1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
|
(********
Isabelle/HoTT: Type families as fibrations
Feb 2019
Various results viewing type families as fibrations: transport, path lifting, dependent map etc.
********)
theory Type_Families
imports Eq Projections
begin
section \<open>Transport\<close>
schematic_goal transport:
assumes [intro]:
"A: U i" "P: A \<leadsto> U j"
"x: A" "y: A" "p: x =[A] y"
shows "?prf: P x \<rightarrow> P y"
proof (path_ind' x y p)
show "\<And>x. x: A \<Longrightarrow> id P x: P x \<rightarrow> P x" by derive
qed routine
definition transport :: "[t, t \<Rightarrow> t, t, t] \<Rightarrow> t" ("(2transport[_, _, _, _])")
where "transport[A, P, x, y] \<equiv> \<lambda>p: x =[A] y. indEq (\<lambda>a b. & (P a \<rightarrow> P b)) (\<lambda>x. id P x) x y p"
syntax "_transport'" :: "t \<Rightarrow> t" ("transport[_]")
ML \<open>val pretty_transport = Attrib.setup_config_bool @{binding "pretty_transport"} (K true)\<close>
print_translation \<open>
let fun transport_tr' ctxt [A, P, x, y] =
if Config.get ctxt pretty_transport
then Syntax.const @{syntax_const "_transport'"} $ P
else @{const transport} $ A $ P $ x $ y
in
[(@{const_syntax transport}, transport_tr')]
end
\<close>
corollary transport_type:
assumes [intro]: "A: U i" "P: A \<leadsto> U j" "x: A" "y: A"
shows "transport[A, P, x, y]: x =[A] y \<rightarrow> P x \<rightarrow> P y"
unfolding transport_def by derive
lemma transport_comp:
assumes [intro]: "A: U i" "P: A \<leadsto> U j" "a: A"
shows "transport[A, P, a, a]`(refl a) \<equiv> id P a"
unfolding transport_def by derive
declare
transport_type [intro]
transport_comp [comp]
schematic_goal transport_invl:
assumes [intro]:
"A: U i" "P: A \<leadsto> U j"
"x: A" "y: A" "p: x =[A] y"
shows "?prf:
(transport[A, P, y, x]`(inv[A, x, y]`p)) o[P x] (transport[A, P, x, y]`p) =[P x \<rightarrow> P x] id P x"
proof (path_ind' x y p)
fix x assume [intro]: "x: A"
show
"refl (id P x) :
transport[A, P, x, x]`(inv[A, x, x]`(refl x)) o[P x] (transport[A, P, x, x]`(refl x))
=[P x \<rightarrow> P x] id P x"
by derive
fix y p assume [intro]: "y: A" "p: x =[A] y"
show
"transport[A, P, y, x]`(inv[A, x, y]`p) o[P x] transport[A, P, x, y]`p
=[P x \<rightarrow> P x] id P x : U j"
by derive
qed
schematic_goal transport_invr:
assumes [intro]:
"A: U i" "P: A \<leadsto> U j"
"x: A" "y: A" "p: x =[A] y"
shows "?prf:
(transport[A, P, x, y]`p) o[P y] (transport[A, P, y, x]`(inv[A, x, y]`p)) =[P y \<rightarrow> P y] id P y"
proof (path_ind' x y p)
fix x assume [intro]: "x: A"
show
"refl (id P x) :
(transport[A, P, x, x]`(refl x)) o[P x] transport[A, P, x, x]`(inv[A, x, x]`(refl x))
=[P x \<rightarrow> P x] id P x"
by derive
fix y p assume [intro]: "y: A" "p: x =[A] y"
show
"transport[A, P, x, y]`p o[P y] transport[A, P, y, x]`(inv[A, x, y]`p)
=[P y \<rightarrow> P y] id P y : U j"
by derive
qed
declare
transport_invl [intro]
transport_invr [intro]
section \<open>Path lifting\<close>
schematic_goal path_lifting:
assumes [intro]:
"P: A \<leadsto> U i" "A: U i"
"x: A" "y: A" "p: x =[A] y"
shows "?prf: \<Prod>u: P x. <x, u> =[\<Sum>x: A. P x] <y, transport[A, P, x, y]`p`u>"
proof (path_ind' x y p, rule Prod_routine)
fix x u assume [intro]: "x: A" "u: P x"
have "(transport[A, P, x, x]`(refl x))`u \<equiv> u" by derive
thus "(refl <x, u>): <x, u> =[\<Sum>(x: A). P x] <x, transport[A, P, x, x]`(refl x)`u>"
proof simp qed routine
qed routine
definition lift :: "[t, t \<Rightarrow> t, t, t] \<Rightarrow> t" ("(2lift[_, _, _, _])")
where
"lift[A, P, x, y] \<equiv> \<lambda>u: P x. \<lambda>p: x =[A] y. (indEq
(\<lambda>x y p. \<Prod>u: P x. <x, u> =[\<Sum>(x: A). P x] <y, transport[A, P, x, y]`p`u>)
(\<lambda>x. \<lambda>(u: P x). refl <x, u>) x y p)`u"
corollary lift_type:
assumes [intro]:
"P: A \<leadsto> U i" "A: U i"
"x: A" "y: A"
shows
"lift[A, P, x, y]:
\<Prod>u: P x. \<Prod>p: x =[A] y. <x, u> =[\<Sum>x: A. P x] <y, transport[A, P, x, y]`p`u>"
unfolding lift_def by (derive lems: path_lifting)
corollary lift_comp:
assumes [intro]:
"P: A \<leadsto> U i" "A: U i"
"x: A" "u: P x"
shows "lift[A, P, x, x]`u`(refl x) \<equiv> refl <x, u>"
unfolding lift_def apply compute prefer 3 apply compute by derive
declare
lift_type [intro]
lift_comp [comp]
text \<open>
Proof of the computation property of @{const lift}, stating that the first projection of the lift of @{term p} is equal to @{term p}:
\<close>
schematic_goal lift_fst_comp:
assumes [intro]:
"P: A \<leadsto> U i" "A: U i"
"x: A" "y: A" "p: x =[A] y"
defines
"Fst \<equiv> \<lambda>x y p u. ap[fst[A, P], \<Sum>x: A. P x, A, <x, u>, <y, transport[A, P, x, y]`p`u>]"
shows
"?prf: \<Prod>u: P x. (Fst x y p u)`(lift[A, P, x, y]`u`p) =[x =[A] y] p"
proof
(path_ind' x y p, quantify_all)
fix x assume [intro]: "x: A"
show "\<And>u. u: P x \<Longrightarrow>
refl(refl x): (Fst x x (refl x) u)`(lift[A, P, x, x]`u`(refl x)) =[x =[A] x] refl x"
unfolding Fst_def by derive
fix y p assume [intro]: "y: A" "p: x =[A] y"
show "\<Prod>u: P x. (Fst x y p u)`(lift[A, \<lambda>a. P a, x, y]`u`p) =[x =[A] y] p: U i"
proof derive
fix u assume [intro]: "u: P x"
have
"fst[A, P]`<x, u> \<equiv> x" "fst[A, P]`<y, transport[A, P, x, y]`p`u> \<equiv> y" by derive
moreover have
"Fst x y p u:
<x, u> =[\<Sum>(x: A). P x] <y, transport[A, P, x, y]`p`u> \<rightarrow>
fst[A, P]`<x, u> =[A] fst[A, P]`<y, transport[A, P, x, y]`p`u>"
unfolding Fst_def by derive
ultimately show
"Fst x y p u: <x, u> =[\<Sum>(x: A). P x] <y, transport[A, P, x, y]`p`u> \<rightarrow> x =[A] y"
by simp
qed routine
qed fact
section \<open>Dependent map\<close>
schematic_goal dependent_map:
assumes [intro]:
"A: U i" "B: A \<leadsto> U i"
"f: \<Prod>x: A. B x"
"x: A" "y: A" "p: x =[A] y"
shows "?prf: transport[A, B, x, y]`p`(f`x) =[B y] f`y"
proof (path_ind' x y p)
show "\<And>x. x: A \<Longrightarrow> refl (f`x): transport[A, B, x, x]`(refl x)`(f`x) =[B x] f`x" by derive
qed derive
definition apd :: "[t, t, t \<Rightarrow> t, t, t] \<Rightarrow> t" ("(apd[_, _, _, _, _])") where
"apd[f, A, B, x, y] \<equiv>
\<lambda>p: x =[A] y. indEq (\<lambda>x y p. transport[A, B, x, y]`p`(f`x) =[B y] f`y) (\<lambda>x. refl (f`x)) x y p"
corollary apd_type:
assumes [intro]:
"A: U i" "B: A \<leadsto> U i"
"f: \<Prod>x: A. B x"
"x: A" "y: A"
shows "apd[f, A, B, x, y]: \<Prod>p: x =[A] y. transport[A, B, x, y]`p`(f`x) =[B y] f`y"
unfolding apd_def by derive
declare apd_type [intro]
end
|