blob: dfb1879045d7003f010ef75dc9b519f5fcd9043b (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
(*
Title: ex/Book/Ch1.thy
Author: Josh Chen
Date: 2018
A formalization of some content of Chapter 1 of the Homotopy Type Theory book.
*)
theory Ch1
imports "../../HoTT"
begin
chapter \<open>HoTT Book, Chapter 1\<close>
section \<open>1.6 Dependent pair types (\<Sum>-types)\<close>
paragraph \<open>Propositional uniqueness principle.\<close>
schematic_goal
assumes "A: U i" and "B: A \<longrightarrow> U i" and "p: \<Sum>x:A. B x"
shows "?a: p =[\<Sum>x:A. B x] <fst p, snd p>"
text \<open>Proof by induction on @{term "p: \<Sum>x:A. B x"}:\<close>
proof (rule Sum_elim[where ?p=p])
text \<open>We prove the base case.\<close>
fix x y assume asm: "x: A" "y: B x" show "refl <x,y>: <x,y> =[\<Sum>x:A. B x] <fst <x,y>, snd <x,y>>"
proof compute
show "x: A" and "y: B x" by (fact asm)+ \<comment> \<open>Hint the correct types.\<close>
text \<open>And now @{method derive} takes care of the rest.
\<close>
qed (derive lems: assms asm)
qed (derive lems: assms)
section \<open>Exercises\<close>
paragraph \<open>Exercise 1.13\<close>
abbreviation "not" ("\<not>_") where "\<not>A \<equiv> A \<rightarrow> \<zero>"
text "This proof requires the use of universe cumulativity."
proposition assumes "A: U i" shows "\<^bold>\<lambda>f. f`(inr(\<^bold>\<lambda>a. f`(inl a))): \<not>(\<not>(A + \<not>A))"
by (derive lems: assms)
end
|