blob: 85f22a8a8458f4622938f4da308610c7bdfc7df2 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
|
theory Basic_Types
imports Spartan
begin
section \<open>Sum type\<close>
axiomatization
Sum :: \<open>o \<Rightarrow> o \<Rightarrow> o\<close> and
inl :: \<open>o \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close> and
inr :: \<open>o \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close> and
SumInd :: \<open>o \<Rightarrow> o \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> o\<close>
notation Sum (infixl "\<or>" 50)
axiomatization where
SumF: "\<lbrakk>A: U i; B: U i\<rbrakk> \<Longrightarrow> A \<or> B: U i" and
Sum_inl: "\<lbrakk>a: A; B: U i\<rbrakk> \<Longrightarrow> inl A B a: A \<or> B" and
Sum_inr: "\<lbrakk>b: B; A: U i\<rbrakk> \<Longrightarrow> inr A B b: A \<or> B" and
SumE: "\<lbrakk>
s: A \<or> B;
\<And>s. s: A \<or> B \<Longrightarrow> C s: U i;
\<And>a. a: A \<Longrightarrow> c a: C (inl A B a);
\<And>b. b: B \<Longrightarrow> d b: C (inr A B b)
\<rbrakk> \<Longrightarrow> SumInd A B (\<lambda>s. C s) (\<lambda>a. c a) (\<lambda>b. d b) s: C s" and
Sum_comp_inl: "\<lbrakk>
a: A;
\<And>s. s: A \<or> B \<Longrightarrow> C s: U i;
\<And>a. a: A \<Longrightarrow> c a: C (inl A B a);
\<And>b. b: B \<Longrightarrow> d b: C (inr A B b)
\<rbrakk> \<Longrightarrow> SumInd A B (\<lambda>s. C s) (\<lambda>a. c a) (\<lambda>b. d b) (inl A B a) \<equiv> c a" and
Sum_comp_inr: "\<lbrakk>
b: B;
\<And>s. s: A \<or> B \<Longrightarrow> C s: U i;
\<And>a. a: A \<Longrightarrow> c a: C (inl A B a);
\<And>b. b: B \<Longrightarrow> d b: C (inr A B b)
\<rbrakk> \<Longrightarrow> SumInd A B (\<lambda>s. C s) (\<lambda>a. c a) (\<lambda>b. d b) (inr A B b) \<equiv> d b"
lemmas
[intros] = SumF Sum_inl Sum_inr and
[elims] = SumE and
[comps] = Sum_comp_inl Sum_comp_inr
section \<open>Empty and unit types\<close>
axiomatization
Top :: \<open>o\<close> and
tt :: \<open>o\<close> and
TopInd :: \<open>(o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close>
and
Bot :: \<open>o\<close> and
BotInd :: \<open>(o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> o\<close>
notation Top ("\<top>") and Bot ("\<bottom>")
axiomatization where
TopF: "\<top>: U i" and
TopI: "tt: \<top>" and
TopE: "\<lbrakk>a: \<top>; \<And>x. x: \<top> \<Longrightarrow> C x: U i; c: C tt\<rbrakk> \<Longrightarrow> TopInd (\<lambda>x. C x) c a: C a" and
Top_comp: "\<lbrakk>\<And>x. x: \<top> \<Longrightarrow> C x: U i; c: C tt\<rbrakk> \<Longrightarrow> TopInd (\<lambda>x. C x) c tt \<equiv> c"
and
BotF: "\<bottom>: U i" and
BotE: "\<lbrakk>x: \<bottom>; \<And>x. x: \<bottom> \<Longrightarrow> C x: U i\<rbrakk> \<Longrightarrow> BotInd (\<lambda>x. C x) x: C x"
lemmas
[intros] = TopF TopI BotF and
[elims] = TopE BotE and
[comps] = Top_comp
section \<open>Booleans\<close>
definition "Bool \<equiv> \<top> \<or> \<top>"
definition "true \<equiv> inl \<top> \<top> tt"
definition "false \<equiv> inr \<top> \<top> tt"
\<comment> \<open>Can define if-then-else etc.\<close>
end
|