<Longrightarrow> inl A B a: A \<or> B" and
Sum_inr: "\<lbrakk>A: U i; b: B\<rbrakk> \<Longrightarrow> inr A B b: A \<or> B" and
SumE: "\<lbrakk>
s: A \<or> B;
\<And>s. s: A \<or> B \<Longrightarrow> C s: U i;
\<And>a. a: A \<Longrightarrow> c a: C (inl A B a);
\<And>b. b: B \<Longrightarrow> d b: C (inr A B b)
\<rbrakk> \<Longrightarrow> SumInd A B (fn s. C s) (fn a. c a) (fn b. d b) s: C s" and
Sum_comp_inl: "\<lbrakk>
a: A;
\<And>s. s: A \<or> B \<Longrightarrow> C s: U i;
\<And>a. a: A \<Longrightarrow> c a: C (inl A B a);
\<And>b. b: B \<Longrightarrow> d b: C (inr A B b)
\<rbrakk> \<Longrightarrow> SumInd A B (fn s. C s) (fn a. c a) (fn b. d b) (inl A B a) \<equiv> c a" and
Sum_comp_inr: "\<lbrakk>
b: B;
\<And>s. s: A \<or> B \<Longrightarrow> C s: U i;
\<And>a. a: A \<Longrightarrow> c a: C (inl A B a);
\<And>b. b: B \<Longrightarrow> d b: C (inr A B b)
\<rbrakk> \<Longrightarrow> SumInd A B (fn s. C s) (fn a. c a) (fn b. d b) (inr A B b) \<equiv> d b"
lemmas
[form] = SumF and
[intr] = Sum_inl Sum_inr and
[intro] = Sum_inl[rotated] Sum_inr[rotated] and
[elim ?s] = SumE and
[comp] = Sum_comp_inl Sum_comp_inr
method left = rule Sum_inl
method right = rule Sum_inr
section \<open>Empty and unit types\<close>
axiomatization
Top :: \<open>o\<close> and
tt :: \<open>o\<close> and
TopInd :: \<open>(o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close>
and
Bot :: \<open>o\<close> and
BotInd :: \<open>(o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> o\<close>
notation Top ("\<top>") and Bot ("\<bottom>")
axiomatization where
TopF: "\<top>: U i" and
TopI: "tt: \<top>" and
TopE: "\<lbrakk>a: \<top>; \<And>x. x: \<top> \<Longrightarrow> C x: U i; c: C tt\<rbrakk> \<Longrightarrow> TopInd (fn x. C x) c a: C a" and
Top_comp: "\<lbrakk>\<And>x. x: \<top> \<Longrightarrow> C x: U i; c: C tt\<rbrakk> \<Longrightarrow> TopInd (fn x. C x) c tt \<equiv> c"
and
BotF: "\<bottom>: U i" and
BotE: "\<lbrakk>x: \<bottom>; \<And>x. x: \<bottom> \<Longrightarrow> C x: U i\<rbrakk> \<Longrightarrow> BotInd (fn x. C x) x: C x"
lemmas
[form] = TopF BotF and
[intr, intro] = TopI and
[elim ?a] = TopE and
[elim ?x] = BotE and
[comp] = Top_comp
abbreviation (input) Not ("\<not>_" [1000] 1000) where "\<not>A \<equiv> A \<rightarrow> \<bottom>"
section \<open>Booleans\<close>
definition "Bool \<equiv> \<top> \<or> \<top>"
definition "true \<equiv> inl \<top> \<top> tt"
definition "false \<equiv> inr \<top> \<top> tt"
Lemma
BoolF: "Bool: U i" and
Bool_true: "true: Bool" and
Bool_false: "false: Bool"
unfolding Bool_def true_def false_def by typechk+
\<comment> \<open>Definitions like these should be handled by a future function package\<close>
Definition ifelse [rotated 1]:
assumes *[unfolded Bool_def true_def false_def]:
"\<And>x. x: Bool \<Longrightarrow> C x: U i"
"x: Bool"
"a: C true"
"b: C false"
shows "C x"
using assms[unfolded Bool_def true_def false_def, type]
by (elim x) (elim, fact)+
Lemma if_true:
assumes
"\<And>x. x: Bool \<Longrightarrow> C x: U i"
"a: C true"
"b: C false"
shows "ifelse C true a b \<equiv> a"
unfolding ifelse_def true_def
using assms unfolding Bool_def true_def false_def
by compute
Lemma if_false:
assumes
"\<And>x. x: Bool \<Longrightarrow> C x: U i"
"a: C true"
"b: C false"
shows "ifelse C false a b \<equiv> b"
unfolding ifelse_def false_def
using assms unfolding Bool_def true_def false_def
by compute
lemmas
[form] = BoolF and
[intr, intro] = Bool_true Bool_false and
[comp] = if_true if_false and
[elim ?x] = ifelse
lemmas
BoolE = ifelse
subsection \<open>Notation\<close>
definition ifelse_i ("if _ then _ else _")
where [implicit]: "if x then a else b \<equiv> ifelse {} x a b"
translations "if x then a else b" \<leftharpoondown> "CONST ifelse C x a b"
subsection \<open>Logical connectives\<close>
definition not ("!_") where "!x \<equiv> ifelse (K Bool) x false true"
end
|