aboutsummaryrefslogtreecommitdiff
path: root/hott/Identity.thy
blob: 3fef5362f4bf421304e32a0abc1f6fd6b05cf448 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
chapter \<open>The identity type\<close>

text \<open>
  The identity type, the higher groupoid structure of types,
  and type families as fibrations.
\<close>

theory Identity
imports Spartan

begin

axiomatization
  Id    :: \<open>o \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close> and
  refl  :: \<open>o \<Rightarrow> o\<close> and
  IdInd :: \<open>o \<Rightarrow> (o \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o) \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close>

syntax "_Id" :: \<open>o \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close> ("(2_ =\<^bsub>_\<^esub>/ _)" [111, 0, 111] 110)

translations "a =\<^bsub>A\<^esub> b" \<rightleftharpoons> "CONST Id A a b"

axiomatization where
  IdF: "\<lbrakk>A: U i; a: A; b: A\<rbrakk> \<Longrightarrow> a =\<^bsub>A\<^esub> b: U i" and

  IdI: "a: A \<Longrightarrow> refl a: a =\<^bsub>A\<^esub> a" and

  IdE: "\<lbrakk>
    p: a =\<^bsub>A\<^esub> b;
    a: A;
    b: A;
    \<And>x y p. \<lbrakk>p: x =\<^bsub>A\<^esub> y; x: A; y: A\<rbrakk> \<Longrightarrow> C x y p: U i;
    \<And>x. x: A \<Longrightarrow> f x: C x x (refl x)
    \<rbrakk> \<Longrightarrow> IdInd A (\<lambda>x y p. C x y p) (\<lambda>x. f x) a b p: C a b p" and

  Id_comp: "\<lbrakk>
    a: A;
    \<And>x y p. \<lbrakk>x: A; y: A; p: x =\<^bsub>A\<^esub> y\<rbrakk> \<Longrightarrow> C x y p: U i;
    \<And>x. x: A \<Longrightarrow> f x: C x x (refl x)
    \<rbrakk> \<Longrightarrow> IdInd A (\<lambda>x y p. C x y p) (\<lambda>x. f x) a a (refl a) \<equiv> f a"

lemmas
  [intros] = IdF IdI and
  [elims "?p" "?a" "?b"] = IdE and
  [comps] = Id_comp and
  [refl] = IdI


section \<open>Path induction\<close>

method_setup eq = \<open>
Args.term >> (fn tm => fn ctxt => CONTEXT_METHOD (K (
  CONTEXT_SUBGOAL (fn (goal, i) =>
    let
      val facts = Proof_Context.facts_of ctxt
      val prems = Logic.strip_assums_hyp goal
      val template = \<^const>\<open>has_type\<close>
        $ tm
        $ (\<^const>\<open>Id\<close> $ Var (("*?A", 0), \<^typ>\<open>o\<close>)
          $ Var (("*?x", 0), \<^typ>\<open>o\<close>)
          $ Var (("*?y", 0), \<^typ>\<open>o\<close>))
      val types =
        map (Thm.prop_of o #1) (Facts.could_unify facts template)
        @ filter (fn prem => Term.could_unify (template, prem)) prems
        |> map Lib.type_of_typing
    in case types of
        (\<^const>\<open>Id\<close> $ _ $ x $ y)::_ =>
          elim_context_tac [tm, x, y] ctxt i
      | _ => Context_Tactic.CONTEXT_TACTIC no_tac
    end) 1)))
\<close>


section \<open>Symmetry and transitivity\<close>

Lemma (derive) pathinv:
  assumes "A: U i" "x: A" "y: A" "p: x =\<^bsub>A\<^esub> y"
  shows "y =\<^bsub>A\<^esub> x"
  by (eq p) intro

lemma pathinv_comp [comps]:
  assumes "x: A" "A: U i"
  shows "pathinv A x x (refl x) \<equiv> refl x"
  unfolding pathinv_def by reduce

Lemma (derive) pathcomp:
  assumes
    "A: U i" "x: A" "y: A" "z: A"
    "p: x =\<^bsub>A\<^esub> y" "q: y =\<^bsub>A\<^esub> z"
  shows
    "x =\<^bsub>A\<^esub> z"
  apply (eq p)
    focus prems vars x p
      apply (eq p)
        apply intro
    done
  done

lemma pathcomp_comp [comps]:
  assumes "a: A" "A: U i"
  shows "pathcomp A a a a (refl a) (refl a) \<equiv> refl a"
  unfolding pathcomp_def by reduce


section \<open>Notation\<close>

definition Id_i (infix "=" 110)
  where [implicit]: "Id_i x y \<equiv> x =\<^bsub>?\<^esub> y"

definition pathinv_i ("_\<inverse>" [1000])
  where [implicit]: "pathinv_i p \<equiv> pathinv ? ? ? p"

definition pathcomp_i (infixl "\<bullet>" 121)
  where [implicit]: "pathcomp_i p q \<equiv> pathcomp ? ? ? ? p q"

translations
  "x = y" \<leftharpoondown> "x =\<^bsub>A\<^esub> y"
  "p\<inverse>" \<leftharpoondown> "CONST pathinv A x y p"
  "p \<bullet> q" \<leftharpoondown> "CONST pathcomp A x y z p q"


section \<open>Calculational reasoning\<close>

consts rhs :: \<open>'a\<close> ("''''")

ML \<open>
local fun last_rhs ctxt =
  let
    val this_name = Name_Space.full_name (Proof_Context.naming_of ctxt)
      (Binding.name Auto_Bind.thisN)
    val this = #thms (the (Proof_Context.lookup_fact ctxt this_name))
      handle Option => []
    val rhs = case map Thm.prop_of this of
       [\<^const>\<open>has_type\<close> $ _ $ (\<^const>\<open>Id\<close> $ _ $ _ $ y)] => y
      | _ => Term.dummy
  in
    map_aterms (fn t => case t of Const (\<^const_name>\<open>rhs\<close>, _) => rhs | _ => t)
  end
in val _ = Context.>>
  (Syntax_Phases.term_check 5 "" (fn ctxt => map (last_rhs ctxt)))
end
\<close>

lemmas
  [sym] = pathinv[rotated 3] and
  [trans] = pathcomp[rotated 4]


section \<open>Basic propositional equalities\<close>

Lemma (derive) pathcomp_left_refl:
  assumes "A: U i" "x: A" "y: A" "p: x =\<^bsub>A\<^esub> y"
  shows "(refl x) \<bullet> p = p"
  apply (eq p)
    apply (reduce; intros)
  done

Lemma (derive) pathcomp_right_refl:
  assumes "A: U i" "x: A" "y: A" "p: x =\<^bsub>A\<^esub> y"
  shows "p \<bullet> (refl y) = p"
  apply (eq p)
    apply (reduce; intros)
  done

Lemma (derive) pathcomp_left_inv:
  assumes "A: U i" "x: A" "y: A" "p: x =\<^bsub>A\<^esub> y"
  shows "p\<inverse> \<bullet> p = refl y"
  apply (eq p)
    apply (reduce; intros)
  done

Lemma (derive) pathcomp_right_inv:
  assumes "A: U i" "x: A" "y: A" "p: x =\<^bsub>A\<^esub> y"
  shows "p \<bullet> p\<inverse> = refl x"
  apply (eq p)
    apply (reduce; intros)
  done

Lemma (derive) pathinv_pathinv:
  assumes "A: U i" "x: A" "y: A" "p: x =\<^bsub>A\<^esub> y"
  shows "p\<inverse>\<inverse> = p"
  apply (eq p)
    apply (reduce; intros)
  done

Lemma (derive) pathcomp_assoc:
  assumes
    "A: U i" "x: A" "y: A" "z: A" "w: A"
    "p: x =\<^bsub>A\<^esub> y" "q: y =\<^bsub>A\<^esub> z" "r: z =\<^bsub>A\<^esub> w"
  shows "p \<bullet> (q \<bullet> r) = p \<bullet> q \<bullet> r"
  apply (eq p)
    focus prems vars x p
      apply (eq p)
        focus prems vars x p
          apply (eq p)
            apply (reduce; intros)
        done
    done
  done


section \<open>Functoriality of functions\<close>

Lemma (derive) ap:
  assumes
    "A: U i" "B: U i"
    "x: A" "y: A"
    "f: A \<rightarrow> B"
    "p: x =\<^bsub>A\<^esub> y"
  shows "f x = f y"
  apply (eq p)
    apply intro
  done

definition ap_i ("_[_]" [1000, 0])
  where [implicit]: "ap_i f p \<equiv> ap ? ? ? ? f p"

translations "f[p]" \<leftharpoondown> "CONST ap A B x y f p"

Lemma ap_refl [comps]:
  assumes "f: A \<rightarrow> B" "x: A" "A: U i" "B: U i"
  shows "f[refl x] \<equiv> refl (f x)"
  unfolding ap_def by reduce

Lemma (derive) ap_pathcomp:
  assumes
    "A: U i" "B: U i"
    "x: A" "y: A" "z: A"
    "f: A \<rightarrow> B"
    "p: x =\<^bsub>A\<^esub> y" "q: y =\<^bsub>A\<^esub> z"
  shows
    "f[p \<bullet> q] = f[p] \<bullet> f[q]"
  apply (eq p)
    focus prems vars x p
      apply (eq p)
        apply (reduce; intro)
    done
  done

Lemma (derive) ap_pathinv:
  assumes
    "A: U i" "B: U i"
    "x: A" "y: A"
    "f: A \<rightarrow> B"
    "p: x =\<^bsub>A\<^esub> y"
  shows "f[p\<inverse>] = f[p]\<inverse>"
  by (eq p) (reduce; intro)

text \<open>The next two proofs currently use some low-level rewriting.\<close>

Lemma (derive) ap_funcomp:
  assumes
    "A: U i" "B: U i" "C: U i"
    "x: A" "y: A"
    "f: A \<rightarrow> B" "g: B \<rightarrow> C"
    "p: x =\<^bsub>A\<^esub> y"
  shows "(g \<circ> f)[p] = g[f[p]]"
  apply (eq p)
    apply (simp only: funcomp_apply_comp[symmetric])
    apply (reduce; intro)
  done

Lemma (derive) ap_id:
  assumes "A: U i" "x: A" "y: A" "p: x =\<^bsub>A\<^esub> y"
  shows "(id A)[p] = p"
  apply (eq p)
    apply (rewrite at "\<hole> = _" id_comp[symmetric])
    apply (rewrite at "_ = \<hole>" id_comp[symmetric])
    apply (reduce; intros)
  done


section \<open>Transport\<close>

Lemma (derive) transport:
  assumes
    "A: U i"
    "\<And>x. x: A \<Longrightarrow> P x: U i"
    "x: A" "y: A"
    "p: x =\<^bsub>A\<^esub> y"
  shows "P x \<rightarrow> P y"
  by (eq p) intro

definition transport_i ("trans")
  where [implicit]: "trans P p \<equiv> transport ? P ? ? p"

translations "trans P p" \<leftharpoondown> "CONST transport A P x y p"

Lemma transport_comp [comps]:
  assumes
    "a: A"
    "A: U i"
    "\<And>x. x: A \<Longrightarrow> P x: U i"
  shows "trans P (refl a) \<equiv> id (P a)"
  unfolding transport_def by reduce

\<comment> \<open>TODO: Build transport automation!\<close>

Lemma use_transport:
  assumes
    "p: y =\<^bsub>A\<^esub> x"
    "u: P x"
    "x: A" "y: A"
    "A: U i"
    "\<And>x. x: A \<Longrightarrow> P x: U i"
  shows "trans P p\<inverse> u: P y"
  by typechk

Lemma (derive) transport_left_inv:
  assumes
    "A: U i"
    "\<And>x. x: A \<Longrightarrow> P x: U i"
    "x: A" "y: A"
    "p: x =\<^bsub>A\<^esub> y"
  shows "(trans P p\<inverse>) \<circ> (trans P p) = id (P x)"
  by (eq p) (reduce; intro)

Lemma (derive) transport_right_inv:
  assumes
    "A: U i"
    "\<And>x. x: A \<Longrightarrow> P x: U i"
    "x: A" "y: A"
    "p: x =\<^bsub>A\<^esub> y"
  shows "(trans P p) \<circ> (trans P p\<inverse>) = id (P y)"
  by (eq p) (reduce; intros)

Lemma (derive) transport_pathcomp:
  assumes
    "A: U i"
    "\<And>x. x: A \<Longrightarrow> P x: U i"
    "x: A" "y: A" "z: A"
    "u: P x"
    "p: x =\<^bsub>A\<^esub> y" "q: y =\<^bsub>A\<^esub> z"
  shows "trans P q (trans P p u) = trans P (p \<bullet> q) u"
  apply (eq p)
    focus prems vars x p
      apply (eq p)
        apply (reduce; intros)
    done
  done

Lemma (derive) transport_compose_typefam:
  assumes
    "A: U i" "B: U i"
    "\<And>x. x: B \<Longrightarrow> P x: U i"
    "f: A \<rightarrow> B"
    "x: A" "y: A"
    "p: x =\<^bsub>A\<^esub> y"
    "u: P (f x)"
  shows "trans (\<lambda>x. P (f x)) p u = trans P f[p] u"
  by (eq p) (reduce; intros)

Lemma (derive) transport_function_family:
  assumes
    "A: U i"
    "\<And>x. x: A \<Longrightarrow> P x: U i"
    "\<And>x. x: A \<Longrightarrow> Q x: U i"
    "f: \<Prod>x: A. P x \<rightarrow> Q x"
    "x: A" "y: A"
    "u: P x"
    "p: x =\<^bsub>A\<^esub> y"
  shows "trans Q p ((f x) u) = (f y) (trans P p u)"
  by (eq p) (reduce; intros)

Lemma (derive) transport_const:
  assumes
    "A: U i" "B: U i"
    "x: A" "y: A"
    "p: x =\<^bsub>A\<^esub> y"
  shows "\<Prod>b: B. trans (\<lambda>_. B) p b = b"
  by (intro, eq p) (reduce; intro)

definition transport_const_i ("trans'_const")
  where [implicit]: "trans_const B p \<equiv> transport_const ? B ? ? p"

translations "trans_const B p" \<leftharpoondown> "CONST transport_const A B x y p"

Lemma transport_const_comp [comps]:
  assumes
    "x: A" "b: B"
    "A: U i" "B: U i"
  shows "trans_const B (refl x) b\<equiv> refl b"
  unfolding transport_const_def by reduce

Lemma (derive) pathlift:
  assumes
    "A: U i"
    "\<And>x. x: A \<Longrightarrow> P x: U i"
    "x: A" "y: A"
    "p: x =\<^bsub>A\<^esub> y"
    "u: P x"
  shows "<x, u> = <y, trans P p u>"
  by (eq p) (reduce; intros)

definition pathlift_i ("lift")
  where [implicit]: "lift P p u \<equiv> pathlift ? P ? ? p u"

translations "lift P p u" \<leftharpoondown> "CONST pathlift A P x y p u"

Lemma pathlift_comp [comps]:
  assumes
    "u: P x"
    "x: A"
    "\<And>x. x: A \<Longrightarrow> P x: U i"
    "A: U i"
  shows "lift P (refl x) u \<equiv> refl <x, u>"
  unfolding pathlift_def by reduce

Lemma (derive) pathlift_fst:
  assumes
    "A: U i"
    "\<And>x. x: A \<Longrightarrow> P x: U i"
    "x: A" "y: A"
    "u: P x"
    "p: x =\<^bsub>A\<^esub> y"
  shows "fst[lift P p u] = p"
  apply (eq p)
    text \<open>Some rewriting needed here:\<close>
    \<guillemotright> vars x y
      (*Here an automatic reordering tactic would be helpful*)
      apply (rewrite at x in "x = y" fst_comp[symmetric])
        prefer 4
        apply (rewrite at y in "_ = y" fst_comp[symmetric])
      done
    \<guillemotright> by reduce intro
  done


section \<open>Dependent paths\<close>

Lemma (derive) apd:
  assumes
    "A: U i"
    "\<And>x. x: A \<Longrightarrow> P x: U i"
    "f: \<Prod>x: A. P x"
    "x: A" "y: A"
    "p: x =\<^bsub>A\<^esub> y"
  shows "trans P p (f x) = f y"
  by (eq p) (reduce; intros; typechk)

definition apd_i ("apd")
  where [implicit]: "apd f p \<equiv> Identity.apd ? ? f ? ? p"

translations "apd f p" \<leftharpoondown> "CONST Identity.apd A P f x y p"

Lemma dependent_map_comp [comps]:
  assumes
    "f: \<Prod>x: A. P x"
    "x: A"
    "A: U i"
    "\<And>x. x: A \<Longrightarrow> P x: U i"
  shows "apd f (refl x) \<equiv> refl (f x)"
  unfolding apd_def by reduce

Lemma (derive) apd_ap:
  assumes
    "A: U i" "B: U i"
    "f: A \<rightarrow> B"
    "x: A" "y: A"
    "p: x =\<^bsub>A\<^esub> y"
  shows "apd f p = trans_const B p (f x) \<bullet> f[p]"
  by (eq p) (reduce; intro)


end