aboutsummaryrefslogtreecommitdiff
path: root/hott/Nat.thy
blob: d54ea7be8bd88492c381cd3f15167a263a86bdfb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
theory Nat
imports Identity

begin

axiomatization
  Nat    :: \<open>o\<close> and
  zero   :: \<open>o\<close> ("0") and
  suc    :: \<open>o \<Rightarrow> o\<close> and
  NatInd :: \<open>(o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> (o \<Rightarrow> o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> o\<close>
where
  NatF: "Nat: U i" and

  Nat_zero: "0: Nat" and

  Nat_suc: "n: Nat \<Longrightarrow> suc n: Nat" and

  NatE: "\<lbrakk>
    n: Nat;
    c\<^sub>0: C 0;
    \<And>k c. \<lbrakk>k: Nat; c: C k\<rbrakk> \<Longrightarrow> f k c: C (suc k);
    \<And>n. n: Nat \<Longrightarrow> C n: U i
    \<rbrakk> \<Longrightarrow> NatInd (\<lambda>n. C n) c\<^sub>0 (\<lambda>k c. f k c) n: C n" and

  Nat_comp_zero: "\<lbrakk>
    c\<^sub>0: C 0;
    \<And>k c. \<lbrakk>k: Nat; c: C k\<rbrakk> \<Longrightarrow> f k c: C (suc k);
    \<And>n. n: Nat \<Longrightarrow> C n: U i
    \<rbrakk> \<Longrightarrow> NatInd (\<lambda>n. C n) c\<^sub>0 (\<lambda>k c. f k c) 0 \<equiv> c\<^sub>0" and

  Nat_comp_suc: "\<lbrakk>
    n: Nat;
    c\<^sub>0: C 0;
    \<And>k c. \<lbrakk>k: Nat; c: C k\<rbrakk> \<Longrightarrow> f k c: C (suc k);
    \<And>n. n: Nat \<Longrightarrow> C n: U i
    \<rbrakk> \<Longrightarrow>
      NatInd (\<lambda>n. C n) c\<^sub>0 (\<lambda>k c. f k c) (suc n) \<equiv>
        f n (NatInd (\<lambda>n. C n) c\<^sub>0 (\<lambda>k c. f k c) n)"

lemmas
  [intros] = NatF Nat_zero Nat_suc and
  [elims "?n"] = NatE and
  [comps] = Nat_comp_zero Nat_comp_suc

text \<open>Non-dependent recursion\<close>

abbreviation "NatRec C \<equiv> NatInd (K C)"


section \<open>Basic arithmetic\<close>

definition add (infixl "+" 120) where "m + n \<equiv> NatRec Nat n (K suc) m"

lemma add_type [typechk]:
  assumes "m: Nat" "n: Nat"
  shows "m + n: Nat"
  unfolding add_def by typechk

lemma zero_add [comps]:
  assumes "n: Nat"
  shows "0 + n \<equiv> n"
  unfolding add_def by reduce

lemma suc_add [comps]:
  assumes "m: Nat" "n: Nat"
  shows "suc m + n \<equiv> suc (m + n)"
  unfolding add_def by reduce

Lemma (derive) add_zero:
  assumes "n: Nat"
  shows "n + 0 = n"
  apply (elim n)
    \<guillemotright> by (reduce; intro)
    \<guillemotright> vars _ ih by reduce (eq ih; intro)
  done

Lemma (derive) add_suc:
  assumes "m: Nat" "n: Nat"
  shows "m + suc n = suc (m + n)"
  apply (elim m)
    \<guillemotright> by reduce intro
    \<guillemotright> vars _ ih by reduce (eq ih; intro)
  done

Lemma (derive) suc_monotone:
  assumes "m: Nat" "n: Nat"
  shows "p: m = n \<Longrightarrow> suc m = suc n"
  by (eq p) intro

Lemma (derive) add_assoc:
  assumes "l: Nat" "m: Nat" "n: Nat"
  shows "l + (m + n) = (l + m) + n"
  apply (elim l)
    \<guillemotright> by reduce intro
    \<guillemotright> vars _ ih by reduce (eq ih; intro)
  done

Lemma (derive) add_comm:
  assumes "m: Nat" "n: Nat"
  shows "m + n = n + m"
  apply (elim m)
    \<guillemotright> by (reduce; rule add_zero[symmetric])
    \<guillemotright> prems prms vars m ih
      proof reduce
        have "suc (m + n) = suc (n + m)" by (eq ih) intro
        also have "'' = n + suc m" by (rule add_suc[symmetric])
        finally show "suc (m + n) = n + suc m" by this
      qed
  done

definition mul (infixl "*" 120) where
  [comps]: "m * n \<equiv> NatRec Nat 0 (K $ add n) m"


end