aboutsummaryrefslogtreecommitdiff
path: root/hott/Nat.thy
blob: 2d0329362344a5a72e4e11440aa75569f63b32b4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
theory Nat
imports Identity

begin

axiomatization
  Nat    :: \<open>o\<close> and
  zero   :: \<open>o\<close> ("0") and
  suc    :: \<open>o \<Rightarrow> o\<close> and
  NatInd :: \<open>(o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> (o \<Rightarrow> o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> o\<close>
where
  NatF: "Nat: U i" and

  Nat_zero: "0: Nat" and

  Nat_suc: "n: Nat \<Longrightarrow> suc n: Nat" and

  NatE: "\<lbrakk>
    n: Nat;
    c\<^sub>0: C 0;
    \<And>k rec. \<lbrakk>k: Nat; rec: C k\<rbrakk> \<Longrightarrow> f k rec: C (suc k);
    \<And>n. n: Nat \<Longrightarrow> C n: U i
    \<rbrakk> \<Longrightarrow> NatInd (\<lambda>n. C n) c\<^sub>0 (\<lambda>k rec. f k rec) n: C n" and

  Nat_comp_zero: "\<lbrakk>
    c\<^sub>0: C 0;
    \<And>k rec. \<lbrakk>k: Nat; rec: C k\<rbrakk> \<Longrightarrow> f k rec: C (suc k);
    \<And>n. n: Nat \<Longrightarrow> C n: U i
    \<rbrakk> \<Longrightarrow> NatInd (\<lambda>n. C n) c\<^sub>0 (\<lambda>k rec. f k rec) 0 \<equiv> c\<^sub>0" and

  Nat_comp_suc: "\<lbrakk>
    n: Nat;
    c\<^sub>0: C 0;
    \<And>k rec. \<lbrakk>k: Nat; rec: C k\<rbrakk> \<Longrightarrow> f k rec: C (suc k);
    \<And>n. n: Nat \<Longrightarrow> C n: U i
    \<rbrakk> \<Longrightarrow>
      NatInd (\<lambda>n. C n) c\<^sub>0 (\<lambda>k rec. f k rec) (suc n) \<equiv>
        f n (NatInd (\<lambda>n. C n) c\<^sub>0 (\<lambda>k rec. f k rec) n)"

lemmas
  [intros] = NatF Nat_zero Nat_suc and
  [elims "?n"] = NatE and
  [comps] = Nat_comp_zero Nat_comp_suc

text \<open>Non-dependent recursion\<close>

abbreviation "NatRec C \<equiv> NatInd (\<lambda>_. C)"

text \<open>Manual notation for now:\<close>
abbreviation one   ("1") where "1 \<equiv> suc 0"
abbreviation two   ("2") where "2 \<equiv> suc 1"
abbreviation three ("3") where "3 \<equiv> suc 2"
abbreviation four  ("4") where "4 \<equiv> suc 3"
abbreviation five  ("5") where "5 \<equiv> suc 4"
abbreviation six   ("6") where "6 \<equiv> suc 5"
abbreviation seven ("7") where "7 \<equiv> suc 6"
abbreviation eight ("8") where "8 \<equiv> suc 7"
abbreviation nine  ("9") where "9 \<equiv> suc 8"


section \<open>Basic arithmetic\<close>

subsection \<open>Addition\<close>

definition add (infixl "+" 120) where "m + n \<equiv> NatRec Nat m (K suc) n"

lemma add_type [typechk]:
  assumes "m: Nat" "n: Nat"
  shows "m + n: Nat"
  unfolding add_def by typechk

lemma add_zero [comps]:
  assumes "m: Nat"
  shows "m + 0 \<equiv> m"
  unfolding add_def by reduce

lemma add_suc [comps]:
  assumes "m: Nat" "n: Nat"
  shows "m + suc n \<equiv> suc (m + n)"
  unfolding add_def by reduce

Lemma (derive) zero_add:
  assumes "n: Nat"
  shows "0 + n = n"
  apply (elim n)
    \<guillemotright> by (reduce; intro)
    \<guillemotright> vars _ ih by reduce (eq ih; intro)
  done

Lemma (derive) suc_add:
  assumes "m: Nat" "n: Nat"
  shows "suc m + n = suc (m + n)"
  apply (elim n)
    \<guillemotright> by reduce refl
    \<guillemotright> vars _ ih by reduce (eq ih; intro)
  done

Lemma (derive) suc_eq:
  assumes "m: Nat" "n: Nat"
  shows "p: m = n \<Longrightarrow> suc m = suc n"
  by (eq p) intro

Lemma (derive) add_assoc:
  assumes "l: Nat" "m: Nat" "n: Nat"
  shows "l + (m + n) = (l + m) + n"
  apply (elim n)
    \<guillemotright> by reduce intro
    \<guillemotright> vars _ ih by reduce (eq ih; intro)
  done

Lemma (derive) add_comm:
  assumes "m: Nat" "n: Nat"
  shows "m + n = n + m"
  apply (elim n)
    \<guillemotright> by (reduce; rule zero_add[symmetric])
    \<guillemotright> prems vars n ih
      proof reduce
        have "suc (m + n) = suc (n + m)" by (eq ih) intro
        also have ".. = suc n + m" by (rule suc_add[symmetric])
        finally show "suc (m + n) = suc n + m" by this
      qed
  done

subsection \<open>Multiplication\<close>

definition mul (infixl "*" 121) where "m * n \<equiv> NatRec Nat 0 (K $ add m) n"

lemma mul_type [typechk]:
  assumes "m: Nat" "n: Nat"
  shows "m * n: Nat"
  unfolding mul_def by typechk

lemma mul_zero [comps]:
  assumes "n: Nat"
  shows "n * 0 \<equiv> 0"
  unfolding mul_def by reduce

lemma mul_one [comps]:
  assumes "n: Nat"
  shows "n * 1 \<equiv> n"
  unfolding mul_def by reduce

lemma mul_suc [comps]:
  assumes "m: Nat" "n: Nat"
  shows "m * suc n \<equiv> m + m * n"
  unfolding mul_def by reduce

end