1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
|
theory Equivalence
imports Identity
begin
section \<open>Homotopy\<close>
definition "homotopy A B f g \<equiv> \<Prod>x: A. f `x =\<^bsub>B x\<^esub> g `x"
definition homotopy_i (infix "~" 100)
where [implicit]: "f ~ g \<equiv> homotopy ? ? f g"
translations "f ~ g" \<leftharpoondown> "CONST homotopy A B f g"
Lemma homotopy_type [typechk]:
assumes
"A: U i"
"\<And>x. x: A \<Longrightarrow> B x: U i"
"f: \<Prod>x: A. B x" "g: \<Prod>x: A. B x"
shows "f ~ g: U i"
unfolding homotopy_def by typechk
Lemma (derive) homotopy_refl [refl]:
assumes
"A: U i"
"f: \<Prod>x: A. B x"
shows "f ~ f"
unfolding homotopy_def by intros
Lemma (derive) hsym:
assumes
"f: \<Prod>x: A. B x"
"g: \<Prod>x: A. B x"
"A: U i"
"\<And>x. x: A \<Longrightarrow> B x: U i"
shows "H: f ~ g \<Longrightarrow> g ~ f"
unfolding homotopy_def
apply intros
apply (rule pathinv)
\<guillemotright> by (elim H)
\<guillemotright> by typechk
done
Lemma (derive) htrans:
assumes
"f: \<Prod>x: A. B x"
"g: \<Prod>x: A. B x"
"h: \<Prod>x: A. B x"
"A: U i"
"\<And>x. x: A \<Longrightarrow> B x: U i"
shows "\<lbrakk>H1: f ~ g; H2: g ~ h\<rbrakk> \<Longrightarrow> f ~ h"
unfolding homotopy_def
apply intro
\<guillemotright> vars x
apply (rule pathcomp[where ?y="g x"])
\<^item> by (elim H1)
\<^item> by (elim H2)
done
\<guillemotright> by typechk
done
text \<open>For calculations:\<close>
congruence "f ~ g" rhs g
lemmas
homotopy_sym [sym] = hsym[rotated 4] and
homotopy_trans [trans] = htrans[rotated 5]
Lemma (derive) commute_homotopy:
assumes
"A: U i" "B: U i"
"x: A" "y: A"
"p: x =\<^bsub>A\<^esub> y"
"f: A \<rightarrow> B" "g: A \<rightarrow> B"
"H: homotopy A (fn _. B) f g"
shows "(H x) \<bullet> g[p] = f[p] \<bullet> (H y)"
\<comment> \<open>Need this assumption unfolded for typechecking\<close>
supply assms(8)[unfolded homotopy_def]
apply (eq p)
focus vars x
apply reduce
\<comment> \<open>Here it would really be nice to have automation for transport and
propositional equality.\<close>
apply (rule use_transport[where ?y="H x \<bullet> refl (g x)"])
\<guillemotright> by (rule pathcomp_refl)
\<guillemotright> by (rule pathinv) (rule refl_pathcomp)
\<guillemotright> by typechk
done
done
Corollary (derive) commute_homotopy':
assumes
"A: U i"
"x: A"
"f: A \<rightarrow> A"
"H: homotopy A (fn _. A) f (id A)"
shows "H (f x) = f [H x]"
oops
Lemma homotopy_id_left [typechk]:
assumes "A: U i" "B: U i" "f: A \<rightarrow> B"
shows "homotopy_refl A f: (id B) \<circ> f ~ f"
unfolding homotopy_refl_def homotopy_def by reduce
Lemma homotopy_id_right [typechk]:
assumes "A: U i" "B: U i" "f: A \<rightarrow> B"
shows "homotopy_refl A f: f \<circ> (id A) ~ f"
unfolding homotopy_refl_def homotopy_def by reduce
Lemma homotopy_funcomp_left:
assumes
"H: homotopy B C g g'"
"f: A \<rightarrow> B"
"g: \<Prod>x: B. C x"
"g': \<Prod>x: B. C x"
"A: U i" "B: U i"
"\<And>x. x: B \<Longrightarrow> C x: U i"
shows "homotopy A {} (g \<circ>\<^bsub>A\<^esub> f) (g' \<circ>\<^bsub>A\<^esub> f)"
unfolding homotopy_def
apply (intro; reduce)
apply (insert \<open>H: _\<close>[unfolded homotopy_def])
apply (elim H)
done
Lemma homotopy_funcomp_right:
assumes
"H: homotopy A (fn _. B) f f'"
"f: A \<rightarrow> B"
"f': A \<rightarrow> B"
"g: B \<rightarrow> C"
"A: U i" "B: U i" "C: U i"
shows "homotopy A {} (g \<circ>\<^bsub>A\<^esub> f) (g \<circ>\<^bsub>A\<^esub> f')"
unfolding homotopy_def
apply (intro; reduce)
apply (insert \<open>H: _\<close>[unfolded homotopy_def])
apply (dest PiE, assumption)
apply (rule ap, assumption)
done
method id_htpy = (rule homotopy_id_left)
method htpy_id = (rule homotopy_id_right)
method htpy_o = (rule homotopy_funcomp_left)
method o_htpy = (rule homotopy_funcomp_right)
section \<open>Quasi-inverse and bi-invertibility\<close>
subsection \<open>Quasi-inverses\<close>
definition "qinv A B f \<equiv> \<Sum>g: B \<rightarrow> A.
homotopy A (fn _. A) (g \<circ>\<^bsub>A\<^esub> f) (id A) \<times> homotopy B (fn _. B) (f \<circ>\<^bsub>B\<^esub> g) (id B)"
lemma qinv_type [typechk]:
assumes "A: U i" "B: U i" "f: A \<rightarrow> B"
shows "qinv A B f: U i"
unfolding qinv_def by typechk
definition qinv_i ("qinv")
where [implicit]: "qinv f \<equiv> Equivalence.qinv ? ? f"
translations "qinv f" \<leftharpoondown> "CONST Equivalence.qinv A B f"
Lemma (derive) id_qinv:
assumes "A: U i"
shows "qinv (id A)"
unfolding qinv_def
apply intro defer
apply intro defer
apply htpy_id
apply id_htpy
done
Lemma (derive) quasiinv_qinv:
assumes "A: U i" "B: U i" "f: A \<rightarrow> B"
shows "prf: qinv f \<Longrightarrow> qinv (fst prf)"
unfolding qinv_def
apply intro
\<guillemotright> by (rule \<open>f:_\<close>)
\<guillemotright> apply (elim "prf")
focus vars g HH
apply intro
\<^item> by reduce (snd HH)
\<^item> by reduce (fst HH)
done
done
done
Lemma (derive) funcomp_qinv:
assumes
"A: U i" "B: U i" "C: U i"
"f: A \<rightarrow> B" "g: B \<rightarrow> C"
shows "qinv f \<rightarrow> qinv g \<rightarrow> qinv (g \<circ> f)"
apply (intros, unfold qinv_def, elims)
focus prems vars _ _ finv _ ginv
apply (intro, rule funcompI[where ?f=ginv and ?g=finv])
proof (reduce, intro)
have "finv \<circ> ginv \<circ> g \<circ> f ~ finv \<circ> (ginv \<circ> g) \<circ> f" by reduce refl
also have ".. ~ finv \<circ> id B \<circ> f" by (o_htpy, htpy_o) fact
also have ".. ~ id A" by reduce fact
finally show "finv \<circ> ginv \<circ> g \<circ> f ~ id A" by this
have "g \<circ> f \<circ> finv \<circ> ginv ~ g \<circ> (f \<circ> finv) \<circ> ginv" by reduce refl
also have ".. ~ g \<circ> id B \<circ> ginv" by (o_htpy, htpy_o) fact
also have ".. ~ id C" by reduce fact
finally show "g \<circ> f \<circ> finv \<circ> ginv ~ id C" by this
qed
done
subsection \<open>Bi-invertible maps\<close>
definition "biinv A B f \<equiv>
(\<Sum>g: B \<rightarrow> A. homotopy A (fn _. A) (g \<circ>\<^bsub>A\<^esub> f) (id A))
\<times> (\<Sum>g: B \<rightarrow> A. homotopy B (fn _. B) (f \<circ>\<^bsub>B\<^esub> g) (id B))"
lemma biinv_type [typechk]:
assumes "A: U i" "B: U i" "f: A \<rightarrow> B"
shows "biinv A B f: U i"
unfolding biinv_def by typechk
definition biinv_i ("biinv")
where [implicit]: "biinv f \<equiv> Equivalence.biinv ? ? f"
translations "biinv f" \<leftharpoondown> "CONST Equivalence.biinv A B f"
Lemma (derive) qinv_imp_biinv:
assumes
"A: U i" "B: U i"
"f: A \<rightarrow> B"
shows "?prf: qinv f \<rightarrow> biinv f"
apply intros
unfolding qinv_def biinv_def
by (rule Sig_dist_exp)
text \<open>
Show that bi-invertible maps are quasi-inverses, as a demonstration of how to
work in this system.
\<close>
Lemma (derive) biinv_imp_qinv:
assumes "A: U i" "B: U i" "f: A \<rightarrow> B"
shows "biinv f \<rightarrow> qinv f"
text \<open>Split the hypothesis \<^term>\<open>biinv f\<close> into its components:\<close>
apply intro
unfolding biinv_def
apply elims
text \<open>Name the components:\<close>
focus prems vars _ _ _ g H1 h H2
thm \<open>g:_\<close> \<open>h:_\<close> \<open>H1:_\<close> \<open>H2:_\<close>
text \<open>
\<^term>\<open>g\<close> is a quasi-inverse to \<^term>\<open>f\<close>, so the proof will be a triple
\<^term>\<open><g, <?H1, ?H2>>\<close>.
\<close>
unfolding qinv_def
apply intro
\<guillemotright> by (fact \<open>g: _\<close>)
\<guillemotright> apply intro
text \<open>The first part \<^prop>\<open>?H1: g \<circ> f ~ id A\<close> is given by \<^term>\<open>H1\<close>.\<close>
apply (fact \<open>H1: _\<close>)
text \<open>
It remains to prove \<^prop>\<open>?H2: f \<circ> g ~ id B\<close>. First show that \<open>g ~ h\<close>,
then the result follows from @{thm \<open>H2: f \<circ> h ~ id B\<close>}. Here a proof
block is used to calculate "forward".
\<close>
proof -
have "g ~ g \<circ> (id B)" by reduce refl
also have ".. ~ g \<circ> f \<circ> h" by o_htpy (rule \<open>H2:_\<close>[symmetric])
also have ".. ~ (id A) \<circ> h" by (subst funcomp_assoc[symmetric]) (htpy_o, fact)
also have ".. ~ h" by reduce refl
finally have "g ~ h" by this
then have "f \<circ> g ~ f \<circ> h" by o_htpy
also note \<open>H2:_\<close>
finally show "f \<circ> g ~ id B" by this
qed
done
done
Lemma (derive) id_biinv:
"A: U i \<Longrightarrow> biinv (id A)"
by (rule qinv_imp_biinv) (rule id_qinv)
Lemma (derive) funcomp_biinv:
assumes
"A: U i" "B: U i" "C: U i"
"f: A \<rightarrow> B" "g: B \<rightarrow> C"
shows "biinv f \<rightarrow> biinv g \<rightarrow> biinv (g \<circ> f)"
apply intros
focus vars biinv\<^sub>f biinv\<^sub>g
by (rule qinv_imp_biinv) (rule funcomp_qinv; rule biinv_imp_qinv)
done
section \<open>Equivalence\<close>
text \<open>
Following the HoTT book, we first define equivalence in terms of
bi-invertibility.
\<close>
definition equivalence (infix "\<simeq>" 110)
where "A \<simeq> B \<equiv> \<Sum>f: A \<rightarrow> B. Equivalence.biinv A B f"
lemma equivalence_type [typechk]:
assumes "A: U i" "B: U i"
shows "A \<simeq> B: U i"
unfolding equivalence_def by typechk
Lemma (derive) equivalence_refl:
assumes "A: U i"
shows "A \<simeq> A"
unfolding equivalence_def
apply intro defer
apply (rule qinv_imp_biinv) defer
apply (rule id_qinv)
done
text \<open>
The following could perhaps be easier with transport (but then I think we need
univalence?)...
\<close>
Lemma (derive) equivalence_symmetric:
assumes "A: U i" "B: U i"
shows "A \<simeq> B \<rightarrow> B \<simeq> A"
apply intros
unfolding equivalence_def
apply elim
\<guillemotright> vars _ f "prf"
apply (dest (4) biinv_imp_qinv)
apply intro
\<^item> unfolding qinv_def by (rule fst[of "(biinv_imp_qinv A B f) prf"])
\<^item> by (rule qinv_imp_biinv) (rule quasiinv_qinv)
done
done
Lemma (derive) equivalence_transitive:
assumes "A: U i" "B: U i" "C: U i"
shows "A \<simeq> B \<rightarrow> B \<simeq> C \<rightarrow> A \<simeq> C"
apply intros
unfolding equivalence_def
focus vars p q apply (elim p, elim q)
focus vars f biinv\<^sub>f g biinv\<^sub>g apply intro
\<guillemotright> apply (rule funcompI) defer by assumption known
\<guillemotright> by (rule funcomp_biinv)
done
done
done
text \<open>
Equal types are equivalent. We give two proofs: the first by induction, and
the second by following the HoTT book and showing that transport is an
equivalence.
\<close>
Lemma
assumes "A: U i" "B: U i" "p: A =\<^bsub>U i\<^esub> B"
shows "A \<simeq> B"
by (eq p) (rule equivalence_refl)
text \<open>
The following proof is wordy because (1) the typechecker doesn't rewrite, and
(2) we don't yet have universe automation.
\<close>
Lemma (derive) id_imp_equiv:
assumes
"A: U i" "B: U i" "p: A =\<^bsub>U i\<^esub> B"
shows "<trans (id (U i)) p, ?isequiv>: A \<simeq> B"
unfolding equivalence_def
apply intros defer
\<comment> \<open>Switch off auto-typechecking, which messes with universe levels\<close>
supply [[auto_typechk=false]]
\<guillemotright> apply (eq p, typechk)
\<^item> prems vars A B
apply (rewrite at A in "A \<rightarrow> B" id_comp[symmetric])
apply (rewrite at B in "_ \<rightarrow> B" id_comp[symmetric])
apply (rule transport, rule U_in_U)
apply (rule lift_universe_codomain, rule U_in_U)
apply (typechk, rule U_in_U)
done
\<^item> prems vars A
apply (subst transport_comp)
\<^enum> by (rule U_in_U)
\<^enum> by reduce (rule lift_U)
\<^enum> by reduce (rule id_biinv)
done
done
\<guillemotright> \<comment> \<open>Similar proof as in the first subgoal above\<close>
apply (rewrite at A in "A \<rightarrow> B" id_comp[symmetric])
apply (rewrite at B in "_ \<rightarrow> B" id_comp[symmetric])
apply (rule transport, rule U_in_U)
apply (rule lift_universe_codomain, rule U_in_U)
apply (typechk, rule U_in_U)
done
done
(*Uncomment this to see all implicits from here on.
no_translations
"f x" \<leftharpoondown> "f `x"
"x = y" \<leftharpoondown> "x =\<^bsub>A\<^esub> y"
"g \<circ> f" \<leftharpoondown> "g \<circ>\<^bsub>A\<^esub> f"
"p\<inverse>" \<leftharpoondown> "CONST pathinv A x y p"
"p \<bullet> q" \<leftharpoondown> "CONST pathcomp A x y z p q"
"fst" \<leftharpoondown> "CONST Spartan.fst A B"
"snd" \<leftharpoondown> "CONST Spartan.snd A B"
"f[p]" \<leftharpoondown> "CONST ap A B x y f p"
"trans P p" \<leftharpoondown> "CONST transport A P x y p"
"trans_const B p" \<leftharpoondown> "CONST transport_const A B x y p"
"lift P p u" \<leftharpoondown> "CONST pathlift A P x y p u"
"apd f p" \<leftharpoondown> "CONST Identity.apd A P f x y p"
"f ~ g" \<leftharpoondown> "CONST homotopy A B f g"
"qinv f" \<leftharpoondown> "CONST Equivalence.qinv A B f"
"biinv f" \<leftharpoondown> "CONST Equivalence.biinv A B f"
*)
end
|